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Highly migratory shorebirds are among the fastest declining avian guilds, so

determining causes of mortality is critically important for their conservation. Most

of these species depend on a specific geographic arrangement of suitable sites

that reliably provide resources needed to fuel physiologically demanding life

histories. Long-term mark-resight projects allow researchers to investigate

specific potential sources of variation in demographic rates between

populations. Red Knots (Calidris canutus) occur in three relatively distinct

regions across the northern Gulf of Mexico, and two of these areas have been

experiencing episodic harmful algal blooms (red tide) with increased frequency in

recent decades. Since knots are mostly molluscivorous during the nonbreeding

season in the Gulf, they are potentially exposed to red tide toxins at high

concentrations via their filter-feeding prey. We used long-term mark-resight

data from Texas, Louisiana, and Florida (USA) to estimate apparent survival, and to

assess the effects of red tides on survival of Red Knots. We also assessed effects of

tracking devices deployed in conjunction with the projects over the years. While

overall apparent annual survival rates were similar across the three locations

(0.768 – 0.819), several red tide events were associated with catastrophically low

seasonal (fall) survival in Florida (as low as 0.492) and Texas (as low as 0.510). Leg-

mounted geolocators, but not temporary glued-on VHF tags, were associated

with a reduction in apparent survival (~8%/year). Movement of knots between the

three areas was rare and site fidelity is known to be high. Harmful algal blooms

are predicted to increase in frequency and severity with climate change and

increased anthropogenic degradation of coastal habitats, which may further

endanger these as well as other shorebird populations around the world.
KEYWORDS
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1 Introduction

Understanding demographic parameters is fundamental to

monitoring and managing wildlife populations, but the highly

migratory nature of many shorebird species makes estimation of

these parameters distinctly challenging (Faaborg et al., 2010).

Species may have broad or disjunct breeding ranges,

geographically distinct nonbreeding populations, and rely

differentially on migratory stopovers between the two. Being able

to isolate parameters (and factors that may affect them) to specific

populations requires knowledge of connectivity (Webster et al.,

2002; Rushing et al., 2017), since consequences of factors affecting

one part of the annual cycle can have carry-over effects on

subsequent ones (Goss-Custard et al., 1995; Norris, 2005; Duijns

et al., 2017). Survival rates of adults and post-fledged juveniles have

been demonstrated to be the most consequential to population

growth rates of several migratory shorebirds (Hitchcock and

Gratto-Trevor, 1997; Calvert et al., 2006). For migratory

shorebirds that use different geographic areas for discrete parts of

their annual cycle, changes in habitat quality in any part of the cycle

can have a strong effect on survival (Johnson et al., 2006; Duriez

et al., 2012).

Coastal habitats worldwide have been degraded by human

activities such as shoreline development, pollution, and freshwater

diversions (Kennish, 2002), decreasing their capacity to support

populations of migratory shorebirds (Fernández and Lank, 2006).

Beyond direct losses, anthropogenic disturbance can be functionally

equivalent to habitat loss or degradation by rendering sites unusable

(Gill and Sutherland, 2000). Norris and Marra (2007) demonstrated

that differences in habitat quality in one part of the annual cycle can

have interseasonal effects on population dynamics depending on the

strength of migratory connectivity. When connectivity is strong,

further habitat loss from projected sea level rise is likely to result in

bottlenecks with potential consequences to populations

proportionately larger than the habitat loss itself (Iwamura

et al., 2013).

Harmful algal blooms (HABs) occur in aquatic environments

and can be considered extreme biological events resulting in major

disruption to coastal ecosystems through complex food web

dynamics (Landsberg et al., 2009). HABs have occurred in the

Gulf of Mexico far back into recorded history (Magaña et al., 2003).

They have increased in frequency and now occur commonly on the

coasts of Texas/Mexico and western Florida (Hallegraeff, 1993, van

Dolah 2000, Walsh et al., 2006; Brand and Compton, 2007;

Tominack et al., 2020). Blooms in the Gulf of Mexico resulting in

fish kills associated with the dinoflagellate Karenia brevis are

typically known as “red tides.” The organism produces

brevetoxin, a very potent neurotoxin that kills fish through

absorption across gill membranes (Abbott et al., 1975) or

consumption of toxic biota (Tester et al., 2000). These toxins can

accumulate and result in mortalities of higher vertebrates directly

and indirectly through food web dynamics (Landsberg et al., 2009).

Filter-feeding molluscs – especially bivalves – readily accumulate

brevetoxins in high concentrations (Bricelj et al., 2012; Van Hemert

et al., 2022) and occasionally experience direct lethal effects, as well

as sublethal effects that result in subsequent recruitment failure
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(Summerson and Peterson, 1990). However, most mollusk species

survive exposure to brevetoxins, accumulating high concentrations

of toxins that can then be ingested by consumers (Landsberg, 2002).

In addition to effects from direct consumption, brevetoxin from

lysed cells can reach extremely high concentrations that can persist

in waters and sediments for several weeks after the bloom organism

has dissipated (Pierce and Henry, 2008; Castle et al., 2013), exposing

probe-feeding shorebirds to additional dosages through passive

uptake. Despite strong evidence correlating bird mortalities with

HABs (Van Hemert et al., 2021, 2022), data from experimental

studies or laboratory examination of tissue samples are relatively

scarce (Shumway et al., 2003). Impacts are likely underestimated

due to depredation and decomposition of carcasses, and removal of

carcasses through tidal action (Sutherland et al., 2012). Further, a

lack of long-term demographic monitoring of affected avian species

has confounded determination of population level effects, though a

recent study found a relationship between HAB occurrence and

survival in Gulf-wintering Piping Plovers (Ellis et al., 2021).

The Red Knot (Calidris canutus) is a Holarctic breeding

shorebird comprising six currently recognized subspecies. In the

Western Hemisphere, the C. c. rufa subspecies spends nonbreeding

seasons in the southern US and neighboring Mexico, especially the

states bordering the Gulf of Mexico (henceforth, the “Gulf”), the

Caribbean, and several regions in South America from northern

Brazil to Tierra del Fuego (Niles et al., 2008). Additionally, some

knots wintering on the Pacific coast of southern Mexico (Oaxaca)

south to Chiloé Island, Chile occur in Texas and Louisiana during

migration – primarily during spring – and consist of both C. c. rufa

and C. c. roselaari (Newstead, unpubl. data). Though the total

population of knots that do this is not known, it is suspected to be

considerably less than those wintering in the Gulf. Knots in the Gulf

are concentrated primarily in three general areas: southwestern

Florida, the barrier islands of Louisiana, and the coast of south

Texas and Tamaulipas. These Gulf states are among the highest

latitude wintering sites (~24° – 29° N) of the C.c. rufa subspecies,

used not only during the extensive nonbreeding season but also for

pre-migratory and post-breeding stages. Observations of marked

individuals (Tuma and Powell, 2021, Newstead, unpubl. data)

confirm high site fidelity to each of these locations, consistent

with studies on other subspecies (Harrington et al., 1998; Leyrer

et al., 2006; Buchanan et al., 2012; Musmeci et al., 2022).

