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Introduction: There is overwhelming evidence of declines in native bee

populations and therefore a need for increased monitoring to track these

declines and assist in conservation and restoration efforts. Bees can be

sampled non-lethally through visual surveys (e.g., distance transects) or lethally

through active (e.g., hand netting) or passive (e.g., traps that lure insects from

afar) methods. These lethal methods suffer from imperfect detection that is

difficult to account for and can confound inferences about habitat

characteristics. Additionally, evidence suggests that lethal sampling methods

can even invert habitat quality patterns such that high-quality sites yield fewer

individuals and low-quality sites yield more individuals.

Methods: To study potential biases associated with imperfect detection, we used

hierarchical density estimation with visual surveys to estimate density of bees within

40 young forest patches across Pennsylvania, USA. We surveyed bee communities

non-lethally using visual surveys and lethally using blue-vane traps and bee bowls

every two weeks between May and September 2019. We collected data on

blooming flowers, vegetation structure, and weather during times of survey.

Results: We found that bee densities estimated from distance transects had a

positive relationship with floral resource availability. In contrast, abundance

measured via bee bowls and blue-vane traps had no relationship, or sometimes

even negative trends with habitat quality, including floral resource availability. Raw

bee counts within 2-m of the transect always correlated with modeled densities,

showing that some methods do not share the biases of attractive traps.

Discussion: Our study demonstrates that failing to account for imperfect

detection can impact the interpretation of pollinator surveys and adds to a

growing body of literature that acknowledges the value of distance sampling

for insects like bees to better understand species’ habitat needs and to monitor

populations for conservation.
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Introduction

Overwhelming evidence of declines in global native bee

populations (Cameron et al., 2011; Koh et al., 2016; Jacobson

et al., 2018) have spurred calls for biodiversity monitoring efforts

to track these declines to inform their conservation and habitat

restoration (Tepedino et al., 2015; Brown et al., 2016; Woodard

et al., 2020). A critical aspect of bee population monitoring are those

efforts that assess abundance and diversity; however, researchers

employ a wide range of methods for quantifying abundance which

makes direct comparisons across space and time difficult (Portman

et al., 2020). Moreover, given that each method varies in its efficacy

for producing meaningful data about bee abundance and diversity,

there exists strong potential for inefficient use of limited monitoring

resources (Tepedino et al., 2015; Tepedino and Portman, 2021).

Even as entomologists coalesce around the development of standard

monitoring practices (Woodard et al., 2020), there is a growing

discourse around the ethics of some common methods (Montero-

Castaño et al., 2022; Barrett et al., 2023; Klaus et al., 2024; Lövei &

Ferrante, 2024). Thus, for researchers to ethically and effectively

monitor the abundance and diversity of native bee populations, the

relative value of common survey methods needs to be assessed and

carefully weighed.

Among the most popular sampling methodologies used to

generate metrics of bee abundance and diversity are: 1. pan traps

or “bee bowls” (Wilson et al., 2008; Portman et al., 2020; Prendergast

et al., 2020), 2. blue vane traps (BVT: Stephen and Rao, 2007), and 3.

visual or netting surveys (Portman et al., 2020; Onufrieva and

Onufriev, 2021). However, all three methods have biases and flaws.

For example, capture rates from bee bowls can be impacted by the

surrounding floral resource abundance at the time of deployment

(Baum andWallen, 2011; O'Connor et al., 2019; Kuhlman et al., 2021;

Westerberg et al., 2021). Moreover, bee bowls only capture a small

percentage of bees that are attracted to them (~19%; Hudson et al.,

2020) and are ineffective at capturing large-bodied bees (Roulston

et al., 2007; Joshi et al., 2015). In contrast, BVTs may over-sample

insect communities (Gibbs et al., 2017) and unequally sample specific

bee taxa (Halictidae and Apidae, Stephen and Rao, 2007; Portman

et al., 2020). Furthermore, we know of no studies that have

investigated what the area of effect around attractive traps is. Both

bee bowls and BVT lure bees from an unknown distance, thus, the

area “sampled” is highly ambiguous and may be context specific.

