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How hosts and pathogens
choose the strengths of
defense and counterdefense: a
game-theoretical view
Shalu Dwivedi, Ravindra Garde † and Stefan Schuster*

Department of Bioinformatics, Matthias Schleiden Institute, University of Jena, Jena, Germany
Host–pathogen interactions consist of an attack by the pathogen, frequently a

defense by the host and possibly a counterdefense by the pathogen. Here, we

present a game-theoretical approach to describe such interactions. We consider

a game where the host and pathogen are players and can choose between the

strategies of defense (or counterdefense) and no response. Specifically, they may

or may not produce a toxin and an enzyme degrading the toxin, respectively. We

consider that the host and pathogen must also incur a cost for toxin or enzyme

production. We highlight both the sequential and non-sequential versions of the

game and determine the Nash equilibria. Furthermore, we resolve a paradox

occurring in that interplay. If the inactivating enzyme is very efficient, producing

the toxin becomes useless, leading to the enzyme being no longer required.

Then, the production of the defense becomes useful again. In game theory, such

situations can be described by a generalized matching pennies game. As a novel

result, we find under which conditions the defense cycle leads to a steady state or

an oscillation. We obtain, for saturating dose–response kinetics and considering

monotonic cost functions, “partial (counter)defense” strategies as pure Nash

equilibria. This implies that producing a moderate amount of toxin and enzyme is

the stable situation in this game.
KEYWORDS

counterdefense, defense chemical, game theory, game tree, host–pathogen
interactions, matching pennies game, Nash equilibrium
1 Introduction

A typical host–pathogen interaction involves an attack by the pathogen and defense by

the host. Many pathogens invest in a counterdefense, that is, in not just attacking the host

but also in bypassing or neutralizing the host defenses in order to increase the efficacy of the

attack (Frohner et al., 2009; Brunke and Hube, 2013; Sasikaran et al., 2014; Dühring et al.,

2015; Mackel and Steele, 2019; Park et al., 2019). For example, reactive oxygen species are

formed by immune cells of the host, and superoxide dismutases are synthesized
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by thepathogenic fungus Candida albicans to neutralize the reactive

oxygen species (Frohner et al., 2009). The bacterium Porphyromonas

gingivalis produces proteases capable of degrading defensins of the

host, which are antimicrobial peptides (Carlisle et al., 2009). Note that

the enzyme inactivating the defense chemical usually differs from the

target enzyme inhibited by that chemical. Another example is the

phagocytosis of C. albicans by macrophages, which is counteracted by

the pathogen via a yeast-to-hyphae transition (Calderone and Fonzi,

2001; Hummert et al., 2010). Although not a host–pathogen

interaction in the strict sense, it is worth mentioning that in the

competition between Streptomyces clavuligerus and Salmonella

bacteria, a counter-counterdefense can be observed: clavulanic acid

secreted by S. clavuligerus inhibits ß-lactamases, which inactivate ß-

lactam antibiotics (Drawz and Bonomo, 2010; Schuster et al., 2019).

Even a bacterium may become a host, notably upon attack by a

bacteriophage. The T4 phage from the family Straboviridae can evolve

to overcome a phage-defensive toxin–antitoxin system (toxIN) in

Escherichia coli by expressing a protein inactivating the toxin (Srikant

et al., 2022).

To understand host–pathogen interactions, mathematical

modeling and computer simulation have turned out to be very

helpful (Segel, 1980; Bauer et al., 2009; Schleicher et al., 2017; Ewald

et al., 2020). This can be done, among other methods, by systems of

ordinary differential equations (Segel, 1980; Lang et al., 2019) or by

evolutionary game theory (Eswarappa, 2009; Gintis, 2009;

Hummert et al., 2010; Hummert et al., 2014; Tyc et al., 2014;

Dühring et al., 2015; Pollmächer et al., 2016; Wu and Ross, 2016;

Dühring et al., 2017; Javarone, 2018; Sharebiani et al., 2021;

Halloway et al., 2022). Previously, a mathematical model based

on enzyme-kinetic equations describing the interplay between a

defense chemical, enzymes degrading those, and inhibitors of the

enzyme was proposed (Schuster et al., 2019). The calculations show

that only in the case of strong binding of the inhibitor, it pays to

produce an inhibitor as a counter-counterdefense.

However, a paradox occurs in the abovementioned interaction.

If the counterdefense (e.g., inactivating enzyme) is very efficient, the

defense (e.g., toxin) becomes useless, so that there is no longer any

need for its production. Then, the counterdefense becomes

unnecessary. If, however, this is stopped being produced as well,

the production of the defense becomes useful again (Ewald et al.,

2020). The question arises whether this leads to an oscillatory

change in strategies or to a steady state being a trade-off, in

which the two species produce a moderate amount of toxin and

enzyme, respectively. Although this question is very relevant for

medical and pharmacological applications, it has hardly been

analyzed so far for such applications. In game theory, such

situations without a clear equilibrium are known as (generalized)

“matching pennies game” (Goeree et al., 2003; Tadelis, 2013). In its

basic, traditional version, each of the two players secretly turns a

penny to heads or tails and then they show it at the same time. If the

pennies match, that is both heads up or both tails up, then player 1

keeps both pennies. If the pennies do not match, player 2 keeps both

pennies (Tadelis, 2013). Both players have the same set of strategies

and only the payoffs 1 and −1 occur. In the generalized version,
Frontiers in Ecology and Evolution 02
more than two different payoff values occur and the game is not

usually a zero-sum game anymore (Goeree et al., 2003).

The “generalized matching pennies game” can be found in several

situations in biology. For example, when a prey can hide in either of

two different locations and a predator animal only has the time or

energy to search in one of the locations (Alpern et al., 2019). A related

situation is when a predator (e.g., a leopard) chases a prey (e.g., a

gazelle): the predator would try to turn to the same side as the prey is

evading, while the prey tries to avoid that (Sanabria and Thrailkill,

2009). Also with respect to the decision between daytime activity and

nighttime activity of predator and prey, a matching pennies game can

be observed. Applications other than in biology include auditing in

management and penalty shooting in soccer (Goeree et al., 2003;

Sanabria and Thrailkill, 2009). The goalkeeper has a strong

motivation to jump to the same side as the ball is coming, while

the kicker prefers a mismatch. Similarly, the prohibition of alcohol in

the U.S. in the 1920s can be regarded from that viewpoint. That law

finally became useless because of clandestine brewing and distilling.