Geolocator studies (Newstead et al., 2013, Newstead, unpubl.

data) show that the Texas and Louisiana populations migrate

almost exclusively through the interior of the North American

continent rather than using sites along the Atlantic coast. The

decline of more than 75% of the Atlantic Flyway rufa population

over the course of two decades (Niles et al., 2008) prompted its

listing as Endangered in Canada in 2007 (COSEWIC, 2007) and as

Threatened under the US Endangered Species Act in 2014 (USFWS,

2014a). Recognition and understanding of the Gulf populations –

particularly the Texas and Louisiana populations – have been

relatively recent discoveries, and there has been no previous

estimation of survival parameters that can be compared across

the three locations. The Red Knot is considered primarily a

molluscivore during the non-breeding season (van Gils et al.,

2006; Baker et al., 2013). The species’ reliance on coquina clams
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(Donax spp.) when using Gulf beaches makes it particularly

vulnerable to HABs and they have been observed exhibiting

symptoms of neurotoxic shellfish poisoning during red tide events

(DN, personal observation). Carcasses of knots encountered freshly

dead or dying were found to have exceptionally high levels of

brevetoxin in all tissues tested, with the highest levels in the liver

and gastrointestinal tract (Rafalski, 2012).

New tracking technologies continue to contribute major

breakthroughs in our understanding of avian life histories (Bridge

et al., 2010; Robinson et al., 2010; Wilmers et al., 2015). The use of

archival light-level data loggers (geolocators), radiotransmitters,

GPS and cellular technologies has drastically expanded our

understanding of migratory strategies and revealed previously-

unknown sites of essential importance (Stutchbury et al., 2009;

Newstead et al., 2013; McKellar et al., 2015; Chan et al., 2019).

While these discoveries have been critical in directing further

research and conservation actions to places that can best benefit

the species, the effects of tracking devices on the movements,

activities, and, ultimately, survival of tracked animals remains a

source of concern (Barron et al., 2010; Elliott et al., 2012;

Scarpignato et al., 2016). Meta-analyses on device effects on birds

(survival, behavior, reproductive success and others) have revealed

some significant negative consequences varying by species, device

type, attachment method, migration distance, and many other

factors (Barron et al., 2010; Costantini and Møller, 2013). Specific

to shorebirds, most studies have reported no significant impact of

leg-mounted geolocators based on metrics from the year following

deployment (Conklin and Battley, 2010; Pakanen et al., 2015;

Mondain-Monval et al., 2020). Reductions in one-year return

rates were detected for only two of 23 Arctic-breeding shorebird

populations carrying geolocators relative to individuals carrying

only a unique leg marker, with no detectable effect on the Great and

Red knots included in the analysis (Weiser et al., 2016). However,

Pakanen et al. (2020) found that when they extended their analysis

of Dunlin (C. alpina) tracked over multiple years, apparent survival

was lower for birds carrying geolocators compared to those without.

These findings suggest that negative effects may accumulate over

time or result in incremental increases in mortality risk. When

possible, longer-term datasets should be analyzed to determine

consequences that may not be evident based on one-year return

rates alone. Small VHF transmitters attached to birds tracked using

direct or automated radiotelemetry have also yielded important

findings for many shorebirds, especially for local movements

(Green et al., 2002; Warnock and Takekawa, 2003; Rogers et al.,

2006; Duijns et al., 2019). Most VHF tag deployments on shorebirds

have utilized an adhesive to affix the transmitter to the back, which

subsequently falls off the bird with the next molt cycle or sooner,

and these studies have generally reported no short-term survival

consequences (Drake et al., 2001; Barron et al., 2010; Buchanan

et al., 2019; Stantial et al., 2019).

Annual survival is a key underlying demographic parameter

that can vary with environmental conditions, and strongly

influences population trends. When data are sufficient, annual

survival can be apportioned into partial (e.g. seasonal or semi-

annual) components, providing greater insight into what particular

locations or processes are contributing to demographic change
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(Gauthier et al., 2001; Leyrer et al., 2013; Piersma et al., 2016; van

Irsel et al., 2022). We used mark-resight data from three projects

involving captures of Red Knots in the three main Gulf of Mexico

wintering areas to compare annual (and seasonal when possible)

survival rates between populations, and to assess effects of an

increasingly prevalent coastal ecosystem stressor (HABs) and the

use of tracking devices on survival.
2 Methods

2.1 Study area

The northern Gulf of Mexico is bordered by a fairly contiguous

extent of sandy beaches punctuated by passes connecting to bays

and other receiving waters. Sediment grain size composition and

origin (biogenic and terrigenous) vary widely across the Gulf, which

affects the character of benthic infaunal communities and

consequently the distribution of shorebirds that use them. Red

Knots occur regularly in three primary areas across the Gulf –

Florida, where they are most concentrated in the southwestern

region between Clearwater and Marco Island; Louisiana, where they

occur on the beaches of Grand Isle and the adjacent Caminada

Headlands as well as the offshore barrier islands of the Breton Island

National Wildlife Refuge; and Texas, where they are most common

on the southern half of the coast from the Corpus Christi area to the

border with Mexico, and likely well into contiguous parts of

Tamaulipas where habitat is very similar. These three main areas

are at least 600 km from one another and are considered as separate

population units for the purpose of recovery planning (USFWS,

2021). These three geopolitical states are henceforth referred to as

“locations” to avoid potential confusion with conditional states

related to the analysis.
2.2 Field methods

For this project, captures of Red Knots occurred in Texas on

Mustang and North Padre Islands between October 2009 – October

2019, in Louisiana on Grand Isle and the Caminada Headlands

from the eastern end of Elmer’s Island west to Port Fourchon

between April 2014 – April 2019; and in Florida from Longboat Key

to Sanibel Island between October 2005 – March 2010.

All Red Knots were captured using a cannon-net (~ 9 m X 9 m,

or ~10 m X 25 m) on beaches where birds were foraging or resting.

