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Fm., Mexico)—patterns of
herbivory during the Angiosperm
Terrestrial Revolution
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Regional del Noroeste (ERNO), Instituto de Geologı́a, Universidad Nacional Autónoma de México
(UNAM), Hermosillo, Mexico, 3Posgrado en Ciencias Biológicas, Instituto de Geologı́a, Universidad
Nacional Autónoma de México (UNAM), Circuito Interior Ciudad Universitaria, México City, Mexico,
4Departamento de Paleontologı́a, Instituto de Geologı́a, Universidad Nacional Autónoma de México
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Plants and insects are two of the more diverse and abundant organisms in

terrestrial ecosystems. The fossil record of plant-insect interactions offers crucial

insights into the coevolutionary dynamics between these groups, shedding light

on the intricate relationships that have shaped terrestrial ecosystems. The study

of fossil interactions is especially relevant in mid-Cretaceous ecosystems, a time

of dramatic changes in the composition of floras and, consequently, in plant-

insect relationships. Here, we describe the first suite of plant-insect interactions

from the mid-Cretaceous of Mexico. We studied 554 plant fossils from the El

Chango Lagerstätte (Cintalapa Formation, Chiapas, Mexico), including vegetative

(leaves) and reproductive structures (fruits and seeds). The flora was dominated

by gymnosperms (89.3%) followed by angiosperms (10.7%); other groups, such as

pteridophytes and bryophytes, were absent. In total, 5.4% of the plant specimens

hosted some damage. Angiosperms (all broad-leafed forms), despite beingmuch

less common than gymnosperms, expressed more evidence of damage by

herbivores (35.6% of specimens damaged). In contrast, the narrow-leafed

gymnosperms, the dominant group in the flora, hosted a much lower

proportion of herbivory damage (1.8% of specimens damaged). The diversity of

damage types (DTs) was relatively low: 14 DTs were identified, corresponding to

seven FFGs, including margin feeding, hole feeding, surface feeding, piercing and

sucking, oviposition, galling, and mining. Comparison with the other mid-

Cretaceous plant-insect assemblages reveals a similar richness of DTs for

angiosperms but a lower richness and diversity of DTs on gymnosperms from

El Chango. These results indicate preferential herbivory on angiosperms (rather

than on the available gymnosperms in the assemblage) by terrestrial arthropods

during a period of major changes in the structure of terrestrial ecosystems.
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However, it is challenging to resolve whether this apparent preference is because

insects particularly targeted angiosperms or if the herbivores simply targeted

broad leaves in general, since most of the available gymnosperms from El

Chango are scale-leafed forms.
KEYWORDS

angiosperms, gymnosperms, mid-Cretaceous, plant-arthropod interactions,
palaeoecology, fruits, herbivory
1 Introduction

Plants and arthropods represent the two dominant groups with

respect to biodiversity and biomass in terrestrial ecosystems (Bar-On

et al., 2018). Their importance extends back to the earliest terrestrial

biotas, where fossil interactions provide evidence of the structure of the

first land-based ecosystems (Labandeira and Wappler, 2023). Fossil

evidence of plant-insect interactions provides one of the few windows

into the past relationships between these two groups, offering tangible

records of coevolutionary processes and provides valuable data on the

evolutionaryhistoryofbothplants and insects.Thesedata enhanceour

understanding of the structure and development of ancient

ecosystems, biodiversity patterns, and the intricate web of biotic

relationships that have shaped the natural world over geological time

scales (e.g., Mcloughlin et al., 2015; Santos et al., 2021, Santos et al.,

2022a, Santos et al., 2022b, Santos et al., 2022c, Santos et al., 2023;

Labandeira andWappler, 2023).

Plant-arthropod interactions have been recorded in the fossil

record since the Silurian-Devonian (Scott et al., 1992; Hagström

and Mehlqvist, 2012), during the early colonization of terrestrial

environments by plants. Since then, the interactions between these

two groups have become more complex and abundant in the fossil

record and have experienced successive phases of development.

During the mid-Cretaceous, the Cretaceous Terrestrial Revolution

(KTR), and the closely related Angiosperm Terrestrial Revolution

(ATR), occurred. This interval encompassed significant changes in

the composition, structure and complexity of terrestrial ecosystems,

especially marked by the diversification and expansion of

angiosperms, which came to dominate plant communities

worldwide (McLoughlin et al., 1995, 2010; Villanueva-Amadoz

et al., 2010; Coiffard et al., 2012; Condamine et al., 2020; Santos

et al., 2022a; Xiao et al., 2022a; 2023). These changes at the base of

the food chain led to significant shifts in the representation,

morphology, and behaviour of numerous groups of terrestrial

parasites, saprotrophs, and consumers, among which insects were

key (Peris and Condamine, 2024). Some previous works (see

Table 1 for details) suggested that, in Europe, insect herbivores

adapted rapidly to angiosperms, targeting them as their preferred

food source in some areas (Santos et al., 2022a). However, little is

known about how these floristic changes affected the dynamics of

herbivory in other regions of the world.
02
Evidence of fossil plant-insect interactions from Mexico is

scarce, thus far being confined to studies of just a few specimens.

The oldest fossil evidence of interactions from that country is from

the Permian Matzitzi Formation (Flores-Barragán et al., 2023).