Here, we present a game-theoretical analysis to answer the

above questions in an innovative way. The analysis considerably

extends a preliminary game-theoretical interpretation presented

earlier (Ewald et al., 2020). The host and pathogen are considered

as players and they maximize their payoffs (outcome, which can be

quantified as gain in fitness) by choosing appropriate strategies. We

consider both the sequential and non-sequential versions of the

game. In the former case, one player chooses its strategy first and

cannot change it anymore, and only thereafter, the other player

responds. In the latter case, the two players can iteratively find a

stable equilibrium in which neither of them has an incentive to

change its strategy anymore. The methods, assumptions, and

simplifications used are explained in Section 2. While, in

principle, strategies can be changed in a continuous way because

the concentrations of both defense chemicals and degrading

enzymes can vary continuously, we here use a discretization as

usual in game theory. In Sections 3 and 4, we distinguish two and

three strategies, respectively. In the case of three strategies, we

derive the payoffs from dose–response curves.
2 Methods

As has been done in several other game-theoretical studies on

host–pathogen interactions (Eswarappa, 2009; Hummert et al.,

2014; Tyc et al., 2014; Dühring et al., 2015; Pollmächer et al.,

2016; Dühring et al., 2017; Sharebiani et al., 2021), we here use the

classical game theory, which revolves around the concepts of the

payoff matrix and Nash equilibrium. The latter refers to an

equilibrium solution of the game in which neither player has an

incentive to change strategy unilaterally (Gintis, 2009; Tadelis,

2013). A more sophisticated approach (often called evolutionary

game theory) is based on the concept of evolutionary stable strategy,

which allows one to study the fate of a rare mutant with a new

strategy within a resident population (Maynard Smith, 1982;

Hofbauer and Sigmund, 1998; Gintis, 2009). The classical
frontiersin.org

https://doi.org/10.3389/fevo.2024.1379868
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Dwivedi et al. 10.3389/fevo.2024.1379868
approach used here provides a basic understanding of the

interactions under study (Eswarappa, 2009; Sharebiani et al.,

2021). Also in classical game theory, the possibility is taken into

account that a population subdivides into subpopulations adopting

different strategies and that they either coexist or that one

subpopulation outcompetes the other one.

Although only rarely discussed in game theory, it is tacitly assumed

that the Nash equilibrium in non-sequential games is often found by

iteration, particularly if there is more than one equilibrium. One player

is choosing a preliminary strategy, the other player is responding and

then the first player may change strategy according to that response,

and so on until an equilibrium is found.

An important point is whether the players are allowed to see

what the other one is doing, that is, whether information exchange

is allowed. Organisms can usually (but not in every case) sense

effector molecules produced by other organisms (Papenfort and

Bassler, 2016; Grainha et al., 2020). Microorganisms can obtain

information about their surroundings (Shapiro, 2007). It may be

speculated that some microbes can even anticipate what the other

player will do. Irrespective of whether information is exchanged, an

interpretation in terms of populations can be used. Consider a

population of hosts consisting of variants (e.g., mutants) that choose

one strategy and other variants choosing the other strategy.

Likewise, there is a population of pathogens including two

variants. When all of them interact, four different outcomes will

occur. Now, the variants getting a higher payoff will win the

competition against the variants getting a lower one.

To make the presentation clearer, we here consider the situation

where the pathogen produces an enzyme (such as a superoxide

dismutase) that partially or completely degrades or inactivates a

defense chemical (such as reactive oxygen species) produced by the

host. However, the analysis can be applied to many other biological

“defense/counterdefense” systems.

The assumptions and simplifications considered here in the

game settings can be summarized as follows:
Fron
• We consider an asymmetric game among a population of

hosts and a population of pathogens.

• An important simplification is that we consider the relation

between one host species and one pathogen species at a time

so that the analysis is particularly valid for specialists.

• Each individual (player) has two strategies (in Section 3),

notably (counter)defense or no (counter)defense, or three

strategies (in Subsection 4.2), which include partial

(counter)defense.

• Individuals within one and the same population may use

different strategies.

• Individuals getting a higher payoff will win the competition

within a population.

• The solution of the game is found by random events

in populations.
The second point is relevant because even if a defense chemical

is degraded by the enzyme of one pathogen species, it may still be

useful against another pathogen species. An analogous reasoning

applies to the enzymes of pathogen species.
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Further assumptions are mentioned for the different scenarios

in the respective subsections.

In some of the game situations analyzed below, there is no pure

Nash equilibrium. This case is characteristic of many games studied

in game theory earlier (Gintis, 2009; Pollmächer et al., 2016; Wu

and Ross, 2016; Javarone, 2018). A classical example is the

“matching pennies” game (see Introduction).

The matching pennies game has a more symmetric structure

than the defense/counterdefense game studied here because both

players have the same strategies. However, it is an asymmetric game

because the payoffs are not the same for both players. The

correspondence between the two games can be seen by relating

“matching” (head/head or tail/tail) to producing (counter)defense

by both sides or by neither side. Then, the pathogen wins. If the

strategies do not match (defense without counterdefense or vice

versa), the host has an advantage because it either can defend itself

or the pathogen bears the cost of counterdefense for nothing.
3 Modeling the case where each
player has two strategies

Obviously, both the host and pathogen have a broad spectrum

of possible strategies in that they can vary the levels of toxins and

toxin-degrading enzymes. First, we consider the simplest case where

the host only has two strategies,
1. D: defense

2. ND: no defense
and the pathogen only has two strategies,
1. CD: counterdefense

2. NCD: no counterdefense.
This is an asymmetric game because the sets of strategies and

also the payoff values differ for the two players (Figure 1). As

mentioned in Section 1, we distinguish between non-sequential and

sequential games depending on whether the choice is made

simultaneously (or by iteration, see Section 1) or consecutively

and cannot be changed afterward. In the first case, we use payoff

matrices, while in the second case, we use both (extended) payoff

matrices and the method of game trees (Gintis, 2009). Sequential

games represent cases where the presence or action of defense

chemicals triggers the production of degrading enzymes.

Sometimes, the enzyme is not able to degrade the toxin

completely. We categorize the strength of the enzyme as perfectly

efficient counterdefense and imperfectly efficient counterdefense.
3.1 Perfectly efficient counterdefense

First, we assume that the enzyme completely inactivates the

toxin. Now, as mentioned above, we consider two scenarios

according to the sequence in time.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1379868
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Dwivedi et al. 10.3389/fevo.2024.1379868
3.1.1 Non-sequential game
First, we consider the non-sequential or simultaneous game.

The payoff matrix (also known as normal form) for this subcase is

given in Table 1 (see also Figure 1).

Here, we denote the payoff value of the host and pathogen when

the latter attacks the former, yet without any defense and

counterdefense, as (h, p), the cost of defense or counterdefense as “c”

and the respective benefit as “b.” For simplicity’s sake, we assume that

the costs are the same for both organisms and that a benefit for the host

implies an opposite effect for the pathogen. This restriction can be

relaxed to some extent, as long as the order relations between the

payoffs assumed in the two cases considered below are not changed.

We first assume that the counterdefense (e.g., inactivating

enzyme) is highly efficient so that the defense is practically

useless. So the payoff values in the case D/CD are just given by

the payoffs in the case ND/NCD minus the costs, i.e., (h − c, p − c).