Standard processing included a federal metal band on tarsus or

tibia, a uniquely inscribed alphanumeric green flag on the opposite

tibia, measures of bill and total head length (nearest 0.1mm),

flattened wing chord length (mm), and mass (grams). A clip of

the distal portion of the 6th primary covert was retained from most

captured birds for isotopic analysis (carbon, nitrogen, hydrogen

isotopes; for a project to assign migrants to wintering sites), and a

blood sample was taken by brachial venipuncture on a smaller

sample of birds for future genetic analysis.

In Florida, capture effort was concentrated between November

– March (>95% of all captures) between years 2005-2010. Capture
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effort in Texas was mostly focused on fall and spring periods (>90%

of all captures between September-November, or April-May) with

smaller catches in other months, between 2009-2019. Louisiana

captures were all in April, from 2014-2019. The distribution of

resights by month was similar to that of the captures, except for

Florida when many resights were recorded in months before and

after the main winter months which constituted the bulk of the

capture efforts.

Multiple tracking projects were conducted during the course of

the projects. Archival light-level dataloggers (henceforth,

“geolocators”; British Antarctic Survey [BAS] Model MK10 and

MK12 or Migrate Technologies Intigeo W65) were mounted on leg

flags and attached to the tibiotarsus as described in Niles et al.

(2010). All assemblies weighed < 1.4 g. Radiotelemetry studies in

Louisiana and Texas included deployment of small VHF

transmitters (Lotek NTQB-4-2, 0.9 g) glued to the intrascapular

region, as described in Newstead (2014).
2.3 Encounter histories and covariates

Encounter data were compiled from multiple resight projects

and public domain records in bandedbirds.org; additional records

were made available directly to the author. Encounter occasions

began with the first capture effort in Florida in winter 2005/6 and

ended in winter 2019/20 season.

Only records from Florida, Louisiana and Texas were used to

build encounter histories. Birds were assigned to one of the three

locations based on their original capture location. If an individual

was encountered outside the location of initial capture (i.e., in one

of the other two locations) and there were no subsequent records

within the capture location it was removed from the dataset. This

eliminated only a small number of birds from the dataset that may

have switched wintering location or underwent atypical migrations.

Resightings were divided into three encounter occasions per

year: the fall encounter (July 20 – October 31; 104 d; midpoint

September 9), winter encounter (December 15 – January 31; 48 d;

midpoint January 7), and spring encounter (April 1 –May 30; 60 d;

midpoint May 1; Figure 1). Based on the midpoints of the encounter

occasions, the year was thus divided into three intervals: (fall to

winter – 120 d; winter to spring – 114 d; spring to fall – 131 d).

These are referred to as the fall, winter, and summer intervals,

respectively. The time range from the earliest captures to the most

recent encounters spans 43 occasions (42 intervals).

As defined, the intervals generally reflect distinct and important

phases in the annual cycle: during “fall” birds are returning from the

Arctic and undergoing a body molt including flight feathers; during

“winter” birds are managing a balance of predation risk, prey

resource availability and maintaining sufficient fat reserves;

during “summer” adult birds undertake a major migratory

journey to Arctic breeding grounds, spend two to three months

attempting to breed, and then return to nonbreeding areas. While

juvenile birds nearly all remain on nonbreeding areas in their first

full summer, they are exposed to factors such as extreme heat and

increased human disturbance that adults mostly escape.
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Individuals were grouped into one of three age classes based on

age at capture. Birds that were not aged upon capture were classified

as “unknown” age. Birds classified as hatch-year prior to, or second-

year during, a spring occasion were classified as juvenile. Birds aged

as second-year or after-hatch-year following a spring occasion (i.e.,

they had survived the first full oversummer interval so were > 1 year

old), and all birds aged as after-second-year were classified as adult.

Juveniles and birds of unknown/unspecified age were assumed to

recruit into the adult age class following the first summer interval.

Since occasions are assumed to be instantaneous, the initial

occasion for birds captured during intervals was assigned to be the

subsequent occasion, so that estimates would not be biased by

partial interval effects.

We included covariates in the dataset to test whether negative

effects of tracking devices resulted in lower apparent survival. Effects

of leg-mounted geolocators and glue-on VHF transmitters were

assessed using a set of time-varying binary covariates for each. Once

deployed, an individual with a geolocator was assumed to retain the

geolocator permanently unless it was removed. VHF transmitters

glued to the intrascapular region typically fall off within a few

months of deployment, so the covariate was applied for only the

subsequent interval.

Since HABs (especially “red tides”) have been observed to result

in direct mortality to Red Knots, we hypothesized that exposure to

toxins could result in lower apparent survival either through

additional (undetected) direct mortality or sublethal effects.

Effects of red tide were assessed using several approaches. Red

tide sampling occurs in Florida (inshore and offshore) with good

spatial and temporal coverage through the HABSOS system

(NOAA National Centers for Environmental Information, 2014).

The monthly bloom severity index (BSI) developed by Stumpf et al.

(2022) was used to identify intervals when red tide blooms were

affecting the southwest Florida coast. Red tide effects can occur at

relatively low concentrations, but generally begin having

pronounced effects resulting in fish kills at concentrations
FIGURE 1

Encounter periods (grey), occasion midpoints (lines extending from
outer circle), and season interval names for apparent survival
analysis on Red Knots in the northern Gulf of Mexico.
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>1,000,000 cells/L. The summed BSIs for months corresponding to

intervals in this study were used to classify red tide as absent/

minimal (summed BSI = 0, covariate = -1), moderate (summed BSI

> 0 but < 5, covariate = 0), or severe (summed BSI > 5, covariate =

1). In Texas, red tide monitoring is conducted mostly in response to

known or suspected occurrences. Since events vary greatly in their

range and extent of impact to marine life, fish kill reports were used

as a secondary source to confirm an event to a degree that would

have resulted in high likelihood of the shoreline being exposed to

the effects of the bloom. For Texas, red tide events were ascribed to

seasons based on Tominack et al. (2020), and severity was assigned

as appropriate to the geography utilized by knots. A covariate set

was thus created for each location based on red tide being absent/

minimal, moderate, or severe (-1, 0, and 1, respectively) during each

interval. A covariate set including all red tide events was made for

each location separately, and another that included all locations

together (but the red tide covariates applicable to each

location separately).