Finally, visual or netting surveys are dependent on the skill of the

observer (Portman et al., 2020; Onufrieva and Onufriev, 2021) and

can introduce uncertainty by not accounting for the very low

detection probability of bees (McNeil et al., 2019) which likely

favors large-bodied and colorful species (Nielsen et al., 2011).

Detection probability is commonly defined as the probability

of detecting an organism given that it is present at a given location

(Mackenzie, 2006). Although some species may have detection

probability near 1.0, most species exhibit imperfect detection

variation in which can be explained by a wide variety of factors

(Kellner and Swihart, 2014). For example, poor weather

conditions (e.g., cold, rain) may preclude flight/foraging activity

for ectotherms like bees (Ward et al., 2014), thus reducing their

availability for detection (Gu and Swihart, 2004). Similarly, even
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when bees are active and available for detection, methodological

issues may reduce detection probability including observer

inexperience or secretive nature of some bee species (including

small body size; Nielsen et al., 2011). However, among the most

troubling detection issues facing bee researchers is that habitat

characteristics can affect both abundance (i.e., the state variable of

interest) and detection probability (MacKenzie et al., 2005; Zipkin

et al., 2010). For example, vegetative dense cover may provide

quality habitat for some bee species but also reduce observers’

capacity to detect that species (McNeil et al., 2019). Thus,

assessing habitat associations of wildlife without considering

detection probability can lead to inaccurate inferences, which

can be detrimental to our understanding of how animals

distribute themselves across space and time (as in Mata et al.,

2014). Current bee monitoring methods account for detection

probability during the design phase but generally fail to consider it

in the modeling phase. For example, it is assumed that placing

traps or observing bees during optimal weather (e.g., only sample

from 10a-5p in “good weather”: Ward et al., 2014) is sufficient to

overcome any effect of weather on bee behavior but weather

parameters are then not included during modeling as covariates.

Similarly, any inherent biases of trapping methodologies (e.g.,

related to floral bloom) and issues observing a very small organism

flying quickly by an observer are also ignored.

One method that can account for low detection probability of

insects while providing a density estimate is distance sampling

(Buckland et al., 2015). Distance models are frequently employed to

understand habitat associations and densities of vertebrate

communities (Amundson et al., 2014), but recently have been

used for bumble bees (Bombus spp.; McNeil et al., 2019; Keele

et al., 2023) and whole bee communities (Mathis et al., 2021). They

work by pairing animal counts with data on detection distances to

generate a “detection function” that allows model-based accounts of

imperfect detection by modeling the detection (p) and density (l)
processes separately (Buckland et al., 2015; Kéry and Royle, 2015).

Importantly, covariates can be added to either component of the

model (p or l, or both) to assess important sources of variation in

bee counts on surveys (Kéry and Royle, 2015; McNeil et al., 2019).

The comparison of the resulting density estimate to raw counts

from visual and trapping methodologies across the floral bloom

spectrum can illuminate biases associated with these methods.

Herein, we monitored forested sites to compare density

estimates derived from: 1) distance analyses from visual survey

data, 2) counts of bees captured in BVTs, and 3) counts of bees

captured with bee bowls. Building on the work of McNeil et al.