If the pathogen chooses to counterdefend against no response by

the host, then only the pathogen must pay the cost without having

any gain. So the payoff value in the case of ND/CD is (h, p − c). If the

host chooses to defend against no response by the pathogen, then

only the host must pay the cost. In this case, the host and pathogen

get benefit (b) and harm (−b). So the payoff value of D/NCD is

(h + b − c, p − b).

We distinguish two cases, which differ in the order relations

between the payoffs.
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3.1.1.1 High-benefit case (i): b > c
In the payoff matrix (Table 1), we can start from ND/NCD, i.e.,

(h, p). Here, the host has an incentive to change its strategy to D as

h + b − c > h. Now, the pathogen has an incentive to change its

strategy to CD as p − c > p − b. This, however, incites the host to

switch its strategy to ND again and save its cost because h > h − c.

Here, the pathogen has again an incentive to switch its strategy to

NCD as p > p − c. This gives the host a choice to produce defense

against the pathogen since h + b − c > h and so on. This leads to

oscillations. Starting from another cell in the matrix does not

change this result because the oscillation covers all the cells. So,

no pure Nash equilibrium occurs.

In the absence of a pure Nash equilibrium, still, a mixed Nash

equilibrium occurs, which implies in the two-player game that each

player chooses one or the other strategy with certain probabilities

(Hofbauer and Sigmund, 1998; Gintis, 2009; Friedman and Zhao,

2021). This can be interpreted in biological terms in different ways.

Either, in accordance with the cyclic dominance in the payoff

matrix, oscillations occur in that defense and no defense alternate

on evolutionary time scales. Moreover, there is a natural

correspondence between the mixed Nash equilibria of a two-

player normal form game and the Nash equilibria of an

asymmetric evolutionary game in populations (Gintis, 2009,

section 12.17). In the game between populations, the probabilities

are usually interpreted as fractions of the populations adopting a

certain strategy (Hofbauer and Sigmund, 1998; Gintis, 2009). In

populations, oscillations can be interpreted in that the relative

frequencies of the different strategies oscillate in time around the

equilibrium frequencies, as often discussed in the case of the famous

rock-scissors-paper game, which also shows a mixed Nash

equilibrium (Neumann and Schuster, 2007; Gintis, 2009; Garde

et al., 2020). A second interpretation is that some hosts use a defense

while others do not, and they stay with their strategy. A third option

is that all individuals within one population permanently produce a

certain fraction of the maximum amount of (counter)defense

possible. Organisms may have a broader spectrum of possible

actions in that they can vary the concentrations of toxins and

toxin-degrading enzymes. In order to still consider a discrete set of

strategies, a straightforward extension is to consider three rather

than two strategies. We will analyze these three options in Section 4.
TABLE 1 Payoff matrix for host–pathogen interactions (perfectly
efficient counterdefense).

Host Pathogen

No counterdefense (NCD) Counterdefense (CD)

No defense (ND) (h, p) ↓ ← (h, p − c)

Defense (D) (h + b − c, p − b) → ↑ (h − c, p − c)
No pure Nash equilibrium occurs for the high-benefit case (b > c). A path following the
incentives of the two players leads to a cycle, as indicated by the arrows. The equilibrium is
“ND/NCD” for the low-benefit case (b < c) (pink).
FIGURE 1

Schematic diagram for the defense and counterdefense game in host–pathogen interactions. h, p, initial payoffs of the host and pathogen,
respectively; b, benefit from using toxin; c, cost of producing defense and counterdefense.
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Let us denote the fraction of hosts choosing defense or no

defense by fD and fND, respectively, and analogously gCD and gNCD
for the pathogen population. We assume that the hosts use the

“defense” strategy, with probability fD and “no defense” with

probability 1−fD, i.e., fND. Similarly, the pathogens use the

“counterdefense” strategy with probability gCD and “no

counterdefense” with probability 1−gCD, i.e., gNCD.

For the system under study, the expected payoff, PH, of the hosts

read,

PH(fD, gCD) = h(1 − fD)(1 − gCD) + h(1 − fD)gCD + (h + b − c)fD(1 − gCD) + (h − c)fDgCD

= (b − c − bgCD)fD + h

Similarly, the expected payoff, Pp, of the pathogens read:

PP(fD, gCD) = p(1 − fD)(1 − gCD) + (p − c)(1 − fD)gCD + (p − b)fD(1 − gCD) + (p − c)fDgCD

= (bfD − c)gCD − bfD + p

The equilibrium fractions of the host can be calculated by

setting the derivatives of the average payoffs of the host w.r.t. the

fractions corresponding to that player equal to zero (Hofbauer and

Sigmund, 1998; Gintis, 2009):

∂ PH
∂ fD

= 0 ⇒ (b − c − bgCD) = 0;  gives gCD =
b − c
b

Analogously, the equilibrium fractions of the pathogen are

calculated. Together, this gives:

∂ PP
∂ gCD

= 0 ⇒ (bfD − c) = 0,  gives fD =
c
b

fD =
c
b
,  fND =

b − c
b

,  gCD =
b − c
b

,  gNCD =
c
b

(1a; b; c; d)

Since in the high-benefit case, b > c, all these values are between

0 and 1.

3.1.1.2 Low-benefit case (ii): b < c
We can start from ND/NCD, i.e., (h, p) (Table 1). The host gets

less payoff if it produces defense against the pathogen as the cost is

higher than the benefit, h + b − c < h. So strategy D is not in favor of

the host. On the other hand, the pathogen must pay the cost without

any gain if it chooses CD against the host which reduces its payoff,

i.e., p − c < p. They do not have any incentive to change their

strategies. Hence, the Nash equilibrium is “ND/NCD.” This is

understandable because the costs for defense or counterdefense

exceed the corresponding benefit.

Alternatively, we may start from another cell in the matrix, for

example, ND/CD, i.e., (h, p − c). Here, strategy D is not in favor of

the host as h − c < h, while the pathogen can switch its strategy to
Frontiers in Ecology and Evolution 05
NCD and save its cost. Hence, the Nash equilibrium is again “ND/

NCD.” We reach the same equilibrium when starting from any

other cell.
3.1.2 Sequential game
In the sequential game, the second player can play a strategy

after observing the first player’s move. In a sequential interaction, it

is biologically plausible that the host “decides” first whether or not

to produce a toxin, and only subsequently, the parasite “decides.”

(The fact that it is the pathogen that initiates the interaction by

attacking the host is neglected here because we do not consider that

level.) Out of academic interest, we also consider, in the

Supplementary Material, the opposite case where the parasite

decides first.

The host can choose either to defend or not to defend, while the

pathogen has now four strategies:
i. No counterdefense no matter what the host does (NCD)

ii. Counterdefense no matter what the host does (CD)

iii. Do the same thing as the host does (NCD/CD)

iv. Do the opposite of what the host does (CD/NCD)
We can write the payoff matrix on the basis of two and four

strategies for the host and pathogen, respectively (Table 2).