Because knots are highly mobile and likely vary in their degree

of exposure to harmful algal blooms depending on various

environmental factors, we also tested the effect of each individual

red tide season against all others. Separate covariate sets were

created for each red tide season occurrence in Florida and Texas

to assess the effect of red tide events independently. The covariate

value of 1 was assigned to intervals when red tide was present

(either moderate or severe), and 0 for all others. Based on our

criteria, there were a total of 17 and 6 red tide season events for

Florida and Texas, respectively, applicable to the 42 intervals of the

study, so a covariate set was created for each of these.
2.4 Statistical analyses

Models were evaluated using a Cormack-Jolly-Seber (CJS)

framework in Program MARK (v. 9.0, White and Burnham,

1999) to estimate apparent survival (j) and encounter (p)

probabilities. Apparent survival is the probability that a knot alive

at occasion i was alive and in the study area at occasion i + 1. Its

inverse includes mortality and permanent emigration from the

study area. Goodness-of-fit testing was run on the fully time-

varying model and contingency tables were examined individually

to assess whether patterns indicated lack of independence in the

data. The median c ̂ approach was applied to account for

overdispersion in all subsequent models. Model evaluation was

based on quasi-Akaike’s Information Criterion adjusted for sample

size (QAICc) and model weights (wi). We built models in an

ordered 3-step process described below.

2.4.1 Step 1: determining best underlying
model structures

Preliminary evaluation of the dataset indicated major

differences in the distribution of encounters between locations

and seasons, so model fitting began with a series of models

holding j constant by location and allowing for variation in p by

location, season, and age. Using the best parameter structure for p,
Frontiers in Ecology and Evolution 05
models incorporating variability in j by location, season and age

(and combinations thereof) were then tested to determine the best

fit for a base model. Models in which covariate parameters were

poorly estimated (standard errors of effect coefficient very close to

zero or greater than 2.0) were removed from the resulting model set.

Models within 2 DQAICc of the top model were considered well-

supported, and the top model was carried forward for testing of the

time-varying covariate datasets.

2.4.2 Step 2: building a candidate model set with
red tide index and tracking device effects

We then built a candidate set of models that included covariates

added to the most competitive base model. We considered the effect of

tracking devices (geolocators, VHF transmitters) independently as well

as combined. Given differences in habitat distribution and the character

and duration of red tide events between Texas and Florida, we

considered the effect of red tide on each location modeled

independently, as well as together. We then considered models that

included both tracking device and red tide effects. Covariates were

considered predictive if the 95% confidence intervals (C.I.) of effect

coefficients did not include zero. Apparent survival and encounter

probabilities were reported based on the topmodel that did not include

a red tide effect. If all parameters were well estimated in a model

including seasonal variation within a location, the model including

those terms and the tracking device effects was used to estimate those

season-specific parameters (i.e. to provide estimates unaffected by

tracking devices). To facilitate comparison with other studies,

apparent seasonal survival (j a) estimates and 95% C.I.s were

converted to apparent annual estimates using the delta method

(Powell, 2007), either as a product of the three separate seasonal

estimates or exponentiation of the non-season specific estimates.

2.4.3 Step 3: evaluating survival in specific red
tide seasons

To evaluate the effect of specific red tide events, we used the

most competitive base model and independently added each red

tide season to the model as applicable to each location. We

considered a red tide event to be poorly estimated if its inclusion

resulted in other parameters being poorly estimated. Red tide events

(seasons) were considered significant if the 95% C.I.s of the effect

coefficient did not overlap zero. For significant seasons, the

magnitude of the effect on j was calculated as the percentage

difference between the mean estimate of the survival probability in

that season relative to the survival probability of all other seasons

for that location.

To estimate survival for each significant red tide season, we ran

a post-hoc model treating each of those seasons individually and

accounted for any significant tracking device effects. If any

coefficient became non-significant in this model, that covariate

was removed and the reduced model run until all terms

were significant.

The strength of differences between locations was assessed by

whether 95% C.I.s overlapped, and covariate effects were assessed by

whether the 95% C.I. included zero. C.I.s are presented in brackets

following the mean, unless otherwise noted.
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3 Results

Encounter histories were constructed from 2,412 knots (Florida:

1,373 captured between 2005-2010; Louisiana: 255 captured

between 2014-2019; Texas: 784 captured between 2009-2019), and

4,078 resights (Florida: 3,013; Louisiana: 188, Texas, 877;

Supplementary Table 1). Geolocators were deployed on 68, 49,

and 114 knots in Florida, Louisiana and Texas, respectively. VHF

transmitters were deployed on 18 and 115 knots in Louisiana and

Texas, respectively.

There were 17 red tide seasons in Florida (8 severe, 9 moderate)

during the 42 intervals since marking began. Two were in summer

(one moderate, one severe). Both summer events preceded severe

fall events. Of nine fall events (three moderate, six severe), six

persisted into the subsequent winter interval. There were no winter

events that were not preceded by a fall red tide event. In Texas, there

were 6 red tide seasons (3 severe, 3 moderate) during the 31

intervals since marking began. All Texas red tide seasons were

in fall.
3.1 Best underlying model structures

The goodness-of-fit test indicated some overdispersion in the

data but examination of contingency tables did not suggest any

systematic source of bias. Differences in resighting effort (p)

between years and locations were likely responsible for high

model deviance. Subsequently, all models were adjusted using

median c ̂ = 1.155. The best models for the encounter parameters

included location and season. All models including age resulted in

multiple parameters being poorly estimated, so these were removed

from further consideration. All subsequent model runs utilized the

p(location, season) parameterization.

The top base model for explaining variation in Red Knot

apparent survival included a constant seasonal survival term (j c)

for each location. A competing model allowed for season-specific (j f,
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j w, j s) parameters for Florida, but not for Texas and Louisiana.

A model with constant seasonal survival across locations received

the lowest model weight of the three. The two most competitive

models were carried forward for model development incorporating

HAB and tracking device covariates.
3.2 Assessment of candidate models
including red tide index and tracking
device effects

All models testing tracking device and red tide effects on the

base model that included seasonal variation in survival in Florida

had uniformly higher QAICc than the corresponding models based

on the constant seasonal survival base model. Since the inclusion of

variation in seasonal survival in Florida did not improve model fit in

any case, these models were removed from the candidate model set.

The best fitting model included effects of geolocators and red

tide in Florida (Table 1). The four top models each had a likelihood

>0.125 (indicating support; Burnham and Anderson, 2002), and all

included the geolocator covariate. The geolocator effect was

negative and significant in all models that included it. VHF

transmitter and red tide covariates were also all negative but non-

significant when included in the models. Multiple parameters were

poorly estimated in all models that included red tide in Texas only.