(2019), we use hierarchical distance models (HDMs) to assess the

biases of existing methodologies (BVT + bowl + visual) and

investigate a known bias of floral resources against attractive traps

(i.e., BVT + bowl; Kuhlman et al., 2021). It has been hypothesized

that attractive trapping methods may be less effective when floral

resources are rich (Joshi et al., 2015; O'Connor et al., 2019; Kuhlman

et al., 2021; Westerberg et al., 2021), so we predicted that models fit

with each kind of data would yield similar trends but dampened

effect sizes for BVT and bee bowl data. We use the results of these

analyses to inform bee monitoring methods that may improve

conservation efficacy for this imperiled insect group.
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Methods

Site selection

Site selection methods are already described by Mathis (2020)

and Mathis et al. (2021). Sites were distributed across heavily

forested portions of Pennsylvania and separated into three

distinct ecoregions based on physiographic regions described by

the Pennsylvania Geological Survey (Sevon, 2000): “Pennsylvania

Wilds” (PAW), “Poconos” (POC), and “Ridge and Valley” (RV).

We surveyed bees and associated vegetation communities on both

private and public lands across all three study regions. Private lands

consisted of those enrolled in the NRCS: Working Lands for

Wildlife Golden-winged Warbler Partnership that aims to create

and manage young forests for the golden-winged warbler

(Vermivora chrysoptera; McNeil et al., 2020; Litvaitis et al., 2021).

Golden-winged warblers are an early successional associate that

benefits from a diverse forest landscape consisting of recent harvests

adjacent to older forests to rear their young (Confer et al., 2020; Fiss

et al., 2020). We also surveyed nearby public forest lands managed

by the Pennsylvania Game Commission (State Game Lands) or

Pennsylvania Department of Conservation and Natural Resources

(DCNR; State Forests [SF]). Because native bees are abundant in

young forests that regenerate after harvest (Mathis et al., 2021), this

system provided an excellent context within which to study bee

sampling methods.

In 2019, we monitored 40 timber harvests that experienced

overstory removal in the stand initiation stage post-harvest (< 6

years post-harvest; 20 publicly owned, 20 privately owned). Using

ArcMap 10.2 (ESRI, 2011), a random point was generated within

the boundary for chosen harvests using the Create Random Points

tool and a 66-m transect oriented N-S was centered on this point.

The center of the sampling transects were at least 80m from the

harvest edge to avoid potential edge effects; when this was not

possible due to harvest size/geometry, the center of the transect was

placed at the geometric center of the harvest. Our point placement

protocol was identical to McNeil et al. (2019); McNeil et al. (2020)

and additional details can be found therein.
Bee surveys

Bee survey methods were originally published by Mathis et al.

(2021). We visited 40 young forest sites every two weeks in 2019 (n

= 9 visits; 15 May – 15 September). On each survey, a single

observer walked a 66-m North-South transect for 30 minutes

counting all bees detected and estimating the perpendicular

distance of each bee from the transect upon initial detection

(Buckland et al., 2015; McNeil et al., 2019). We categorized bees

to 6 morphogroups, but due to insufficient numbers in each group,

they are pooled into one dataset for the analyses herein. At the time

of each survey, we also recorded the following visit-specific variables

that might impact detection probability: wind (Beaufort Wind

Index, World Meteorological Organization, 1970), cloud cover

(percent), and temperature. We did not conduct surveys in high
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winds (Beaufort Wind Index > 4), during rain, or when the

temperature was< 15 degrees Celsius, as these conditions are not

favorable to insect activity (Ward et al., 2014; Dibble et al., 2018)

and would severely impact detection probability. In addition to our

non-lethal transect surveys, we collected bees using bee bowls and

blue-vane traps. All traps had approximately 2cm of water mixed

with Dawn™ Ultra blue dishwashing soap (Procter & Gamble,

Cincinnati, Ohio, U.S.) and were collected after 24-h. Because traps

were not placed under consistent weather conditions, we used

weather data collected from the Weather Underground

(www.wunderground.com) to characterize conditions for each

trap’s active period, including average temperature (C), average

humidity (%), average windspeed (mph), average atmospheric

pressure, and total accumulated precipitation (cm). Note that we

did not use netting in our bee surveys for several reasons. In

addition to being explicitly compared to distance sampling by

McNeil et al. (2019) already, many of our sites contained thick

vegetation including brambles that were likely to damage nets and

reduce the likelihood that we could swing nets in a systematic way

across our sites. Species-level identifications are published in Mathis

et al. (2021) and are available upon request.
Floral survey and vegetation surveys