There has been a single study of Jurassic interactions from the

Otlaltepec Formation from which 22 bennettitalean and fern

remains were reported with some evidence of herbivory damage

(Velasco de León et al., 2015). There are a few reports of fungal-

insect interactions in Miocene amber samples from Chiapas

(Arroyo-Sánchez et al., 2023). Thus far, no formal studies have

been published on plant-insect interactions from the Cretaceous of

Mexico. Our study provides the first evidence of plant-insect

interactions from the mid-Cretaceous of Mexico and southern

portion of North America. This offers the opportunity to explore

how insects reacted to the profound changes in terrestrial

ecosystems in the region that would become the precursor to the

modern Neotropical biogeographic realm (Carvalho et al., 2021).

The main objectives of this work are to: 1, document the first

occurrences of plant-insect interactions from the El Chango

Lagerstätte; 2, identify and discuss the diversity and intensity of

interactions expressed by Damage Types (DTs) and Functional

Feeding Groups (FFGs) in this paleoforest; and 3, statistically

appraise the palaeoecology of this fossil site.
2 Geological context

The El Chango outcrop hosts a fossil Lagerstätte and is located

30 km southeast of the Guadalupe Victoria locality, Chiapas,

southeastern Mexico (coordinates: N 16°34’14”, W 93°16’11”:

Figures 1A, B). Strata exposed at this site belong to the Cintalapa

Formation within the Sierra Madre Group. This group consists of a

700–1600-m-thick succession of marine laminated dolomites with

sporadic flint levels (Moreno-Bedmar et al., 2014).

The sedimentary succession at El Chango (Figure 1C) was

deposited in a brackish estuary or salty lagoon with episodic

influx of freshwater (Vega et al., 2006; Moreno-Bedmar et al.,

2014). The remains of several marine/coastal organisms have

been found in the Cintalapa Formation. The fossil assemblages

are recognized globally for their exceptional marine fish diversity

and preservation, as documented by, e.g., Alvarado-Ortega et al.
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TABLE 1 Selection of Cretaceous plant-insect interactions. Modified from Santos et al. (2022a).

Age Geographic
area

Formation/
Basin

Damage/Interaction References

Late
Cretaceous
(Maastrichtian)

Patagonia
(Argentina)

Lefipán Fm. Hole feeding, margin feeding, skeletonization, surface feeding,
piercing and sucking, mining, and galling on angiosperms. More
than 50 DTs

Donovan, et al. (2014, 2016, 2018, 2020)

Late
Cretaceous
(Campanian)

Southern
Utah (USA)

Kaiparowits
Fm.

Leaf mine of Leucopteropsa spiralae in an angiosperm leaf and
Acarodomatia interactions on angiosperm leaves

Maccracken et al. (2019, 2021)

Late
Cretaceous
(Coniacian)

Vancouver
Island (Canada)

Comox Fm. Feeding galleries and damage (putative lepidoptera) on cones of
Acanthostrobus edenensis (Cupressaceae)

Klymiuk et al. (2015)

Late
Cretaceous
(Turonian)

Negev (Israel) Ora Fm. Hole feeding, margin feeding, mining, galling, oviposition,
Skeletonization. Mainly on angiosperms

Krassilov (2007, 2008a, 2008b); Krassilov
et al. (2007, 2008); Krassilov and
Rasnitsyn (2008); Krassilov and
Shuklina (2008)

Late
Cretaceous
(?Campanian)

Nelson Island
(Antarctic
Peninsula)

Fildes Fm. Hole feeding, margin feeding, skeletonization, and galls
on angiosperms

Santos-Filho et al. (2023)

Late
Cretaceous

Gobi (Mongolia) ? Gallery system of a bark beetle in Araucariaceae wood Petrov (2013)

Late
Cretaceous

Patagonia
(Argentina)

Unnamed Fm. Six ichnospecies in wood remains (Cycalichnus garciorum;
Stipitichnus koppae; Xylonichnus, Carporichnus maximus; C.
bertheorum, and C. minimus)

Genise (1995)

Mid-
Cretaceous
(Cenomanian)

Tonnay-
Charente
(France)

Puy-Puy quarry
(Aquitaine
Basin)

Quantitative/semiquantitative study of plant-insect interactions
on 1605 plant remains. 71 distinct DTs

Santos et al. (2022a)

Mid-
Cretaceous
(early
Cenomanian)

Chiapas (Mexico) El Chango Site
(Cintalapa Fm.)

Quantitative/semiquantitative study of plant-insect interactions
on 554 plant remains. 13 distinct DTs

This study

Mid-
Cretaceous
(Albian)

Teruel (Spain) Escucha Fm. 23 DTs from eight FFGs (hole feeding, margin feeding,
skeletonization, surface feeding, piercing and sucking, mining,
oviposition and galling) in aquatic and terrestrial
basal angiosperms

Santos et al. (2023)

Mid-
Cretaceous
(Albian)

Teruel (Spain) Escucha Fm. Margin feeding, hole feeding, and mining on 75 specimens of
Sagenopteris sp. (Caytoniales)

Sender et al. (2022)

Mid-
Cretaceous
(Albian)

Teruel (Spain) Utrillas Fm. Margin and hole feeding on Nymphaeaceae leaves Estevez-Gallardo et al. (2018)

Mid-
Cretaceous
(Albian)

Patagonia
(Argentina)

Piedra
Clavada Fm.

A new petalurid ichnospecies: Maichnus wetkaroae Genise et al. (2020)

Mid-
Cretaceous
(Aptian-
Albian)

Gansu (China) Zhonggou Fm. Hole feeding, margin feeding, skeletonization, and galling Zhang et al. (2023)

Early
Cretaceous
(Aptian)

Nebraska (USA) Dakota Fm. Margin feeding, surface feeding, skeletonization, hole feeding,
oviposition, piercing and sucking, leaf-mining, galling, seed
predation, borings; and pathogens (114 DTs)

Xiao et al. (2022b)

Early
Cretaceous
(Aptian)

Liaoning (China) Yixian Fm. Margin feeding, surface feeding, hole feeding, oviposition,
piercing and sucking, leaf-mining, galling, borings;
and pathogens

Ding et al. (2015); Xiao et al. (2022a)

Early
Cretaceous
(Berriasian)

Araripe
Basin (Brasil)

Missão
Velha Fm.