The effect of geolocator in the top-ranked model without a red tide

effect (b̂ = -0.445 [-0.655, -0.236]) equates to an estimated

reduction in seasonal apparent survival of 4.1%, 3.2%, and 3.8%

for Texas, Louisiana, and Florida, respectively.

The top-ranked model that did not include a red tide effect was

used to estimate apparent survival for each location. With tracking

devices accounted for separately in the model, mean apparent

seasonal survival was highest for Louisiana, intermediate in

Florida, and lowest in Texas, though C.I.s overlapped (Table 2).

Resighting probabilities varied between seasons within

each location.
TABLE 1 Model ranking including combinations of red tide and tracking device covariates applied to the best-fitting base model (F location, p location,

season) for Red Knots from Texas, Louisiana, and Florida populations from 2005-2019.

Model Red tide Tracking device D QAICc wi Likelihood K QDeviance

1 Florida geo 0.00 0.37 1.00 14 21295.7

2a – geo 0.33 0.32 0.85 13 21298.1

3 – geo, VHF 1.92 0.14 0.38 14 21297.6

4 All geo 2.33 0.12 0.31 14 21298.1

5 All geo, VHF 3.92 0.05 0.14 15 21297.6

6 Florida – 13.47 0.00 0.00 13 21311.2

7b – – 14.28 0.00 0.00 12 21314.0

8 – VHF 16.14 0.00 0.00 13 21313.9

9 All – 16.19 0.00 0.00 13 21313.9

10 All VHF 18.03 0.00 0.00 14 21313.8
aTop-ranked model not including a red tide effect, on which reported seasonal survival estimates and geolocator effects are based.
bBase model (no covariates) from Step 1 on which subsequent model development was based.
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Estimation of distinct seasonal apparent survival probabilities

was only possible for Florida. When seasonal variation for Florida

was added to the top-ranked model, mean apparent survival was

highest during winter (0.944 [0.915, 0.963], intermediate in fall

(0.914 [0.834, 0.957] and lowest in summer (0.907 [0.821, 0.954]),

though C.I.s were wide and overlapping.
3.3 Individual red tide season effects

Parameters were estimable for models including individual red

tide seasons on the base model for one (of six) Texas seasons, and

nine (of seventeen) Florida seasons (Table 3). The 2009 fall red tide

season in Texas was significant (b̂ = -2.515 [-3.291, -1.739]), as were

four total seasons in Florida comprising two extended events in

2012 (fall: (b̂ = -1.553 [-1.742, -0.764]; winter: (b̂ = -1.470 [-1.930,

-1.010]) and 2018 (fall: (b̂ = -2.504 [-3.169, -1.840]; winter: (b̂ =

-1.831 [-2.817, -0.845]). Red tide seasons with non-significant terms

had higher standard errors, indicating data was insufficient to

estimate an effect.

The post-hoc model retaining all significant covariates included

the geolocator effect and four of the five significant red tide seasons

(Table 4). Point estimates of seasonal survival during red tide events

in Florida ranged from 0.492 (fall 2018) to 0.884 (fall 2012).

Seasonal survival during the Texas fall 2009 red tide was 0.510.
4 Discussion

Our results confirm episodes of sharply reduced survival of Red

Knots during red tide events, and suggest this could be a significant

driver of survival in Texas and Florida. While only a red tide effect

in Florida was included in the top model of the candidate set, tests

on individual seasons – when all parameters were estimable – were

all either strong and significant, or were weak with relatively high

standard errors. This is indicative of sparseness of data in some

seasons (especially low winter resight probability in Texas) which

likely resulted in a failure to find an effect when one may have

occurred. Instead of chronically lower annual survival, knots in
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these locations may be experiencing relatively high survival

punctuated by acute episodes of high mortality from red tide.

Several studies on knots have demonstrated often sharply

contrasting survival estimates comparing different time series

(Baker et al., 2004; González et al., 2006; Leyrer et al., 2013),

population segments (Harrington et al., 1998) and body condition

(McGowan et al., 2011), and age (Schwarzer et al., 2012). A robust

model accounting for transience, temporary emigration, persistence

and food availability at a stopover site illustrated that many different

processes can affect estimates of apparent survival over short

timeframes (Tucker et al., 2021). Further, the focal populations of

these studies often preclude simple comparison of survival

estimates across studies. For example, knots captured in Delaware

Bay during spring migration are primarily breeding age individuals

who have already survived nearly two full years during which

mortality is expected to be highest (and thus unaccounted for in

estimates), whereas estimates based on populations that included

those younger cohorts (including ours) would be expected to be

lower. Nevertheless, our estimates of apparent annual survival rates

of Red Knots from the three Gulf of Mexico locations were within

the ranges of those reported by most other studies on rufa Red

Knots. Of the three Gulf locations, mean apparent annual survival

was lowest in Texas and highest in Louisiana, though differences

were not significant.

An effect of age on survival was not detectable in our models,

but we note that the first occasion a knot becomes “available” to

our study sites follows a critical and typically very high-mortality

time interval following hatching in the Arctic, including

surviving to fledging and the first southbound migration (~first

3 months of life). However, we are aware of no published survival

estimates for this species which include that highly sensitive

period. Accurate estimation of age-specific survival in the first-

and second-year periods (prior to the first return to the Arctic as

a breeder for most knots) was likely related to limitations in data

for these age groups.

Our study estimated apparent survival, which is the

complement of both mortality and permanent emigration. These

are the first published survival estimates for knots in Texas and

Louisiana, but a relatively recent study examined true survival in
TABLE 2 Mean estimates and standard errors (SE) for apparent seasonal and annual survival and encounter probabilities of Red Knots for each
location from the j(location, geolocator) p (location, season) base model.

Location F seasonal F annual Encounter (p)

Texas 0.916 (0.005) 0.768 (0.012) spring 0.180 (0.011)

fall 0.264 (0.012)

winter 0.009 (0.002)

Louisiana 0.936 (0.013) 0.819 (0.033) spring 0.331 (0.036)

fall 0.021 (0.006)

winter 0.071 (0.013)

Florida 0.925 (0.002) 0.790 (0.006) spring 0.118 (0.005)

fall 0.271 (0.007)

winter 0.194 (0.006)
frontiersin.org

https://doi.org/10.3389/fevo.2024.1375412
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Newstead et al. 10.3389/fevo.2024.1375412
Florida. Between 2005-2010, true annual survival of Florida-

wintering knots was estimated at 0.89 for adults and 0.95 for

juveniles, using a Barker model (Schwarzer et al., 2012). The

Barker model accounts for emigration and re-immigration based

on encounters in a secondary encounter area (in this case, James

Bay, Ontario, and the US Atlantic coast), resulting in annual

survival estimates that separate the two processes by which an

individual can leave the population (mortality or permanent
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emigration). Our dataset encompasses the same individuals and

years of the Schwarzer et al. (2012) study, but because of the use of

different modeling approaches and longer timespan of our study, we

would not expect our estimates to be consistent. However,

comparison may provide some insight into the potential

population dynamics of the Florida winterers. We explore two

potential explanations, which are not mutually exclusive: 1) during

the course of the past decade the survival rate has in fact declined

since the Schwarzer et al. (2012) study; and, 2) more knots formerly

associated with Florida wintering areas are spending extended

periods of time or the full nonbreeding period at sites along the

southeast US coast, or into the Caribbean.