An alternative representation is by using game trees, also known

as extensive form game (Gintis, 2009) (Figure 2). Root and branch

nodes represent players and branches represent their strategies.

Leaves or terminal nodes correspond to the outcomes of the game

with the respective payoffs. A convenient method for finding the

Nash equilibria in game trees is by eliminating the dominated

strategies from the leaves to the root, a method called

backward induction.

We distinguish two cases, which differ in the order relations

between the payoffs.

3.1.2.1 High-benefit case (i): b > c
Here, we use backward induction to solve the game tree. We

start from the left leaf nodes (h, p) and (h, p − c) (Figure 2A).

Strategy NCD dominates CD as the payoffs for the pathogen

satisfy the inequality p > p − c. So, we eliminate strategy CD.

Now, in the right nodes (h + b − c, p − b) and (h − c, p − c),

strategy CD dominates NCD as p − c > p − b. So, we eliminate

strategy NCD.

The next processed tree is shown in Figure 2B (top panel). Here,

strategy ND dominates D as h > h − c. So, the host will choose

strategy ND. The final payoffs for the host and pathogen are “h” and
TABLE 2 Payoff matrix if the host plays first (perfectly efficient counterdefense).

Host Pathogen

i) NCD ii) CD iii) NCD/CD iv) CD/NCD

ND (h, p) (h, p − c) (h, p) (h, p − c)

D (h + b − c, p − b) (h − c, p − c) (h − c, p − c) (h + b − c, p − b)
The Nash equilibrium is “ND/NCD” for both the high-benefit case (b > c) (yellow) and the low-benefit case (b < c) (pink).
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“p.” Hence, the equilibrium is “ND/NCD.” Intuitively, one may

have not expected this result if the benefits are high.

3.1.2.2 Low-benefit case (ii): b < c
In this case (Figure 2A), we start from the left and right leaf

nodes as before, and we see that strategy NCD dominates CD on

both sides as the payoffs for the pathogen satisfy the inequality p >

p − c and p − b > p − c. So, we eliminate strategies CD from

both sides.

In the tree shown in Figure 2B (bottom panel), strategy ND

dominates D as inequality h > h + b − c. The final payoffs are “h”

and “p.” Hence, the equilibrium is “ND/NCD.”

Interestingly, the Nash equilibrium is the same for both cases (i)

and (ii), i.e., “ND/NCD.” Obviously, this is not observed in all real

interactions between a host and a pathogen. In Section 1, we gave

several examples of chemical defenses. This discrepancy may arise

from our simplifying assumption that the counterdefense is

perfectly efficient.
3.2 Imperfectly efficient counterdefense

Now, we assume that the counterdefense is not perfectly

efficient. This means, for example, that the enzyme degrades the

toxin partially, so that there remains some effect of the toxin after

defense and counterdefense.

3.2.1 Non-sequential game
The payoff matrix for the non-sequential game where the host

and pathogen choose their strategies simultaneously is given

in Table 3.

Since we assume that the counterdefense (e.g., inactivating

enzyme) is imperfectly efficient, the defense is not completely

useless. So, the payoff values in the case D/CD are just given by

the payoffs (h, p) modified by the costs and some benefit/loss due to
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the toxin, which we here assume to be half of the full benefit, leading

to the payoffs (h + b=2 − c, p − b=2 − c). All the other payoffs are the

same as before. In the scenarios of imperfectly efficient

counterdefense, we distinguish three subcases:

3.2.1.1 High-benefit case (i): b > c
We start from the cell ND/NCD. Here, the host has an incentive

to change its strategy to D due to the inequality h + b − c > h. Now,

the pathogen changes its strategy to CD as p − b=2 − c > p − b is

satisfied. At this point, they do not have any incentive to change

their strategies. In a similar way, starting from every cell of the

payoff matrix, we find that the iteration stops at the cell D/CD every

time. Hence, the equilibrium is “D/CD.”

3.2.1.2 Intermediate-benefit case (ii): b/2 < c < b
In this case, the equilibrium is “D/NCD” with the payoffs (h +

b − c, p − b) because neither player then has an incentive to change

its strategy due to the inequalities defining this case. The other

entries in the matrix do not have this property, so that this is the

only Nash equilibrium.
FIGURE 2

Game tree (extensive form game) for the case where the counterdefense is perfectly efficient. (A) Initial tree. (B) Processed form. Top panel, case (i)
(b > c). Bottom panel, case (ii) (b < c). Nash equilibria are indicated in yellow and pink corresponding to Table 2.
TABLE 3 Payoff matrix for the host–pathogen interaction (imperfectly
efficient counterdefense).

Host Pathogen

No counterdefense (NCD) Counterdefense (CD)

No defense (ND) (h, p) (h, p − c)

Defense (D) (h + b − c, p − b) (h + b/2 − c, p − b/2 − c)
The Nash equilibria are “D/CD” for the high-benefit case (b/2 > c) (yellow), “D/NCD” for the
intermediate-benefit case (b/2 < c < b) (purple), and “ND/NCD” for the low-benefit case (b <
c) (pink).
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3.2.1.3 Low-benefit case (iii): b < c
Here, the equilibrium is “ND/NCD.” This can be understood

because the costs for defense and counterdefense are high.

3.2.2 Sequential game
Now, we consider the sequential game where the host and

pathogen play as first and second player, respectively. The opposite

case where the pathogen decides first is considered in the

Supplementary Material.

The host has two strategies, while the pathogen has four

strategies (Table 4), notably the same as in the case of perfectly

efficient counterdefense.

The game tree form of the case where the host plays first and the

corresponding payoffs are depicted in Figure 3. Here, we again solve

the game tree using backward induction. We start from the left leaf

nodes and see that the strategy NCD dominates CD for the pathogen

(Figure 3A). For the right leaf nodes, payoffs depend on “b” and “c.”

3.2.2.1 High-benefit case (i): b > c
In the right nodes, strategy CD dominates NCD as p − b=2 − c >

p − b. Now, in the processed form, strategy D dominates ND as h +

b=2 − c > h (Figure 3B, top panel). So, the host will choose to

defend. Hence, the equilibrium is “D/CD.”

3.2.2.2 Intermediate-benefit case (ii): b/2 < c < b
In an analogous way as above, we derive the processed tree as

shown in Figure 3B (bottom panel). Here, strategy D dominates ND

as h + b − c > h. Hence, the equilibrium is “D/NCD.”

3.2.2.3 Low-benefit case (iii): b < c
By analyzing the payoffs, one can see that the next processed

tree is the same as in case (ii), shown in Figure 3B (bottom panel).

Here, however, strategy ND dominates D as it gives a higher payoff

to the host, i.e., h > h + b − c. Hence, the equilibrium is “ND/NCD.”