Isoptera galleries in wood of conifers Pires and Sommer (2009)

(Continued)
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(2009), Alvarado-Ortega and Than-Marchese (2012, 2013), Dıáz-

Cruz et al. (2019, 2020), Than-Marchese et al. (2020) and Cantalice

et al. (2021). Additionally, deposits from this formation contain

significant fossils of decapods (e.g., Vega et al., 2006; 2022; Bruce

et al., 2021), plants (González-Ramıŕez et al., 2013; Guerrero-

Márquez et al., 2013; this study), and even insects, including

remains of Odonata and Hemiptera (Vega et al., 2006).

According to Vega et al. (2006), the El Chango deposits are late

Albian in age. However, Moreno-Bedmar et al. (2014) suggested an

earliest Cenomanian age for the upper part of the stratigraphic

section at El Chango based on the presence of diagnostic

ammonoids (Graysonites: Acanthoceratidae). The lower part of

the section has not been calibrated with ammonoids, and

consequently, a late Albian age for this interval cannot be

excluded. Mexico was located in low northern latitudes (<15°N)

during the mid-Cretaceous (McLoughlin, 2001).
3 Material and methods

We noted 858 plant remains from the El Chango site. Only well-

preserved terrestrial plant remains with dimensions of at least 2 × 2

cm were selected for this study. This left an inventory of 554 plant

fossils (See details in the Supplementary Data), including vegetative

remains (536 leaves, 97%; Figures 2–6) and reproductive structures

(18 fruits and seeds, 3%; Figures 3, 5). The plant fossils are preserved

as carbonaceous films or impressions that were analyzed for

evidence of interactions. The relatively good preservation of the

leaves suggests that transport distances were short, indicating a

parautochthonous origin of the plant fossils and, consequently, of

the interactions.

The fossils were prepared following standard techniques in the

Department of Palaeontology in the IGL-UNAM, using a

micropneumatic hammer and needles. Selected fossils were

photographed using a Canon EOSM50, and detailed photos were

taken with a micro-camera Axiocam 503 Color attached to a Zeiss

Axio Zoom V.16 microscope. Some samples were photographed

submerged in distilled H2O to improve image contrast and quality.

The fossils will be stored in the Laboratory of Palaeobotany of Dr.

Sergio RS Cevallos-Ferriz in the IGL-UNAM, Ciudad de México.

We have followed the classification system proposed by

Labandeira et al. (2007) to identify plant-arthropod interactions.

In this system, the interactions observed on the leaves are classified
Frontiers in Ecology and Evolution 04
into different morphotypes, named Damage Types (hereafter DTs),

followed by an identifying number, where most of the DTs belong

to specific Functional Feeding Groups (hereafter FFGs).

Additionally, each DT is connected to a certain degree of

specialization, based on the occurrence on different host plants

(Labandeira et al., 2007).

The statistical analyses were undertaken using R i386 3.6.0 (R

Development Core Team) and R Commander. We have used codes

based on Gunkel and Wappler (2015) to calculate the richness and

rarefaction of DTs and FFGs (Figures 7, 8); to obtain standard

deviations, we employed the procedures of Heck Jr et al. (1975).

Rarefaction was calculated using both damaged and undamaged

plant remains. Statistically analyzed plant-insect associations from

Cretaceous deposits are scarce, which limits the options for

comparisons with other floras. To make comparisons between the

interactions of El Chango and other assemblages of mid-Cretaceous

(especially Cenomanian) plant-insect interactions, we re-processed

the data of Santos et al. (2022a) from the early Cenomanian plant

assemblage from Puy-Puy (France), which was the only available

relevant dataset from this time interval (Figure 8). We analyzed the

rarefaction of DTs and FFGs of the Puy-Puy dataset following the

same methodology applied to our Mexican data.
4 Results

4.1 Plant assemblage

The fossil assemblage at El Chango is dominated by

gymnosperms (495 specimens; 89.3%; Figure 7A). Angiosperm

remains are remarkably scarce in the assemblage (59 specimens;

10.7%; Figure 7A). The most abundant remains were attributed to

the conifer Geinitzia sp. (62.3% relative abundance), followed by

Podocarpaceae indet. (13.9%) and by the cupressacean

Brachyphyllum sp. (10.1%). Other taxa or morphotypes represent

less than 10% of the assemblage. Angiosperms, such as Sapindopsis

sp. (Platanaceae; Figures 1C, 2) and Eucalyptolaurus sp. (Lauraceae;

Figure 1C), were also present in the assemblage. Poor preservation

of some angiosperm leaves did not permit identification to genus or

species level. Consequently, some were classified into various

“angiosperm morphotypes”.