The significant reduction in survival associated with several red

tide events in Florida provides some support for the hypothesis that

mean survival rates truly have declined particularly in the past

decade. It must be noted that because there were no new birds

marked in Florida beyond 2010 in this analysis, it is possible that an

age-related effect (i.e. senescence) could have depressed our

apparent survival rates. However, the five-year timespan of the

Schwarzer et al. (2012) study encompassed only four seasons (two

events) that met our criteria as moderate or severe in terms of BSI.

Three of these were the contiguous summer-fall-winter seasons

during the bloom of 2006-7 (two of those were moderate severity),

and the other was the brief and moderate bloom of fall 2009. By

contrast, red tide occurred in thirteen seasons over the subsequent

decade. Each bloom affected multiple consecutive seasons

(including the one beginning in fall 2017 that lasted well over a

year and a half), potentially compounding the effects. The years

assessed in the Schwarzer et al. (2012) study (the same as the first

five years of ours) represent a relative lull in red tide frequency and

severity in Florida compared to the latter decade included in

our study.

There is also evidence that our apparent survival estimates for

Florida could be lower because of permanent shifts in wintering

range outside of Florida. Lyons et al. (2018) estimated the wintering

population of the southeast US (including Florida) at 10,400

individuals using data from the fall migration in 2011, while

surveyors conducting the International Piping Plover Census

(Elliott-Smith et al., 2015) counted 5,069 Red Knots during the

2006 count and approximately 3,900 in 2011. These numbers are

not directly comparable, as they are based on different

methodologies, but they reflect uncertainties as to where

specifically Red Knots are wintering in the southeastern U.S.

While there are not consistent repeated estimates from each

location within this region over that time, resight data indicates
TABLE 4 Seasonal apparent survival estimates of Red Knots in each location based on the highest-supported post-hoc model incorporating five
significant covariates – geolocators, and the four red tide events as applicable to the affected location.

Location Intercept Geolocatora
Red tide event

Fall 2009 Fall 2012 Winter 2012 Fall 2018

Texas 0.918 0.884 0.510 – – –

Louisiana 0.935 0.908 – – – –

Florida 0.932 0.902 – 0.884 0.786 0.492
aThe geolocator effect is assumed the same across locations. A model with a geolocator effect varying by location had less support.
TABLE 3 Effect coefficients (b̂ ) and 95% confidence intervals for
covariates tested individually on the F (location) p (location, season) base
model for Red Knot apparent survival in the northern Gulf of Mexico.

Covariates b̂ [95% C.I.]

Tracking devices

Geolocator -0.445 [-0.655, -0.236]

VHF -0.312 [-1.727, 1.103]

Red tide

Red tide - all -0.040 [-0.279, 0.199]

Red tide - Florida -0.203 [-0.422, 0.015]

Individual red tide seasons

Texas

2009 fall -2.515 [-3.291, -1.739]

2012 fall 0.113 [-1.678, 1.903]

Florida

2006
fall 0.196 [-1.540, 1.933]

winter -0.361 [-0.774, 1.495]

2009 fall -0.079 [-0.882, 0.723]

2012
fall -1.253 [-1.742, -0.764]

winter -1.470 [-1.930, -1.010]

2015
fall -0.246 [-1.659, 2.151]

winter -1.472 [-4.847, 7.792]

2016 fall 0.386 [-2.094, 2.866]

2018
fall -2.504 [-3.169, -1.840]

winter -1.831 [-2.817, -0.845]
Significant covariates and terms are in bold. Effects could not be estimated for the covariate set
“Red tide – Texas” and several individual red tide seasons (Florida – summer 2006, fall and
winter 2011, fall and winter 2017, summer 2018; and Texas – fall 2011, fall 2015, fall 2016,
fall 2018).
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that some birds have indeed shifted from the Florida wintering

group to the Atlantic coasts of Georgia and South Carolina (USFWS

2014b, Pelton et al., 2022). The parameter estimates for fidelity and

re-immigration based on the Barker model used by Schwarzer et al.

(2012) indicate some support for this hypothesis. The apparent

survival estimates for Florida in this study confound permanent

emigration (such as a shift in wintering area from Florida to

Georgia/South Carolina) with mortality, so it is possible that

some portion of the decrease in apparent survival was attributable

to emigration.

Apparent survival estimates for the Texas and Louisiana

populations from this study could also be biased low (relative to

true survival), if some proportion of those birds had also shifted to

other wintering sites. However, there is currently no solid evidence

to support this, and relatively minimal exchange of individuals even

between the locations suggests it is unlikely.

The four significant red tide seasons in Florida were actually two

prolonged events that lasted through the fall and winter intervals of

the 2012 and 2018 nonbreeding season, compounding the effect on

annual survival. In those years, estimated annual survival (assuming

mean of non-red-tide survival for the unaffected season) would

have been ~0.56 (in 2012) and ~0.33 (in 2018). While the 2009 red

tide in Texas primarily affected one season (fall), it was severe

enough that annual survival would have been ~0.43. These

estimates indicate the loss of large proportions (~44 – 67%) of

the entire population in a single year. Though there is no fixed

quantitative threshold of a “catastrophe” in population dynamics,

certainly the scale of these losses for a K-selected species are

alarming. Simulation studies have demonstrated that population

trends tend to be depressed when variability in survival is high,

relative to a population where it is low, given the same arithmetic

mean of survival (Boyce, 1977; Hitchcock and Gratto-Trevor, 1997).