Thus, in the three cases, three different Nash equilibria are obtained.
4 Modeling the case where each
player has more than two strategies

4.1 Continuous description

In the previous section, we made a distinction between two

discrete strategies for each player: (counter)defense or no (counter)

defense. However, organisms have a broader spectrum of possible
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actions in that they can vary the concentrations of toxins and toxin-

degrading enzymes, so that they could find a compromise

equilibrium in which either side produces a submaximal amount.

Alternatively, evolution could change the chemical structure of the

defense chemical to make it more toxic or the properties of a

degrading enzyme to make it more efficient. To some extent, this is

similar to changes in the amount of toxin or enzyme provided that

higher toxicity or efficiency implies higher costs.

As mentioned in Subsection 3.1.1, we want to find out, by

looking at the strategies in more detail, whether the mixed Nash

equilibrium leads to a stationary compromise or to a never-ending

switching between production and no production. In this section,

we calculate the payoffs for the host and pathogen from the

concentrations of the toxin and enzyme, based on the benefit,

which we will here call response (in the sense of dose–response

curves) and the cost.

Payoff = response − cost (2)

As we can assume that the cost for producing the toxin or

enzyme is proportional to their initial concentrations (Zhang and

Jiang, 2006), we have

Payoff (host) = response − a ∗T0 (3)

Payoff (pathogen) = −f ∗ response − c ∗ E0 (4)

where a = specific cost for producing toxin, f = coefficient of

toxin effect on pathogen, c = specific cost for producing

enzyme, T0 = initial toxin concentration, and E0 = initial

enzyme concentration.

We calculate the response from the Hill equation, which is often

used for quantifying dose–response relationships (Chou and

Talalay, 1984; Gadagkar and Call, 2015), i.e.,

response = l +
(n − l)Tk

0

mk + Tk
0

(5)

where l = response when dosage T0 is 0, n = response for an infinite

dosage, m = half-saturation constant, and k = Hill coefficient.

For simplicity’s sake, we put the parameter l equal to zero since

there is often no effect in the absence of toxin. Then, the parameterm

equals the value of T0 at which half of maximum response occurs.

Figure 4 represents the payoff as a function of toxin concentration,

where the curve first decreases to negative values because for low

concentrations, the toxic effect is negligible while some cost needs to

be afforded. Only at higher concentrations, the curve starts increasing

and reaches its maximum point and then monotonically decreases. It
TABLE 4 Payoff matrix if the host plays first (imperfectly efficient counterdefense).

Host Pathogen

i) NCD ii) CD iii) NCD/CD iv) CD/NCD

ND (h, p) (h, p − c) (h, p) (h, p − c)

D (h + b − c, p − b) (h + b/2 − c, p − b/2 − c) (h + b/2 − c, p − b/2 − c) (h + b − c, p − b)
The Nash equilibria are “D/CD” for the high-benefit case (b/2 > c) (yellow), “D/NCD” for the intermediate-benefit case (b/2 < c < b) (purple), and “ND/NCD” for the low-benefit case (b <
c) (pink).
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is worth mentioning that the graphs in Figures 4–6 were plotted with

arbitrary parameters. Therefore, the numbers in the table are not

based on experimental data, since these are not needed to show the

qualitative effect.

A graphical model of the dependence of benefit on the

allocation to defense including the effect of costs was proposed

earlier by Simms and Rausher (1987). It combines a Michaelis–

Menten curve with linear costs and also leads to the phenomenon

that the maximum effect is reached at intermediate toxin levels. A

refined model based on a sigmoidal function has been suggested by

Siemens et al. (2010).

Then, we calculate the payoffs for the host from Equation 3 in the

presence of the enzyme. It is not straightforward how the enzyme is

taken into account. In principle, a small constant enzyme

concentration is sufficient to inactivate a large toxin concentration in

the long run. Here, however, we consider a snapshot, so to speak. That

is, we analyze the short-term effect. We describe that effect

approximately by dividing the Hill kinetics by the term (1 + E0). It

has the favorable properties that it does not change the Hill kinetics in
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the case E0 = 0 and tends to zero for very large values of E0. A similar

dependence was used for quantifying the effect of defense on herbivory

(Zhang and Jiang, 2006). From Equations 3 and 5, we obtain

Payoff (host) =
1

1 + E0

nTk
0

mk + Tk
0

� �
− aT0 (6)

To calculate the maximum payoff, we equate the derivative of

the payoff with respect to toxin to zero. We obtain a polynomial

equation for T0, which cannot normally be solved analytically:

Tk
0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nkmk

a(1 + E0)

s
T

k−1
2

0 +mk = 0

For the game-theoretical analysis, we need not calculate the

optimum value (see below).

Figure 5 represents the payoffs of the host in dependence on the

extent of defense. We can see that the graphs first decrease to

negative values and then start increasing to their maximum points

and then monotonically decrease. The three curves represent the

payoffs of the host in the cases of no counterdefense, partial

counterdefense, and full counterdefense produced by the pathogen.

Obviously, a host has the highest payoff in the absence of the

pathogen’s counterdefense. In the presence of toxin-degrading

enzymes, the host has maximum payoff when it uses a

submaximum concentration of toxin because a higher

concentration would imply unnecessarily high costs (Figure 5).

Furthermore, we calculate the payoff for the pathogen based on

the toxin concentration from Equation 4, using the Hill equation in

the presence of the enzyme, from Equation 5,

Payoff (pathogen) =
−f ∗ response

(1 + E0)
− cE0; (7)

We equate the derivative of the payoff with respect to the

enzyme to zero. We obtain E0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ∗ response

c

q
− 1, where the response

is described in Equation 5.
FIGURE 3

Game tree (extensive form game) for the case where the counterdefense is imperfectly efficient. (A) Initial tree. (B) Processed form. Top panel, case
(i) (b/2 > c). Bottom panel, case (ii) (b/2 < c < b) and case (iii) (c > b). Nash equilibria are indicated in yellow, purple, and pink corresponding
to Table 3.
FIGURE 4

Dose–payoff curve for the host (Hill equation minus linear cost
function). Parameter values: l = 0, m = 2, n = 10, k = 4.
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Figure 6 represents the payoffs of the pathogen in dependence

on the toxin concentration when it produces no counterdefense,

partial counterdefense, and full counterdefense. The graphs first

show a short plateau, then decrease, and finally tend asymptotically

to negative values. The pathogen has always maximum payoffs

when there is no defense produced by the host. Furthermore, it

becomes clear from Figure 6 that the production of the enzyme is

beneficial for the pathogen whenever the toxin concentration is

above a certain threshold. The payoffs for the partial counterdefense

are always higher than the payoffs for full counterdefense. This

shows that the use of the partial concentration of the enzyme is

favorable to the pathogen.
4.2 Description as a three-strategy game

In game theory, it is much more usual to consider discrete

strategies than continuous strategies (Hofbauer and Sigmund, 1998;

Gintis, 2009; Hummert et al., 2014). Most often, the analysis is

based on a set of two discrete strategies, as done in Section 3.