The taxon that dominates the plant fossil assemblage, Geinitzia

sp., has xerophytic adaptations (Moreau et al., 2021). The third-
TABLE 1 Continued

Age Geographic
area

Formation/
Basin

Damage/Interaction References

Early
Cretaceous

Araripe Basin
(northeast Brazil)

Crato Fm. Margin feeding, galling, oviposition and piercing and sucking on
ferns; margin feeding, skeletonization and galling
on angiosperms

Santos-Filho et al. (2019)

Early
Cretaceous

Rajmahal
Hills (India)

Rajmahal Fm. Margin feeding in Ptilophyllum sp., oviposition on
Phyllopteroides; galling on Nipaniophyllum

Banerji (2004)

Early
Cretaceous
(Berriasian)

Bornholm
(Denmark)

Rabekke Fm. Insect boring (putative fungus-farming beetle) on wood Mikulás ̌ et al. (2020)
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most abundant genus (Brachyphyllum: 9.1%) also has xerophytic

characters, e.g., small appressed leaves, thick cuticle, and sunken

stomata to limit water loss (Moreau et al., 2022). There is also a

remarkable dearth of hygrophilous plants, such as ferns and

bryophytes, in this mid-Cretaceous assemblage. These groups,

especially ferns, are common in other Cretaceous floras (being
Frontiers in Ecology and Evolution 05
represented in both macrofloras and palynofloras) from the

Northern Hemisphere (e.g., Vajda et al., 2013; Villanueva-

Amadoz et al., 2014; Santos et al., 2018, 2022a; Estrada-Ruiz

et al., 2018; Rodrıǵuez-Barreiro et al., 2022; 2024; Cevallos-Ferriz

et al., 2022; Herman and Domogatskaya, 2023; Martıńez de

Espronceda et al., 2024). Cycadales and Bennettitales were not
FIGURE 1

(A, B) Geographical and geological map showing (white dot in A and star in B) the position of El Chango Lagerstätte locality (Chiapas, Mexico).
(C) Stratigraphic section of the studied interval of the Cintalapa Formation indicating the plant-bearing levels (star) and the lithological characters.
M: Mudstone; W: Wackestone; P: Packstone. (Modified from Moreno-Bedmar et al., 2014).
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recorded in the fossil flora. The absence of these taxa in the

assemblage does not necessarily mean their absence in the

biocenosis since taphonomic processes may have excluded them.

On the other hand, the flora also contained seeds and fruits, some of

which bore potential anti-herbivore defences, e.g., the spinescence

expressed in the Papaveraceae-like fruit (Figures 3C, G).
4.2 Plant-arthropod interactions

Fourteen DTs were identified in the plant assemblage

(Figures 7C, D) corresponding to seven FFGs, including two DTs

of margin feeding (DT012, DT200), four DTs of hole feeding

(DT001, DT005, DT008, DT113), one DT of surface feeding
Frontiers in Ecology and Evolution 06
(DT030), three DTs of piercing and sucking (DT046, DT047,

DT053), one example of oviposition (DT076), two putative DTs

of galling (DT080, and a galling structure that shares some affinities

with DT336), and one DT corresponding to mining (DT129).

Of the 554 plant remains included in the study, only 5.4% show

evidence of herbivory or oviposition scars (Figure 7B). Nevertheless,

when this richness of damage is analyzed by botanical groups, the

results show high disparity. Only 1.8% of gymnosperm specimens

were damaged, whereas 35.6% of angiosperms bore damage features

(Figure 7B). The frequency of arthropod damage varied among each

FFG. Hole feeding was the most common functional feeding group

(2.5%), followed by margin feeding (present in 1.1% of specimens),

piercing and sucking (1.1% of affected plants), galling (0.9%),

mining (0.2%), and surface feeding (0.2%). No clear evidence of
FIGURE 2

Various DTs of margin feeding on basal angiosperms at El Chango. (A) Two occurrences of DT012 on Eucalyptolaurus sp. Scale Bar = 1 cm (10 mm);
(B) Margin feeding with developed reaction rim (DT200) and hole feeding on the left side of the leaf (DT113) in Angiosperm MF16. Scale Bar =
10 mm; (C) Evidence of DT012 on aff. Sapindopsis sp. Scale Bar = 10 mm; (D) Detail of A showing the dark reaction rim of one DT012 (see white
arrow) on Eucalyptolaurus sp. Scale Bar = 5 mm; (E) Detail of B, white arrow shows the slightly cuspate margin and thickened reaction rim of a
DT200. Scale Bar = 5 mm; (F) Detail of C, showing the DT012 on aff. Sapindopsis sp.; Scale Bar = 5 mm.
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skeletonization, seed predation, or pathogen attack was found in the

El Chango flora.
4.3 Filamentous drapes on plants

Two specimens of cf. Geinitzia sp. host intriguing plant-algae

interactions (Figure 6). Delicate filamentous structures coat the

branch axis and its helically arranged leaves, forming dense threads

around these gymnosperms. The distinct arrangement of these

filaments, exclusive to the gymnosperms and absent in the

adjacent rock matrix, strongly suggests a preferential association

with the plant. Detailed discussion of this specimen is included in

the end of the following section.
Frontiers in Ecology and Evolution 07
5 Discussion

5.1 Herbivory and plant palatability at the El
Chango paleoforest: palaeoecological and
paleoenvironmental insights

We identified seven FFGs and 14 DTs in the El Chango

Lagerstätte, representing a generally low diversity of interactions.