Indeed, catastrophic events, especially when combined with other

environmental stressors, can drastically accelerate negative

population growth rates towards extinction in closed populations

(Simberloff, 1988). In this case, the effect of catastrophes on one

wintering population may be tempered somewhat depending on the

degree of migratory connectivity between breeding and wintering

areas. As the processes by which young Red Knots recruit into a

particular wintering population remain poorly understood, it is not

clear that high recruitment could offset low survival years to

stabilize a wintering population over the long term. Population

declines documented in other wintering areas for C. c. rufa suggest a

negative long-run population growth rate, and our results indicate

red tides could be contributing to very high variability in Red Knot

survival, at least in the Texas and Florida populations. Under these

conditions, populations become more vulnerable to extinction

especially when the frequency and magnitude of random

catastrophes are increasing (Lande, 1993).

Sparse data (low encounter probability) for certain seasons in

some locations likely resulted in the inability to fully estimate

parameters for multiple red tide events, but is it possible that

birds are able to avoid red tide effects in some years, but not in

others? Knots could potentially reduce their exposure to toxins

either through a shift in prey selection, or a shift in range.
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There is evidence that some shorebirds avoid prey with high

concentrations of algal toxins. Black oystercatchers (Haematopus

bachmani) shifted diet to prey items that did not harbor algal toxins

when those toxins were present in sea mussels – their preferred prey

– and discarded mussel tissue with high toxin concentrations when

they did capture it (Kvitek and Bretz, 2005), while other shorebird

species tended to avoid areas where toxins were present. Red knots,

however, consume bivalve prey whole and crush it in their gizzard

rather than removing the flesh first (which would provide an

opportunity to taste and reject), potentially making them more

susceptible to accumulate high amounts of toxin. A prey selection

mechanism to reduce exposure would only be viable if a suitable

non-toxic alternate prey source were available. On the Gulf-facing

beaches, Donax spp. is by far the dominant bivalve mollusk that is

most likely to occur in ample densities to support knots, and it is

known to concentrate HAB toxins at extremely high levels

(Cummins et al., 1971). It is also possible that red tides could

affect birds by negatively affecting recruitment of their bivalve prey

(Summerson and Peterson, 1990; Rolton et al., 2016), which might

have both immediate and long-term effects. A study comparing two

red tide outbreaks (2006 and 2011) on beaches of south Texas found

that one event resulted in a near complete die-off of the benthic

macrofauna while that same faunal community was virtually

unaffected in the other event, despite extensive fish-kills occurring

in both (Lerma, 2013).

As discussed previously, permanent emigration of birds from

the Florida wintering population to another site in the southeast US

would be one way to avoid red tide effects. However, avoidance may

not require permanent emigration. Since red tides most commonly

occur during fall months, simply prolonging a southeast US

stopover before moving on to Florida could reduce the degree of

exposure. The abundance and duration of knots stopping at the

Altamaha River delta (Georgia) varies between years and is likely

influenced by availability of the dwarf surf clam (Mulinia lateralis;

Lyons et al., 2018), so “good years” at this site might reduce the

proportion of birds arriving in southwest Florida to toxic

conditions, at a time when they are already under high

physiological stress due to the demands of molt which is coupled

with decreased immunological function (Buehler et al., 2008). If

knots stay in the southeast US long enough to complete their molt,

they would also likely arrive in better condition. There is isotopic

evidence that some knots in the Florida wintering population do in

fact complete their molt prior to arrival in Florida (Newstead,

unpubl. data). Staying longer further north would also reduce the

risk of exposure to tropical storms during the peak of hurricane

season (Niles et al., 2012).

In Texas, knots are known to utilize the extensive tidal flats of

the Laguna Madre when water levels allow (Newstead, 2014), and

when red tides do occur, they tend to be most severe and extensive

on the Gulf beach, only occasionally affecting the Laguna Madre.

Also, the Laguna Madre complex and the interspersed flats of the

Rio Grande Delta extend over 400 km from Corpus Christi, Texas

southward to La Pesca, Tamaulipas, Mexico. Aerial radiotelemetry

documented that knots move extensively throughout this system

during the nonbreeding season (Newstead, 2014), so they could
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potentially avoid red tide effects by moving to unaffected parts of the

same extensive system.

Red tides typically occur beginning in late summer and often

persist until early to mid-winter, though in the past decade some

events have been initiated or prolonged into the spring and summer

seasons (Brand and Compton, 2007; Stumpf et al., 2022). Comparing

models allowing seasonal variation in survival for Florida, estimates

were lower in all seasons when red tide was not included as a

covariate, but within all models season-specific estimates were lower

in summer relative to fall and winter. This suggests that, absent red

tide, survival in Florida during the extensive nonbreeding period is

higher relative to the breeding period, which includes lengthy round-

trip migrations for breeding adults. This finding is in contrast to

Leyrer et al. (2013) for C.c. canutus wintering at Banc d’Arguin in

Mauritania, where survival during the migratory and breeding

seasons was close to 1.0, with most mortality occurring on the

wintering area. Banc d’Arguin, at roughly 20.5 N latitude, is

extremely arid and hot even during the boreal winter. Leyrer et al.

(2013) suggested that during the period following arrival from

breeding grounds, environmental and interspecific competitive

constraints may depress survival at a time when birds are already

under high physiological stress due to flight feather molt (Leyrer

et al., 2013). Additionally, during this phase knots tend to suppress

costly immune functions which may make them more vulnerable to

novel stressors (Buehler et al., 2008). Climate conditions on

wintering sites are more moderate in the subtropical latitudes of

this study, though birds may occasionally experience stress from

short bouts of cold winter temperatures in addition to a wider array

of other stressors such as disturbance from heavy recreational use of

beaches. Such conditions could simultaneously increase

maintenance metabolism costs and place constraints on foraging

opportunity. Prey depletion, or prey toxicity, from red tide events

during this time period would introduce another lethal or sublethal

stressor on top of those already normally experienced by knots

during the nonbreeding period.