However, Figure 4 shows that the highest effect is achieved for an

intermediate toxin concentration. Therefore, we now distinguish
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three strategies for each player: no, partial, or complete (counter)

defense, which can be interpreted in terms of toxin concentration or

of toxicity. In another context, we have analyzed a two-player,

three-strategy game earlier (Garde et al., 2020). We can extract the

payoff values from Figures 5, 6 by considering the concentration

values 0, 5, and 10 both for the toxin and the enzyme (Table 5).

It can be seen that the host has maximum payoff when it defends

partially against the pathogen when the latter does not use

counterdefense. Starting from any cell of Table 5, the equilibrium is

reached at the cell “Partial defense/partial counterdefense.” If the

players deviate from these strategies, their payoff decreases. Thus, in

this situation, no oscillation occurs, in contrast to the two-strategy

game. Rather, a stationary trade-off is found, as illustrated in Figure 7.

It is of interest to analyze a three-strategy game where the

payoffs are changing monotonically, in contrast to Table 5. For

example, when “Partial defense/partial counterdefense” provide

payoff values of 2.8 and −4, there is an incentive for either player

to leave the intermediate strategies. Then, a cyclic behavior as in

Table 6 occurs. Note the important difference between monotonic

and non-monotonic payoff functions. While the former lead to

oscillations, the latter may lead to a pure Nash equilibrium.
4.3 Comparison to a two-strategy game

To make the point of oscillation versus stationary trade-off

clearer, we simplified Table 5 by omitting the intermediate

strategies, shown in Table 6. The payoff values for a two-strategy

game in this table fulfil the same order relations as in the high-

benefit case in Subsection 3.1.1 (Table 1).

Thus, the game shows a cyclic dominance structure rather than

a pure Nash equilibrium (see also Figure 7, cycle on the periphery).

For the two-strategy game, a mixed Nash equilibrium can be

calculated, meaning that each strategy is adopted by a certain

probability. Let us consider that the host uses a “defense” strategy

with probability r and “no defense” with probability 1−r. This could

be interpreted in that a fraction r of all hosts use the defense

strategy. Similarly, the pathogen uses the “counterdefense” strategy

with probability s and “no counterdefense” with probability 1−s.

Mixed Nash equilibria can be calculated by putting the

derivative of the average payoffs with respect to probabilities

equal to zero (as outlined in Subsection 3.1.1).

We obtain r = 2
10:8 = 0:185 and 7:9

9 = 0:878.

As soon as one player somewhat deviates from the best (mixed)

response, the other player has an incentive to switch to a pure

strategy, as can be shown by differentiating the above response

functions. Hence, the best response functions are as follows:

r(s) =

1, if s < 0:878,

0, if s > 0:878,

(0, 1), if s = 0:878

0
BB@

1
CCA and s(r) =

1, if r > 0:185,

0, if r < 0:185,

(0, 1), if r = 0:185

0
BB@

1
CCA

For s = 0.878, the host can, as an immediate response, use any

probability r. However, if this probability deviates from r = 0.185, the

pathogen can, in the next iteration, respond accordingly and increase

its payoff. Therefore, it is best for the host to choose r = 0.185 and
FIGURE 5

Dose–payoff curve for the host as a function of toxin concentration
for three different enzyme concentrations. Parameter values: m = 2,
n = 10, k = 4, a = 0.2. E0 = 0 (blue curve), 5 (green), and 10 (orange).
FIGURE 6

Dose–payoff curve for the pathogen as a function of toxin
concentration for three different enzyme concentrations. Parameter
values: m = 2, n = 10, k = 4, c = 0.2, f = 1. E0 = 0 (blue curve), 5
(green), and 10 (orange).
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analogously for the pathogen to choose s = 0.878, leading to the

Nash equilibrium.

In terms of populations, the mixed Nash equilibria can be

interpreted such that the probabilities correspond to fractions of the

two populations. So, approximately 19% of the host population play

the defense strategy and approximately 88% of the pathogen

population play the counterdefense strategy.

In Table 7, the results of all games analyzed above are

summarized, most of them in dependence on the order relation

among the benefits and costs. For simplicity’s sake, for the three-

strategy game, we did not distinguish any subcases depending on the

benefit and costs nor on perfectly and imperfectly efficient

counterdefense. It is a general result that in the low-benefit case,

always “No defense/no counterdefense” results. The explanation for

the case “pathogen plays first” is given in the SupplementaryMaterial.
5 Discussion

Here, we have analyzed, by a game-theoretical approach, the

defense and counterdefense (for example, by chemical substances)

among hosts and parasites. We have dealt with the paradox that

when the host starts defending against the pathogen to increase its
Frontiers in Ecology and Evolution 10
payoff, the pathogen is encouraged to counterdefend against the

host to protect itself. If this counterdefense neutralizes the host’s

defense, the host can save the cost for it and switch it off. Then, the

pathogen can stop its counterdefense to save its cost (Ewald et al.,

2020). This may lead to an endless cycle of switching on and off the

defense/counterdefense and corresponds to a mixed Nash

equilibrium. Such equilibria were also found in a model

describing the interaction between pathogenic bacteria and the

human host, where the two strategies for either side correspond

to the intracellular and extracellular locations (Eswarappa, 2009)

and between macrophages and fungal pathogens, where the two

strategies for either side are “aggressive” and “peaceful” (Dühring

et al., 2017).

Games only having a mixed Nash equilibrium rather than a

pure equilibrium include several asymmetric two-strategy games

and also several three-strategy games, even if the latter are

symmetric. A famous example is the rock-scissors-paper game

(Neumann and Schuster, 2007; Gintis, 2009; Garde et al., 2020).

An example of a two-strategy game without a pure Nash

equilibrium is provided by the “matching pennies game” (Goeree

et al., 2003; Gintis, 2009; Tadelis, 2013), as discussed in Section 1.

To our knowledge, our results are novel because the generalized

matching pennies game is here used to explain chemical–ecological
TABLE 5 Payoff values in the three-strategy host–pathogen game (from Figures 4, 5).

Host Pathogen

No counterdefense Partial counterdefense Counterdefense

No defense 3, 2 3, 1 3, 0

Partial defense 11.7, −7.7 3.6, −0.62 2.8, −0.8

Defense 10.9, −7.9 2.6, −0.66 1.9, −0.9
The Nash equilibrium is indicated in blue.
FIGURE 7

Schematic representation of the dynamics resulting from the two-strategy and three-strategy games between the host and pathogen. In the two-
strategy game, strategies are changed in a cyclic way (see Table 6), while in the three-strategy game with non-monotonic response functions, the
system tends to a stable equilibrium “in the center” (see Table 5). Green, strategies of the host; blue, strategies of the pathogen.
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interactions. A related game is “hard love” (Gintis, 2009, section

6.6): A mother supports her son financially if he seeks a job.