Herbivory is represented predominantly by relatively simple hole

feeding (2.5% incidence in the flora), piercing and sucking (1.1% of

affected plants), and margin feeding (1.1% of the flora). Most

identified DTs were found on broad-leafed angiosperm remains

(12 DTs), whereas only two DTs were identified in gymnosperms

(Figure 7D). The absence of other FFGs, such as skeletonization or
FIGURE 3

Various DTs of hole feeding on early angiosperms from the studied site. (A) Leaf of Angiosperm MF7 with some hole-feeding interactions (DT001).
Scale Bar = 10 mm; (B) Polylobate hole feeding (DT005) on Angiosperm MF3. Scale Bar = 10 mm; (C) Angiosperm fruit (Papaveraceae-like fruit)
bearing some herbivory-defense structures (spines) and with a possible hole-feeding scar (DT001). Scale Bar = 10 mm; (D) Detail of A, white arrow
shows the reaction rim around the small hole (DT001) in the angiosperm leaf. Scale Bar = 1 mm; (E) Detail of A, white arrow shows the plant
reaction to the hole-feeding damage (DT001). Scale Bar = 1 mm; (F) Detail of the irregular (polylobate) hole feeding (DT005) illustrated in (B). Scale
Bar = 5 mm; (G) Detailed photo of C, showing more detail on the spines of the Papaveraceous-like fruit and the putative DT001 (see white arrow).
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pathogen damage, does not necessarily imply the absence of insects,

fungi, or other micro-organisms with these feeding styles in the

parent biota but may indicate taphonomic biases. We also note that

the rarefaction curve for all DTs is not stabilized at the 536

specimen level (Figure 7C), suggesting that if more samples are

recovered from El Chango more diversity of damage would likely

be identified.

According to the host specificity index, the interactions from

the El Chango site have similar diversity of specific damage (six

DTs) to that of generalist damage (external damage; seven DTs).

Specialized interactions in the fossil record are commonly

attributed to monophagous and particularly oligophagous insects

(Currano et al., 2008, 2010; Adroit et al., 2016). In contrast,

polyphagous insects are generally associated with more general
Frontiers in Ecology and Evolution 08
interactions (Currano et al., 2008). The similar levels of diversity

and abundance between specific and generalist damage in the El

Chango flora suggest that oligophagous and polyphagous insects

were equally important in this gymnosperm-dominated mid-

Cretaceous paleoforest.

The plant assemblage at the El Chango site shows a significant

disparity in the richness of damage for each plant group and genus.

Gymnosperms represent only 1.8% of the specimens with one or

more DTs. This contrasts with the dominance of this group in the

total flora (89.3%). In comparison, 35.6% of angiosperms were

damaged by insects or other arthropods or mollusks, yet flowering

plants constitute only 10.7% of the plant specimens in this

Cretaceous flora. This indicates that the regional entomofauna

targeted broad angiosperm leaves in preference to the available
FIGURE 4

Various DTs of surface feeding, oviposition, piercing and sucking, and mining on basal angiosperms of El Chango site. (A) Angiosperm MF13 with
linear mining in the right side of the leaf (DT129). Scale Bar = 10 mm; (B) aff. Sapindopsis sp. with an oviposition scar in the midvein (DT076; see
detail of red square in (D). Scale Bar = 10 mm; (C) Surface feeding on Angiosperm MF11 (DT030; Detail in G). Scale Bar = 10 mm;
(D) Detail of the oviposition mark (see white arrow) in aff. Sapindopsis sp. Scale Bar = 5 mm; (E) Possible piercing and sucking interaction (aff. DT053)
in Angiosperm MF11. Scale Bar = 5 mm; (F) Enlargement of A, showing details of the linear mining (DT129), white arrows indicate the reaction rim
surrounding this interaction. Scale Bar = 5 mm; (G) Detail of the damage patch corresponding to Surface Feeding (DT030). Scale Bar = 5 mm.
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scale-leafed gymnosperms, but it is not clear whether this

differential distribution was due to preferences for broad leaf form

or for flowering plants per se. No broad-leafed gymnosperms or

scale-leafed angiosperms are available in the El Chango assemblage

to test these alternative possibilities. In any case, the relatively

abundance of damage on angiosperms is striking given that,

during the Albian–Cenomanian, angiosperms had only recently

emerged as a significant component of the vegetation and were still

in their early phase of diversification (Friis et al., 2011). Insects,

having adapted to interactions with pteridophytes and

gymnosperms over hundreds of millions of years, might be

expected to require significant time to adjust to herbivory on this
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new plant group. However, our findings indicate that the

entomofauna were already well adapted to feed on early

angiosperms during the mid-Cretaceous in the tropics. This

implies a relatively rapid adjustment of diverse insect clades to

the emerging plant group that would soon dominate

terrestrial ecosystems.

To resolve whether the insects from El Chango had a preference

for feeding on angiosperms is challenging in the absence of broad-

leafed gymnosperms, but we hypothesize that the small, thick and

appressed leaves of the preserved conifers may have been inhibitory

to some insect herbivores. Among the most dominant taxa in the El

Chango assemblage were the conifers Geinitzia and Brachyphyllum
FIGURE 5

Various DTs of piercing and sucking, and galling on some gymnosperms and fruits from the El Chango site. (A) Gymnosperm branch of cf. Geinitzia
sp. showing a putative gall (similar structure to DT336). Scale Bar = 10 mm; (B) Indeterminate angiosperm fruit showing an attached fish coprolite
(upper white arrow) and a gall-like structure (lower white arrow). Scale Bar = 10 mm; (C) Piercing and sucking marks on a leaf of Angiosperm MF8
consisting of several slightly convex styletal punctures (DT047) Scale Bar = 5 mm; (D) Detail of the pedunculate gall emerging from a cf. Geinitzia sp.
branch: Scale Bar = 5 mm; (E) Zoom on C, showing details on the styletal punctures (DT047). Scale Bar = 1 mm; (F) Specimen of cf. Geinitzia sp.
bearing falcate leaves spreading from the axis, showing piercing and sucking marks on the upper leaf (see details on G). Scale Bar = 5 mm; (G) Detail
of (F), showing one falcate leaf of cf. Geinitzia sp. with a concave styletal puncture (DT046). Scale Bar = 1 mm; (H) Enlargement of the piercing and
sucking mark (see white arrow).
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(collectively accounting for 72.4% of the flora), which have narrow

and coriaceous leaves and thick cuticles. Brachyphyllum has been

interpreted as coniferous (with various species affiliated to

Araucariaceae, Cheirolepidiaceae, or Cupressaceae) and having

xerophytic adaptations to semi-arid conditions (Moreau et al.,

2022). Geinitzia sp. also bears reduced coriaceous leaves, and

some low-palaeolatitude species of this genus have been linked by

morphological adaptations and histology to high temperatures and

aridity (Moreau et al., 2021; see also discussion by Santos et al.,

2022a). These adaptations may have served as deterrents to

herbivorous arthropods.