Immediately following the visual bee surveys, we walked the

same 66-m transect to estimate the floral resources available at the

time of survey. We recorded all actively blooming flowering stems

1-m on either side of the transect to species and counted or

estimated the number of individual flowers per stem within a

66x2m swath of habitat. We also measured structural vegetation

at each location, once, in July. Briefly, we collected vegetation data

along 3 radial transects (0 degrees, 120 degrees, and 240 degrees)

that were 50-m in length. We used an ocular tube (James and

Shugart, 1970) to record the presence of various plant strata, where

only the strata that were within the “crosshairs” of the ocular tube

were considered present. We collected presence data of plant strata

every 10 m (for a total of 15 sampling locations per harvest). The

vegetation strata included canopy cover, tall (>1m) saplings, short

(<1m) shrubs, ferns, forbs, and grass. Distinctions between different

vegetation classes were chosen as per McNeil et al. (2019). Full floral

species list is available in Mathis et al. (2022) and is available

upon request.
Statistical analyses

Prior to statistical analyses, we assessed pairwise correlations

among all pairs of explanatory variables to confirm that they were

not too highly correlated (Spearman’s r ≥ 0.70; Sokal and Rohlf,

1981). Additionally, we scaled all quantitative variables to have a

mean of 0 and a standard deviation of 1 using the scale function in

program R (R Core Team, 2020). Due to data-skew, we log-

transformed floral density prior to analyses. We calculated floral

diversity as the effective species unit variation of the Shannon-

Weiner Diversity Index (eH’; Jost, 2006).
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Hierarchical distance models for
density estimation

To model bee distance data, we fit HDMs using the package

“unmarked” in R (Fiske and Chandler, 2011; McNeil et al., 2019).

These models have several important assumptions. We assume that

all individuals are identified correctly (e.g., other insects are not

incorrectly identified as bees), are detected at their initial location

from the transect with an accurate distance estimated, and that

detections are independent (Thomas et al., 2010). We modeled each

sampling bout independently of the others (n=9) to investigate if

floral characteristics varied within the year. For analysis, distances

from the transect were binned into 5 bins: 0–1m, 1–2m, 2–3m, 3–

4m, 4–5m. All observations beyond 5m were excluded from analysis

(McNeil et al., 2019). We modeled both “site covariates”

(characteristics describing the site such as floral abundance and

floral diversity, fit to l) and “survey covariates” (characteristics that

varied among visits such as time of observation and wind index, fit

to p). Specifically, we modeled the following site covariates: stand

age (years since timber harvest), vegetation (% cover metrics), and

floral resources (log-transformed floral abundance and diversity)

and the following survey covariates: wind index, temperature, cloud

cover, time of day, and ordinal date. We selected the key-function

(hazard rate, half-normal, uniform, or exponential) and statistical

distribution (Poisson or negative binomial) that best fit the data

using the methodology explained by Kéry and Royle (2015). For

more information on using HDMs for density estimation of insects,

see McNeil et al. (2019).

We used a two-step model building protocol: step 1 assessed the

most predictive detection covariates and step 2 assessed the most

predictive density covariates. In step 1, we created univariate

models for each observation covariate while holding l constant

(e.g., “p[wind], l [.]” or “p[date], l [.]”) and ranked them in

descending order of Akaike’s Information Criterion adjusted for

small sample size (AICc; Burnham and Anderson, 2004). We also

ranked a null (intercept-only) detection model (“p[.], l [.]”). Models

were considered biologically meaningful if they had an DAICc >

2.00 compared to the null model, and b parameter 95% confidence

intervals not overlapping zero. All variables within univariate

biologically meaningful models were placed into a multivariate

“global” model and backwards stepwise selection was used to

determine the model with the lowest AICc value. For step 2,

survey covariates within the top model from step 1 were used as

covariates on the detection (p) component of all following models.