Boyd and Piersma (2001) found that relative population stability

of Red Knots (C.c. islandica) wintering in Great Britain was

maintained by alternating trends of survival and recruitment,

implicating a potential role of density-dependent processes in

population regulation. Knots using Delaware Bay during spring

migration experienced consistently high apparent survival which

was offset by consistently low recruitment between 2005-2018,

resulting in a slightly positive population growth rate (Tucker et al.,

2023). Using data from two large shorebird monitoring datasets, Bart

et al. (2007) suggested the most likely mechanisms of North

American shorebird population declines are reduction in breeding

population size and poor reproduction, rather than an artifact

potentially explicable by shifting distributions. This is almost

certainly the case with Red Knots, as nearly all regular monitoring

at key sites across the range indicate a declining trend, while no “new”

sites of importance have been discovered in the meantime that

balance for losses seen elsewhere. The relatively acute mortality

episodes associated with red tides in this study would clearly result

in reduced breeding population, but it is not known whether

reproductive capacity can offset such population reductions when

they occur relatively frequently.
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While red tide toxins have been directly tied to the mortality of

Red Knots in Texas (Rafalski, 2012) and closely related shorebirds

in Florida (van Deventer et al., 2012) through necropsy and tissue

sampling, only one other study has quantitatively estimated the

effect of HABs on shorebird survival at the population level. Ellis

et al. (2021) detected a negative effect of HABs on Piping Plover

(Charadrius melodus) survival during the nonbreeding season along

the Gulf of Mexico coast. This species is not only faithful to

wintering areas generally (similar to knots) but even more highly

faithful to specific individual territories with small home ranges

(Drake et al., 2001; Cohen et al., 2008; Newstead, 2014) and may

have a greater disinclination to move away from an area affected by

red tide or other factors that may negatively affect survival. Our

study provides additional evidence that HABs can negatively impact

shorebird populations even when sudden mass mortality events are

not observed or perhaps do not occur.

Another HAB dinoflagellate, Aureoumbra lagunensis, creates

“brown tides” in the Laguna Madre of Texas which could be

affecting knots in other ways. Though this organism does not

produce potent toxins, it is considered disruptive to ecosystems

because of its ability to bloom at low light and nutrient levels, and

create a positive feedback mechanism that results in losses to

seagrasses and benthic organisms (Gobler and Sunda, 2012). One

brown tide event in the 1990s persisted in the Laguna Madre for

nearly eight years, the longest HAB ever recorded (Buskey et al., 2001),

and blooms have recurred intermittently and at varying spatial extents

since then (DeYoe et al., 2007). Major die-offs of Mulinia lateralis,

formerly the dominant bivalve mollusk in the Laguna Madre, have

been coincident with these blooms (Montagna et al., 1993). The diet of

Red Knots during the winter months in the Laguna Madre has not

been described, but given thatM. lateralis is a dominant prey item in

other parts of the species’ range, it is likely that these crashes in local

populations would also impact prey availability, and potentially

survival, for knots.

While this study focused on populations affected by HABs in

the Gulf of Mexico, blooms have been suggested as a potential cause

of several significant mortality events on the Atlantic coast of South

America, affecting the long-distance migrant rufa population

wintering in Tierra del Fuego. In Uruguay in April 2007,

approximately 1300 knots were found dead in a single event that

may have been associated with a HAB, though samples were not

collected to confirm the cause of mortality (Aldabe et al., 2015). The

loss of ~6% of the total rufa population in a single documented

event, and the possibility that this may not have been a one-off event

but could even occur with some regularity in remote parts of its

range provides a potential partial explanation for the dramatic

collapse of the Red Knot population that winters on the Atlantic

coast of South America. During mortality events in 1997 and 2000

in southern Brazil, Buehler et al. (2010) described similar condition

of Red Knots immediately prior to mortality – disorientation,

lethargy, unresponsiveness – as witnessed in red tide events in

Texas (Newstead, pers. obs.) and Florida, but pathology reports

were inconclusive as to the primary cause of death.

Further, Red Knots that winter along the Pacific coasts of

Central and South America (the majority of which are suspected

to use the focal locations of this study as stopovers; Newstead,
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unpublished data) may also be encountering increased frequency

and intensity of HABs (Band-Schmidt et al., 2019), including

several recent events in Ecuador (Torres, 2015; Borbor-Cordova

et al., 2019) and Chile (Mardones et al., 2010; Paredes et al., 2019).

Several dinoflagellate species that produce paralytic or diarrhetic

shellfish poisons can reach bloom concentrations resulting in fish

kills and other toxic effects in areas of Central and South America

known to be important stopovers. Among these, Gymnodinium

catenatum, the Alexandrium tamarense complex, and Dinophysis

spp. produce toxins that become highly concentrated in bivalve

species such as wedge clams, Donax hanleyanus, and blue mussels,

Mytilus edulis (Carreto et al., 1986; Mee et al., 1986; Méndez and

Carreto, 2018), both known to be favored prey items of red knots.

The distribution and frequency of HABs appear to be increasing in

Central and South America (Band-Schmidt et al., 2019), as well as

in the Gulf of Mexico (Tominack et al., 2020).

The magnitude of the geolocator effect was a ~3% reduction in

seasonal survival (or ~8% over a year). While many studies

reporting tracking device effects on survival have focused on the

short-term (often one-year return rates) with projects having highly

variable numbers of birds with and without devices, the results of

this study are consistent with others (Rodriguez-Ruiz et al., 2019;

Pakanen et al., 2020) finding that negative effects of some tracking

devices may be statistically undetectable in the short term but

accrue to the level of significance over the course of longer-term

studies. The use of tracking devices on wildlife has yielded

transformative new insights into our understanding of life

histories and factors affecting distribution and movements of

animals, especially Red Knots (Niles et al., 2010; Burger et al.,

2012; Niles et al., 2012; Newstead et al., 2013; Tomkovich et al.,

2013; Piersma et al., 2021). However, consideration must be given to

the potential costs of such deployments on survival, reproduction,

movement, and other concerns. As new findings are added to the

literature and technological advances lead to ever smaller and more

efficient tracking devices, researchers should continue to assess the

potential benefits to be gained for species conservation relative to

the potential impacts to birds when planning new studies.

This study provides the first long-term apparent survival

estimates for Red Knot populations in the Gulf, and strong

evidence that HABs are negatively affecting populations in Texas

and Florida. Preventing such large-scale events presents many

challenges, although where their apparent causes are linked to

excessive nutrients these factors can be mitigated by better

managing anthropogenic landscape changes along the coast and

through the watershed. Since HABs are considered a “co-stressor”

associated with climate change (Griffith and Gobler, 2020), these

findings indicate the impacts to knots could become even more

severe in the future.

Accurate estimation of population size of these three Gulf

wintering groups has not been possible, and is hindered by several

factors including the potential shift of some portion of the Florida

wintering population to the southeast US (Pelton et al., 2022),

logistical difficulties in accessing habitats used by the Louisiana and

Texas populations during winter, and the fact that some knots that

pass through the northern Gulf in spring likely wintered somewhere

further south. These are all surmountable obstacles provided
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adequate support for dedicated and coordinated monitoring

programs. While we have presented estimates of one key

demographic parameter (survival) for these populations, a better

understanding of processes and rates of recruitment is needed to

evaluate population trajectories.
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