In contemporary plant studies, it has been established that

environmental conditions play a pivotal role in determining plant
Frontiers in Ecology and Evolution 10
palatability across various species (Münzbergová and Skuhrovec,

2013; Kuglerová et al., 2019). Specifically, arid and semi-arid

conditions have been identified as factors that decrease plant

palatability to insects across multiple plant species (e.g.,

Blumenthal et al., 2020). Consequently, the presence of plants

adapted to semi-arid conditions may have contributed to a

reduction in foliar palatability at El Chango. This reduction may

have resulted in low insect populations and diversity, consequently

contributing to the relatively low richness and diversity of DTs in

this flora. This observation aligns with contemporary research on

plant-insect interactions (e.g., Münzbergová and Skuhrovec, 2013;

Kuglerová et al., 2019), indicating that aridity is associated with

decreased network metrics related to plant-insect interactions.
FIGURE 6

Putative plant-algae interaction (epibiont of marine/brackish algae on terrestrial gymnosperms from El Chango site. (A) Specimen of cf. Geinitzia sp.
is affected by attached filaments of putative Chlorophyta sensu lato (see discussion). Scale Bar = 10 mm; (B) Unaffected specimen of cf. Geinitzia sp.
from the same site). Scale Bar = 10 mm; (C) Detail of the putative algae filaments coating the leaves and the axis. Scale Bar = 5 mm; (D) Detail on
the thin filaments that divide in a dichotomous pattern (see arrows). Scale Bar = 1 mm.
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Moreover, aridity negatively correlates with network

specialization and the modularity of local webs (e.g., Santos-Neto

et al., 2022). Furthermore, recent studies on herbivory have revealed

that certain insects alleviate pressure on their host plants in

response to rising temperatures (Laws and Belovsky, 2010). In

this context, some of the discussed gymnosperms are indicative

arid or semi-arid conditions, at least during certain parts of the year.

This climatic influence might also contribute to the lower

palatability observed in most specimens within this flora.

In the El Chango flora, various anti-herbivore adaptations have

been identified, exemplified by the Papaveraceae-like fruit

(Figures 3C, D). Features such as spines and thorns, found in

multiple parts of the plants, are commonly interpreted as defences

against herbivores (Hanley et al., 2007). Notably, spinescence is

generally deemed more effective against vertebrates than

invertebrates (Cooper and Owen-Smith, 1986; Hanley et al.,

2007). Most plants in this assemblage bore leaves with at least

some morphological feature(s) contributing to unpalatability and

anti-herbivore defences. This aligns with the observed greater

herbivory and trace diversity in angiosperms, which appeared

more vulnerable to attacks by generalist insects.
5.2 Comparison with other mid-
Cretaceous assemblages

The herbivory rates found in the El Chango fossil flora are

relatively low (5.4% of affected specimens), especially when

compared to quantitative data on plant-arthropod interactions

from other Cretaceous sites, such as the Albian flora of Estercuel,
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Spain (Santos et al., 2023), the Cenomanian flora of Puy-Puy,

France (Santos et al., 2022a), which reach 20.4% and 22.2%,

respectively, or the Albian flora from Rose Creek in USA (Xiao

et al., 2022a), which has a higher proportion (45.6%) of damaged

specimens. Only those three mid-Cretaceous floras from the North

Hemisphere have been subjected to quantitative or semi-

quantitative analyses of plant-insect interactions (Table 1). They

are relatively close in age to the El Chango flora. Additionally, the

fact that some authors of the current study participated in

identifying interactions in two of the other floras reduces the

potential human bias for detecting and interpreting different

damage types. However, other influences, such as taphonomic

bias, should be considered and may ultimately limit the scope of

comparisons between these various mid-Cretaceous floras.

Sampling limitations (only 72 specimens available) on the mid-

Cretaceous flora from Spain (Santos et al., 2023) potentially bias the

results from that assemblage. However, the interactions recorded in

the mid-Cretaceous flora of France were based on an assemblage of

more than 1500 plant specimens (Santos et al., 2022a), enabling

more confident comparisons.

The richness of interactions at El Chango is relatively low if the

flora is considered as a whole (5.4%), notably lower than the 20–

22% observed in other paralic floras from the mid-Cretaceous of

Spain (Santos et al., 2023) or France (Santos et al., 2022a). However,

this percentage at El Chango must be considered in context.

Although, superficially, it may seem like a low ratio, when the

interactions are assessed by botanical groups, we note that these

values reach percentages of around 36% in angiosperms,

representing similar or even higher values than those found in

other mid-Cretaceous floras. For example, the herbivory rate on the
A

B D

C

FIGURE 7

(A) Number of specimens used in this study indicating the total quantity of gymnosperms and angiosperms; (B) Incidence of affected specimens for
angiosperms, gymnosperms, and the whole flora. (C) Rarefaction curves showing the diversity of all DTs, specialized feeding, and external feeding at
El Chango. (D) Differences in the rarefaction of diversity damage in angiosperms and gymnosperms from the El Chango site.
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angiosperms of the Estercuel flora (East Spain) was 20.4%, and on the

angiosperms of the Cenomanian flora at Puy-Puy was 34%.