For both steps, we created univariate and multivariate models for

each habitat covariate and covariate pairs and applied the same

information theoretic approach to assessing models. We ran a

goodness-of-fit test using the function fitstats (Kéry and Royle,

2015) on the top candidate model to make sure that the final model

was not over-dispersed (ĉ~1).

Generalized linear models
To investigate how structural vegetation, patch characteristics,

and floral resources affected annual pollinator abundance across

three methodologies (visual survey within 2-m of transect line,

BVT, and bee bowl), we used linear mixed-effects models in R (lme4

package: Bates et al., 2015). To account for non-independence
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among visits to the same point location, site ID was included as a

random effect, and all other variables (floral abundance [natural-log

of count], floral diversity [effective species unit: eH’: Jost, 2006],

stand age [#growing seasons post-harvest], tall (>1m) saplings [%

cover], short (<1m) shrubs [% cover], ferns [% cover], grass [%

cover]) were treated as fixed effects. Additionally, we used negative

binomial generalized linear models in R (glm.nb function: Venables

and Ripley, 2002) to assess how associations with floral abundance

and floral diversity varied by each sampling bout. For all linear

modeling, every possible univariate- and bivariate combination of

models was created and compared to a null model. Models were

assessed using the same information theoretic approach mentioned

above (see Hierarchical Distance Models for Density Estimation).
Results

Bee counts + weather effects on
detection probability

We collected 1,253 total bees (n=544 bee bowls; n=709 blue-

vane traps). During the 30-minute observational surveys, we

observed 1,565 total bees within 2-m on either side of the transect

line (considered visual survey “raw counts”), and 2,186 individuals

up to 5-m away from the transect line (used in HDMs). Our models

indicated that bee detection probability was impacted by all

observation covariates (time of day, percent cloud cover, wind

speed, temperature, date) at various times across our study. In

our HDMs, wind and temperature were significant predictors of

detection probability in 22% of all models, with higher wind speeds

resulting in fewer bees observed and higher temperatures resulting

in more bees observed. Additionally, 22% of models had detection

probabilities that were affected by time of survey (positively), cloud

cover (negatively), and ordinal date (positively). Bee detection was

constant in only one model (sampling bout 4; late June-early July).
Predictions from different methodologies

When bee abundance values from each of our three alternative

methods were compared to those derived from HDMs, the 2-m

visual transect had the highest similarity to HDM estimates

(adjusted R2 = 0.48; Figure 1). In contrast, both trapping methods

yielded bee counts that were very dissimilar to HDM-estimated

densities (both adjusted R2 ~ 0.01; Figure 1). Hierarchical distance

models indicated a positive association between “% forb cover” and

“% grass cover” and bee density, a result that was shared with the

analysis of raw visual transect counts (Table 1). In contrast, while

both BVT and bee bowl analyses had a covariate for “% forb cover”

competing, they also had “% fern cover” with a positive beta

parameter, a result that contradicts previous studies in our focal

region (Mathis et al., 2021).

HDMs indicated that bee density was positively associated with

both floral abundance and diversity, as commonly observed in

many bee communities (Potts et al., 2003; Mallinger et al., 2016;

Kuhlman et al., 2021; Table 2). Our analysis of visual transect data
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aligned with the HDM predictions in that a positive relationship

with both floral abundance and diversity was revealed (Table 2). In

contrast, both trapping methods predicted a negative association

between bee abundance and floral abundance. When we regressed

the residuals of the regression lines against estimates of density

derived from HDMs (Figure 2), we find that in times of low floral

abundance, the trapping methods catch more bees than are

observed in visual surveys and predicted in our models.