However, he does not do so if he is supported and enjoys his

leisure time instead. Therefore, the mother stops the support, which

prompts him to seek a job. The mother is happy and supports him

again, and so on.

We determined the Nash equilibria for sequential and non-

sequential host–pathogen interactions. First, we only considered

two strategies for each player and used normal form games and

game trees, as often done in game theory. To avoid that the analysis
Frontiers in Ecology and Evolution 11
gets very cumbersome, we used the simplification that the costs are

the same for both organisms and that a benefit for the host implies

an opposite effect for the pathogen. Our point was to show that two

qualitatively different situations can occur: pure or mixed Nash

equilibria. If this restriction is relaxed, the structure of Nash

equilibria may change, but they would still be pure or mixed.

For the sequential games, we considered both the cases that the

pathogen plays first (see Supplementary Material) and that the host

plays first. Depending on the case considered, different Nash

equilibria have been obtained. In the former case, the Nash

equilibrium “No defense/counterdefense” is obtained for certain

parameter ranges. This is a counterintuitive result because one may

wonder why a counterdefense is beneficial if there is no defense. The

reason is that the pathogen safeguards itself against both possible

responses by the host. Although it may appear to be unrealistic that

the pathogen chooses its strategy first, it can appropriately describe

the interplay if the pathogen jumps from one host species

to another.

We analyzed the game depending on the benefits and costs as

well as on whether the counterdefense is perfect or imperfect. For

example, in the case of imperfectly efficient enzymes and high

benefit-to-cost ratios, the pure Nash equilibrium “Defense/

counterdefense” is obtained. Moreover, we found that host and

pathogen can interact without any defense or counterdefense if the

costs of producing the toxin and enzyme are higher than the benefit.

Thereafter, we considered a continuous spectrum of strategies

for the host and pathogen. This may include the case where

evolution changes the chemical structure of the defense chemical

or the properties of a degrading enzyme, under the assumption that

higher toxicity or efficiency implies higher costs. We simulated the

payoffs by a Hill-type dose–response curve (Chou and Talalay,

1984; Gadagkar and Call, 2015; Siemens et al., 2010). Since we have

to subtract the costs, which can be assumed to depend linearly on

the dose, the payoff can show a maximum for the intermediate

strategy for appropriate parameter values (Siemens et al., 2010). A

maximum can also occur in the simpler Simms–Rausher cost/

benefit model, which is based on a Michaelis–Menten-type

function (Simms and Rausher, 1987). Here, however, we use a

Hill function because it describes the dose dependence more

realistically. Then, we discretized the continuous spectrum of

strategies by considering three possible actions and used normal

form games. We obtained “partial (counter)defense” strategies as

the pure Nash equilibrium, which implies that permanently

producing a moderate amount of toxin and enzyme rather than a

cyclic switching on and off is the best choice for the organisms. To

obtain this result, it is important to consider (at least) three

strategies here.

The abovementioned result that in certain parameter ranges,

neither a defense nor a counterdefense occurs, is an idealization

based on the binary discretization. The immune response is indeed

often very costly so that a trade-off with the pathogen has to be

reached (Zuk and Stoehr, 2002). Earlier, it was shown by a game-

theoretical model assuming a non-sequential game that pathogens

are sometimes tolerated (Renaud and De Meeüs, 1991). However,

such trade-offs usually include a certain (possibly low) extent of

defense and counterdefense. This can be modeled adequately by the
TABLE 6 Payoff values for the two-strategy host–pathogen game.

Host Pathogen

No counterdefense Counterdefense

No defense 3, 2 ↓ ← 3, 0

Defense 10.9, −7.9 → ↑ 1.9, −0.9
This payoff matrix leads to a mixed Nash equilibrium rather than a pure one. When following
increases in payoff, a counterclockwise cycle occurs, as indicated by the arrows (see
also Figure 7).
TABLE 7 Systematic overview of Nash equilibria for the host–pathogen
interactions in different cases.

Perfectly efficient counterdefense

Non-sequential
game

Sequential game

Host
plays first

Pathogen
plays first

b > c No pure
Nash equilibrium

No defense/
no counterdefense

Counterdefense/
no defense

b < c No defense/
no counterdefense

No defense/
no counterdefense

No counterdefense/
no defense
Imperfectly efficient counterdefense

Non-sequential
game

Sequential game

Host
plays first

Pathogen
plays first

b/2 > c Defense/counterdefense Defense/
counterdefense

Counterdefense/
defense

b/2 < c < b Defense/
no counterdefense

Defense/
no

counterdefense

Counterdefense/
no defense

b < c No defense/
no counterdefense

No defense/
no

counterdefense

No
counterdefense/

no defense
Defense or counterdefense with three strategies

Non-monotonic payoff functions: pure Nash equilibrium partial defense/
partial counterdefense

Monotonic payoff functions: mixed Nash equilibrium
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three-strategy game. The explanation of “partial (counter)defense”

is likely to have a very broad importance for antagonistic

interactions beyond chemical defense. Trade-offs (e.g., between

resistance and tolerance) in which a submaximal effort is invested

by either side are very relevant in evolution (Renaud and De Meeüs,

1991; Zuk and Stoehr, 2002; Pink et al., 2011; Wen et al., 2012;

Brunke and Hube, 2013; Bullard et al., 2022; Halloway et al., 2022).

It is worth comparing that result with the outcome for the case

where the dose–payoff curve (i.e., response minus cost) is

monotonic. In the latter case, a strategy in an extreme situation

(e.g., no defense or full defense) is chosen since a strategy with a

higher payoff dominates a strategy with a lower payoff. The three-

strategy game can then be simplified to a two-strategy game, which

we have treated in the first part of the paper. This may lead to mixed

Nash equilibria. Thus, the way the abovementioned paradox is

resolved depends on several conditions and parameters. In

particular, it is relevant whether the counterdefense is very

efficient, whether the game is sequential or non-sequential,

whether the costs exceed the benefit, and whether the dose–payoff

curves are monotonic. The choice of payoff values may look quite

arbitrary. However, payoff matrices can be scaled by adding a

constant and by multiplying all payoffs by the same positive

factor without changing the pure Nash equilibria. Thus, for these

equilibria, only the order relations among the payoffs matter

(Hofbauer and Sigmund, 1998; Gintis, 2009).

Mixed Nash equilibria can have different biological

implications. Either, a cyclic behavior occurs in that defense and

no defense alternate on evolutionary time scales. Silent genes

(pseudogenes) may be an evolutionary remnant of another

strategy used earlier (Pink et al., 2011; Wen et al., 2012). As

discussed above, another option is that both players only produce

a certain percentage of the maximum amount of defense and

counterdefense, respectively. It is interesting that a model using

two discrete strategies for either player points, in the mixed Nash

equilibrium, to a third possible strategy. A further possible

interpretation is that some hosts use a (full) defense while others

do not (and analogously some pathogens use or do not use a

counterdefense) and they stay with their strategy. This might

explain why some host species use a strong defense while other

species do not.