Nevertheless, the small number of angiosperms at El Chango might

have influenced the results, and the patterns of herbivory should be

interpreted cautiously. Ideally, more fossils of angiosperms from El

Chango should be recovered from the site to support this interpretation.

The slightly older Albian flora from Rose Creek (USA) includes

114DTs on about 2000 plant specimens (Xiao et al., 2022a), suggesting

much greater diversity of herbivory styles than in the El Chango flora

(14 DTs). This difference might be due to greater sampling effort (554

specimens vs 2084 at Rose Creek), but also to the higher plant diversity

of the Rose Creek flora (about 24 species/morphotypes in El Chango

vs 50 species/morphotypes in the Rose Creek flora). In addition,

the Rose Creek flora includes a greater abundance of angiosperms

(which are usually more herbivorized than gymnosperms; e.g.,
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Santos et al., 2022a), whereas at El Chango, angiosperms are scarce.

On the other hand, DT diversity in the early Cenomanian of France

(coeval with the assemblage at El Chango) is significantly greater than

that in the Mexican flora, with 71 DTs compared to 14 DTs. This

evident disparity is linked to the difference in sample sizes, i.e., 1605

specimens analyzed from Puy-Puy versus 554 (536 leaves) specimens

from El Chango.When considering rarefaction curves of DT diversity

at an equivalent sampling level (554 specimens; 536 leaves), they

confirm the heightened diversity of damage types in the

Cenomanian of France (43 DTs) compared to Mexico (14 DTs;

Figure 8A). Examining rarefaction curves specifically for DT

diversity in angiosperms (Figure 8B) reveals a notable similarity in

damage diversity at the same sampling level (approximately 13DTs in

France versus 11 DTs in Mexico at 50 angiosperms of rarefaction).

Crucially, when considering the standard deviation of damage

diversity in angiosperms, it is evident that the mid-Cretaceous

assemblages demonstrate comparable variability at the same

sampling level. The disparity in general DT diversity is attributed to

differences in damage on gymnosperms. At an equivalent sampling

level (about 500 specimens), gymnosperms from Puy-Puy host a

higher diversity of traces than those from El Chango (26 DTs vs 4

DTs). The most parsimonious explanation lies in the anatomical

differences in the gymnosperms between the two localities.

In Puy-Puy, gymnosperms are represented predominantly by

the coniferous Dammarophyllum (constituting 46.3% of the

assemblage), a genus characterized by broad leaves that are more

susceptible to insect damage (Santos et al., 2022a). Most of

gymnosperms at El Chango have small, appressed awl-shaped

leaves with thick cuticles that are presumably less palatable. On

this basis, angiosperms were a proportionately more significant

food source for insects and other herbivorous arthropods and

mollusks in the coastal paleoforests of North America than in

equivalent settings in Europe during the mid-Cretaceous.

Despite the Puy-Puy flora hosting markedly more diverse and

common interactions, potential taxonomic biases (owing to fewer

plant species in El Chango) and taphonomic biases (greater

preservational potential of robust conifers at El Chango) offer

plausible explanations for these differences. Although marked

differences exist between the assemblages, a common pattern is

evident in the plant-insect interactions. In both gymnosperm-

dominated floras from Europe and North America, insects clearly

preferred angiosperms. Although there are variations in the specific

compositions of the assemblages, the higher amounts of damage on

angiosperms leaves in these mid-Cretaceous paleoforests prompts the

need for further research. More comprehensive investigations into

mid-Cretaceous plant assemblages and plant-insect interactions are

essential to unravel the role that this apparent herbivory pressure on

early angiosperms played in the radiation and dominance of

terrestrial ecosystems by flowering plants during the KTR.
5.3 Plant-algae interactions

Other types of biotic associations have been found in El Chango

assemblage, for example, the plant-algae interaction found on cf.

Geinitzia sp. (Figure 6). Given their morphology and dichotomous
A

B

C

FIGURE 8

Comparison between DT rarefaction from the Lagerstätte floras of
El Chango (Mexico, North America) and Puy-Puy (France, Europe;
Santos et al., 2022a). Including the whole floras (A), the angiosperms
(B), and the gymnosperms (C). Puy-Puy is represented by blue, and
El Chango by orange.
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habit, we confidently exclude these filaments from constituting

another part of the host plant, such as branches or roots of

Geinitzia sp. (white arrows in Figure 6D). Additionally, the

minute size of these filaments (around 0.1 mm in diameter) rules

out the possibility that they are filaments from another parasitic

angiosperm (such as Cuscuta sp.); and they are too large and robust

to be fungal hyphae. Although the simple morphology of these

tangled filaments makes their assignment to a specific taxonomic

group impossible, we argue that the most parsimonious explanation

is that they are filaments of some epibiont green algae growing on

the robust branch in a marine setting before burial. Plants washed

into fluvial, estuarine and marine systems can have long and

complex taphonomic histories, developing interactions with a

broad range of epibionts and saprotrophs (Philippe et al., 2022).