Conversely, in times of high floral abundance, there are fewer

bees captured in trapping methods than are observed and

predicted in density estimates.
Within-season floral variation

Results from linear mixed-effects models using visual raw

counts always aligned with the results of HDMs and exhibit a

consistent positive association between bee abundance and floral

abundance across the growing season (Figures 1–3). In contrast,
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models of blue-vane traps and bee bowls only indicated positive

associations between floral abundance and bee abundance during

the known floral dearth in late June + July (Mathis et al., 2022) and

otherwise had no association (Figure 3).
Discussion

To our knowledge, our study is the first to critically analyze

trapping methodologies commonly used to assess whole-
FIGURE 1

Regression lines for raw bee counts against predicted bee densities
from HDMs with associated adjusted r-squared values. Gray areas
surrounding regression lines are 95% confidence intervals.
TABLE 1 Results from models for habitat associations between HDMs
and linear mixed-effects models for visual surveys, bee bowls, and blue-
vane traps.

Model K DAICc AICcWt Beta
(95% CI)

Hierarchical Distance Models

Forb + Grass 9 0.00 0.42 Forb:
0.181 (0.159)

Grass:
0.268 (0.165)

Grass 8 2.72 0.11 0.388 (0.125)

Visual Linear Mixed-Effects Models

Forb + Grass 4 0.00 0.63 Forb:
0.241 (0.157)

Grass:
0.244 (0.153)

Forb + Fern 4 3.51 0.11 Forb:
0.367 (0.123)

Fern:
−0.156 (0.125)

Bowl Linear Mixed-Effects Models

Forb + Fern 4 0.00 0.66 Forb:
0.790 (0.171)

Fern:
0.226 (0.157)

Forb + Short Sapling 4 3.79 0.1 Forb:
0.637 (0.176)

Short Sapling:
0.162 (0.165)

Blue-Vane Trap Linear Mixed-Effects Models

Forb + Fern 4 0.00 0.66 Forb:
0.447 (0.147)

Fern:
0.201 (0.143)

Forb + Canopy 4 3.24 0.13 Forb:
0.368 (0.145)

Canopy:
−0.168 (0.149)
Results shown are the top competing models for each candidate set. K is the number of
parameters, DAICc is the distance between the top model and the next model (with >2 D AICc
representing a top model), AICcWt is the weight of the models, and beta parameters for each
covariate are provided along with the 95% confidence interval.
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TABLE 2 Results from models for HDMs and linear mixed-effects models for visual surveys, bee bowls, and blue-vane traps.

Model K DAICc AICcWt Beta (95% CI)

Hierarchical Distance Models

Floral Abundance + Diversity 9 0.00 0.98 Abundance: 0.583 (0.145)

Diversity: 0.214 (0.137)

Floral Abundance 8 7.68 0.02 0.724 (0.120)

Visual Linear Mixed-Effects Models

Floral Abundance + Diversity 4 0.00 1.00 Abundance: 0.490 (0.140)

Diversity: 0.265 (0.127)

Floral Abundance 3 13.88 0.00 0.668 (0.120)

Bowl Linear Mixed-Effects Models

Floral Diversity 3 0.00 0.73 0.385 (0.157)

Floral Abundance + Diversity 4 2.04 0.26 Abundance: −0.007 (0.210)

Diversity: 0.389 (0.194)

Blue-Vane Trap Linear Mixed-Effects Models

Floral Abundance + Diversity 4 0 0.81 Abundance: −0.218 (0.180)

Diversity: 0.291 (0.174)

Floral Diversity 3 3.02 0.18 0.184 (0.141)
F
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Models are between bee density (HDMs) or raw bee counts (else) against floral abundance or floral diversity. Results shown are the top competing models for each candidate set. K is the number
of parameters, D AICc is the distance between the top model and the next model (with >2 D AICc representing a top model), AICcWt is the weight of the models, and beta parameters for each
covariate are provided along with the 95% confidence interval.
A B