For example, it is interesting that some bacteria, such as

Salmonella species, produce ß-lactamases, while others, such as

Streptococcus pneumoniae, do not (Hakenbeck et al., 1999). Our

results suggest that the ß-lactamase-producing species evolved

under conditions where such a counterdefense is an appropriate

strategy, which corresponds to the Nash equilibrium defense/

counterdefense, while the other bacteria evolved under conditions

favoring the Nash equilibrium defense/no counterdefense. Another

explanation is that the behavior of the different species corresponds

to different points in the cycle of a mixed Nash equilibrium.
6 Conclusion and future prospects

In our paper, we used the classical Nash approach to game

theory, which leads to new interesting insights. Such an approach
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was used in analyzing host–pathogen interactions earlier

(Eswarappa, 2009; Tyc et al., 2014; Pollmächer et al., 2016;

Dühring et al., 2017; Sharebiani et al., 2021). Another approach is

based on the concept of evolutionarily stable strategies, which

allows one to study the fate of a rare mutant with a new strategy

(Maynard Smith, 1982; Hofbauer and Sigmund, 1998). However,

that concept in its basic form is only applicable to symmetric games,

although extensions to asymmetric situations were proposed

(Hofbauer and Sigmund, 1998; Gintis, 2009). Importantly, every

evolutionarily stable strategy corresponds to a Nash equilibrium but

not necessarily vice versa. To check whether the mixed Nash

equilibrium found above is evolutionarily stable, we refined the

model to a three-strategy game and determined the payoffs using a

dose–response curve.

Defense and counterdefense also occur in plant–herbivore and

fungus–fungivore interactions (Szabo, 2015; Cavalcante et al., 2018;

Blei et al., 2020; Malaca et al., 2020). Many plants such as Diplopterys

cabrerana (Szabo, 2015), Psychotria viridis (Szabo, 2015; Cavalcante

et al., 2018), Mimosa tenuiflora (Malaca et al., 2020), and also the

fungal genus Psilocybe (Blei et al., 2020; Malaca et al., 2020) synthesize

tryptamine compounds as defense chemicals. Higher animals

produce, mainly in the brain, monoamine oxidase, which degrades

tryptamines (Szabo, 2015; Blei et al., 2020; Malaca et al., 2020). It is

worth extending the present model to plant–herbivore interactions.

However, additional aspects should then be considered such as taste

preferences, aversion and optimal foraging of herbivores, switch

between plant individuals, and different turnover rates of toxins.

Moreover, it is relevant whether only one plant species produces a

toxin against only one herbivore species, which responds by an

enzyme, or against several species (see the corresponding

simplification in Section 2). If one specialist herbivore species

comes up with a degrading enzyme, the toxin may still be useful

against other herbivores.

In accordance with our prediction that depending on

conditions, defense or no defense is the better option, it is worth

mentioning that for some plant species, different varieties differ in

their production of toxins. For example, the subspecies Cannabis

sativa produces higher amounts of tetrahydrocannabinol than the

subspecies Cannabis indica (Atakan, 2012). The rowan plant

(Sorbus aucuparia) produces parasorbic acid, which irritates the

gastric mucosa in humans. A variety of this plant, called Sorbus

aucuparia var. moravica, has a lower amount of parasorbic acid

and, thus, can be eaten raw (Mlcek et al., 2014).

To determine the stability of the obtained equilibria and to

distinguish the different interpretations of the mixed Nash

equilibrium, ordinary differential equations (ODEs) such as

replicator equations (Hofbauer and Sigmund, 1998), adaptive

dynamics (McGill and Brown, 2007; Allen et al., 2013; Cressman

and Tao, 2014), or Lotka–Volterra equations (Hofbauer and

Sigmund, 1998; Neumann and Schuster, 2007) are worth being

used in future extensions of the model. Indeed, as an alternative to

game theory, the interplay between defense and counterdefense is

sometimes described quantitatively by ODEs (Lang et al., 2019;

Schuster et al., 2019).

Both approaches have their pros and cons. The ODE approach

can describe the time course but it needs a higher number of
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parameter values. It is very useful in distinguishing between

oscillations in strategies and use of strategies with certain

probabilities. For example, the time course in the rock-scissors-

paper game can be simulated (Neumann and Schuster, 2007; Garde

et al., 2020). If the oscillations are damped, they tend to an

asymptotically stable state. Then, the two interpretations of the

mixed Nash equilibrium in terms of oscillations and in terms of

(asymptotically) stationary frequencies of strategies in the

population are in line with each other.

Game theory has the advantage of having a much wider scope

because the concrete nature and details of interactions do not

matter that much. Here, we used the situation of a toxin and an

enzyme degrading that as the paradigm. However, the game-

theoretical analysis is more general. It applies whenever an

organism uses a perfect or imperfect counterdefense against the

defense of another organism and the net payoffs can be quantified

for both.

An interesting question is whether information exchange

between the players is allowed. As outlined in Section 1, we here

use an interpretation in terms of populations, in which the

equilibrium is found by natural selection without the necessity

that the organisms have cognitive capabilities. Nevertheless, it will

be interesting to shed light on the role of communication because

many microorganisms can sense effector molecules produced by

other organisms (Shapiro, 2007; Papenfort and Bassler, 2016;

Grainha et al., 2020) and there is even cross-talk between

pathogens and the human immune system (Bullard et al., 2022).

The present analysis bears manifold potential applications in

fighting pathogens. A major problem in clinical treatments of

bacterial infections is the increasing resistance due to, for

example, ß-lactamases. Possible extensions to our model are to

consider enzymatic pathways rather than single enzymes or to

include the effect of counter-counterdefenses (Dühring et al., 2015;

Schuster et al., 2019) into the payoff matrices.

A further biological example of defense and counterdefense is

RNA silencing by plants against the bacterial or viral pathogens and

action of suppressors of that process (Burgyán, 2008; Pumplin and

Voinnet, 2013). To some extent, our model can be used to describe

this as well. However, more features should then be considered,

such as the arms race between changes in RNA sequence and

evolution of the specific silencers (Burgyán, 2008; Pumplin and

Voinnet, 2013). A promising application of our study concerns the

evolution of drug resistance. For example, Plasmodium falciparum,

the causative agent of malaria, keeps evolving resistance to

pharmaceuticals such as chloroquine (Hecht and Fogel, 2012).

The two strategies of the patient would be to take or not to take

the drug, while the two strategies of P. falciparum are to evolve or

not to evolve resistance. Obviously, this is related to a matching

pennies game.
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