The depositional environment at the El Chango site was a lagoon or

estuary (e.g., Moreno-Bedmar et al., 2014). Hence, terrestrial plants

may have been washed into this brackish water environment and

submerged for extended periods before burial, allowing

colonization by filamentous green algae epibionts.
6 Conclusions

The mid-Cretaceous El Chango Lagerstätte in Mexico provides

unique insights into plant-insect interactions during a pivotal

period of changes in the evolution of terrestrial ecosystems in the

tropics of North America. A total of 554 fossil plant specimens were

analyzed for plant-insect interactions. Our analysis revealed a

relatively low overall herbivory rate of 5.4%. However,

examination by botanical groups demonstrated a stark contrast

between the insect damage on the available gymnosperms and the

angiosperms from El Chango. Although gymnosperms dominated

the palaeoflora (89.4% abundance), they hosted a low herbivory

incidence of 1.8%. In contrast, despite constituting a smaller

proportion of the El Chango flora (10.7%), early angiosperms

were significantly more affected by herbivores, with 35.6% of

specimens showing some form of damage.

The diversity of DTs was also relatively low in the flora, with 14

identified DTs and seven FFGs. Angiosperms hosted a higher

diversity of damage (12 DTs), attributed to various FFGs, such as

margin feeding, hole feeding, piercing and sucking, galling,

oviposition, and mining. The available gymnosperms in the

assemblage, in contrast, hosted a small range of interactions (five

DTs belonging to galling and piercing and sucking, and hole

feeding), potentially due to their anatomical structure and

xeromorphic adaptations, making them less palatable to herbivores.

Comparison with coeval European plant assemblages, such as

Puy-Puy (France), reveals similarities in gymnosperm dominance

but notable differences in the diversity and frequency of plant-insect

interactions. The Puy-Puy flora hosts more DTs and rates of

herbivory, but potential biases in plant species diversity and

taphonomy offer plausible explanations for the observed

disparities. Nevertheless, a pattern emerges across these mid-

Cretaceous ecosystems, with insects inflicting greater feeding

damage on broad-leafed angiosperms than co-preserved scale/

needle-leafed gymnosperms. These findings underscore the need
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for further research on mid-Cretaceous plant assemblages and

plant-insect interactions to unravel the relative roles of the

targeting of angiosperms as a clade versus a potential preference

of herbivores for feeding on broad-leafed plants in general during

the mid-Cretaceous. Our study contributes to the broader

understanding of coevolutionary dynamics between plants and

insects during a critical phase in Earth’s vegetation history.
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and Violeta Amparo Romero Mayén from the IGL-Colección
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Wing, S., et al. (2021). Extinction at the end-Cretaceous and the origin of modern
Neotropical rainforests. Science 372, 63–68. doi: 10.1126/science.abf1969

Cevallos-Ferriz, S. R., Hernández-Damián, A. L., Beraldi-Campesi, H., Ruvalcaba-
Knoth, M. A., and Huerta-Vergara, A. R. (2022). Paleobotany to understand evolution
and biodiversity in Mexico. Bot. Sci. 100, 34–65. doi: 10.17129/botsci.3122

Coiffard, C., Gomez, B., Daviero-Gomez, V., and Dilcher, D. L. (2012). Rise to
dominance of angiosperm pioneers in European Cretaceous environments. Proc. Natl.
Acad. Sci. 109, 20955–20959. doi: 10.1073/pnas.1218633110
Condamine, F. L., Silvestro, D., Koppelhus, E. B., and Antonelli, A. (2020). The rise of
angiosperms pushed conifers to decline during global cooling. Proc. Natl. Acad. Sci.
117, 28867–28875. doi: 10.1073/pnas.2005571117

Cooper, S. M., and Owen-Smith, N. (1986). Effects of plant spinescence on large
mammalian herbivores. Oecologia 68, 446–455. doi: 10.1007/BF01036753

Currano, E. D., Labandeira, C. C., and Wilf, P. (2010). Fossil insect folivory tracks
paleotemperature for six million years. Ecol. Monogr. 80, 547–567. doi: 10.1890/09-
2138.1

Currano, E. D., Wilf, P., Wing, S. L., Labandeira, C. C., Lovelock, E. C., and Royer, D.
L. (2008). Sharply increased insect herbivory during the Paleocene–Eocene Thermal
Maximum. Proc. Natl. Acad. Sci. U.S.A. 105, 1960–1964. doi: 10.1073/pnas.0708646105

Dıáz-Cruz, J. A., Alvarado-Ortega, J., and Carbot-Chanona, G. (2019). Dagon
avendanoi gen. and sp. nov., an Early Cenomanian Enchodontidae (Aulopiformes)
fish from the El Chango quarry, Chiapas, southeastern Mexico. J. South. Am. Earth. Sci.
91, 272–284. doi: 10.1016/j.jsames.2019.01.014

Dıáz-Cruz, J. A., Alvarado-Ortega, J., and Giles, S. (2020). A long snout enchodontid
fish (Aulopiformes: Enchodontidae) from the Early Cretaceous deposits at the El
Chango quarry, Chiapas, southeastern Mexico: A multi-approach study. Palaeont.
Electr. 23, 1–27. doi: 10.26879/1065

Ding, Q., Labandeira, C. C., Meng, Q., and Ren, D. (2015). Insect herbivory, plant-
host specialization and tissue partitioning on mid-Mesozoic broadleaved conifers of
Northeastern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 259–273.
doi: 10.1016/j

Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C., and Cuneo, N. R. (2016).
Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous
extinction. Nat. Ecol. Evol. 1, 1–12. doi: 10.1038/s41559–016-0012

Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C., and Cuneo, N. R. (2018).
Diverse plant-insect associations from the latest Cretaceous and early Paleocene of
Pa t a gon i a , A rgen t ina . Amegh in iana . 55 , 303–338 . do i : 10 . 5 710 /
AMGH.15.02.2018.3181

Donovan, M. P., Wilf, P., Iglesias, A., Cúneo, N. R., and Labandeira, C. C. (2020).
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