DC

FIGURE 2

The residual between model predictions of bee density or raw counts along the floral abundance spectrum. In (A–C), HDM prediction models are
shown as green circles and the dashed regression line. (A) (top left): HDM prediction points and raw counts from bee bowls (yellow triangles) plotted
simultaneously along a gradient of floral abundance (log-transformed). (B) (top right): HDM prediction points and raw counts from blue-vane traps
(dark blue diamonds) plotted simultaneously along a gradient of floral abundance. (C) (bottom left): HDM prediction points and raw counts from
visual survey (gray squares) are plotted simultaneously along a gradient of floral abundance. (D) (bottom right): The absolute residual between the
regression lines in (A–C) when compared to the HDM prediction line, highlighting the magnitude of bias as a factor of floral abundance. Dark blue
(top line) represents blue-vane traps; yellow (middle line) represent bee bowls; gray (bottom line) represents visual surveys.
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community bee abundance against methods that account for

imperfect detection (though see Briggs et al., 2022 for group-

specific investigations). Given the growing need to develop

consistent and rigorous methods for monitoring bee abundance

(Tepedino et al., 2015; Brown et al., 2016; Klaus et al., 2024), it is

imperative to assess candidate approaches for biases and adjust

monitoring efforts accordingly. Our results demonstrate that two of

the most frequently used survey methods, blue-vane traps and bee

bowls, have critical biases in collection patterns that may make their

data unsuitable for many applications. Moreover, the sampling

biases, themselves, varied across the growing season such that

trapping data provided a reasonable index of bee abundance at

some time points (i.e., when floral abundance was “moderate”) but,

at other points in the growing season, data were unreliable. Indeed,

during times of low floral abundance, indices of bee abundance

from trapping were over-inflated, while the reverse was true when

floral abundance was high. Past studies have either acknowledged a

potential bias (Baum and Wallen, 2011) or begun the work of

understanding the biases (Kuhlman et al., 2021). Cane et al., 2000

suggested that flowers are more attractive than are the traps which

may explain this pattern: when there are few flowers, traps are more

visible and draw in more bees. Taken together, our results support

the findings of Kuhlman et al. (2021), who asserted that attractive

traps should be used cautiously and in conjunction with other

survey methods like visual surveys or netting.
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Beyond relationships with floral characteristics, our results

suggest that structural vegetation may impact counts of trapped

bees in ways that relate more to trap performance or visibility than

bee ecology or abundance. Our models indicated that traps were

more effective at capturing bees when forb density is high (though

not when those forbs are in bloom), and when fern density was

high. Previous research has shown that ferns negatively impact bee

densities by outcompeting floral resources (Mathis et al., 2021,

Mathis et al., 2022) and therefore result in a landscape with few

understory flowers. This lack of flowers likely increases the

attractiveness of traps (Baum and Wallen, 2011; Kuhlman et al.,

2021), which could lead to an erroneous assumption that bees prefer

sites with dense fern coverage (Mackenzie, 2006). Thus, while we

believe our results support the use of attractive traps to study bee

richness or presence/absence, they provide an ineffective – and, at

times, misleading – index of bee abundance (Droege et al., 2010;

Portman et al., 2020; Kuhlman et al., 2021). Given this, we stress

that researchers should critically consider the use of attractive

trapping methods (like blue-vane traps and bee bowls) and

incorporate non-attractive methods (like visual transects) if

density/abundance is of primary interest (as reviewed in

Montero-Castaño et al., 2022).

Our results further highlight the value of using distance data to

understand bee densities while accounting for detection

probabilities within a site. While we used HDMs to investigate
A

B

FIGURE 3

Associations between floral abundance and model type across survey methods. Here, we consider HDMs to be a relatively unbiased assessment of
habitat associations as they account for detection probability. (A) Graphic showing the sign of the associations between floral abundance and model
type across the growing season. A plus sign is a positive association and a blank space is no association. (B) The beta parameters from the different
models across time with standard error bars. The dashed red line indicates when leaf-out occurred on our sites.
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the bee community as a whole, these models can also be used for

lower taxa (e.g., single genera/groups; Loffland et al., 2017; McNeil

et al., 2019) or other arthropod orders (Lepidoptera: Mathis et al.,

2021). Whether using HDMs or other statistical models, our results

show the importance of accounting for variables that affect

detection probability in the modeling stage, such as weather,

vegetation density, or distance from observer. Even after only

conducting surveys in “optimal weather” (as defined by the

Xerces Bee Monitoring Protocol: Ward et al., 2014), we showed

that weather was still a significant covariate that impacted detection

in most sampling rounds. Finally, we acknowledge that HDMs

provide our best approximation of bee density, but it is still not

possible to know the true density of bees on a landscape and

compare that to number of individuals in the traps. We used

HDMs to understand trap biases, but there are promising

equations on the horizon that may approximate insect abundance

or density to trap catch (Onufrieva and Onufriev, 2021). The

authors suggest a universal mathematical relationship that bridges

absolute population density and trap catches. This is the first step

towards being able to use statistical equations to approximate

density from traps, which circumvents the need to account for

detection probability. However, this research is still in its nascent

stages and needs further testing, so we still believe that accounting

for detection probability through modeling frameworks is an

important consideration for studies seeking to understand

bee abundance.
Future directions

Future studies could investigate the effectiveness of using HDM

transects in conjunction with netting to obtain detection-adjusted

density estimates (from HDMs) and species richness data (through

netting). It is important to emphasize that some studies will still

need to use passive trapping methodologies to provide species-level

identification (as described in Westphal et al., 2008). One limitation

of our sampling schema was the placement of bee bowls on the

ground rather than elevating them; ground level traps are likely to

under-represent bees that are foraging in the shrub or high forb

cover (Cane et al., 2000). An investigation into whether elevating

bee bowls to the height of surrounding blooming vegetation could

alleviate some of the biases our data show is warranted, though

further examination of other trapping methods that are not based

on attraction would be more prudent. Future studies could

investigate flight-intercept traps (as used in Ulyshen et al., 2010),

which do not operate based on luring bees with an attractant but,

instead, by intercepting the flight trajectory of flying insects (Hill &

Cermak, 1997). A study using flight-intercept traps in conjunction

with blue-vane traps and bee bowls could compare their efficacy and

determine if captures vary taxonomically and seasonally. Moreover,

it would be interesting to compare counts derived from flight-

intercept traps to estimates from detection-adjusted methods.

Finally, it is worth mentioning that the bycatch obtained when

sampling bees with attractive traps (average of 63% of pan trap

collections, Gonzalez et al., 2020) often goes unexamined (i.e., is

wasted). A further consideration for increased use of trapping
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methods for bee monitoring would be to collaborate with experts

of other taxa to most efficiently use non-target specimens. An

investigation into what non-target specimens are captured in

common bee trapping methods (blue-vane traps and bee bowls)

is warranted.
Conclusion

As bee conservation is becoming a global priority, our need to

increase monitoring efforts while assessing the biases of our current

monitoring methods is paramount. By using hierarchical distance

models, we were able to compare trap captures of bees to modeled

densities and highlight the inherent biases of attractive traps. Our

results illuminate the inconsistencies of trap efficacy depending on

surrounding vegetation characteristics and floral resources, which

could lead to erroneous understandings of bee abundance and

habitat associations if taken at face value. We recommend that all

bee surveys, even if they are conducted in optimal weather

conditions, include model covariates of weather values (cloud

cover, temperature, precipitation) and surrounding floral resource

availability (floral abundance and richness) as proxies for detection

probability. We caution against the use of attractive traps as an

index for bee abundance and instead suggest alternative methods

(netting, visual surveys, non-lethal surveys).
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