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The spatial effect of integrated
economy on carbon
emissions in the era of big data:
a case study of China
Yan Wang1†, Qian Ke1*† and Shuzhen Lei2†

1School of Economic and Management, Xi’an University of Technology, Xi’an, China, 2School of
Business and Circulation, Shaanxi Polytechnic Institute, Xian Yang, China
The digital economy has the characteristics of resource conservation, which can

solve China’s high carbon emissions problems. The digital economy can quickly

integrate with the real economy, forming an integrated economy. However, it is

still unclear whether an integrated economy can effectively reduce carbon

emissions and achieve China’s ‘dual carbon goals’. Therefore, this study takes

30 provinces in China as the research object, constructs the integration

economy index system through the statistical data from 2011-2021, and

explores the spatial effect of the impact of the integration economy on carbon

emissions by using principal component analysis, coupled coordination model

and spatial econometric model. The research results are as follows. (1) From 2011

to 2021, the comprehensive economy showed a trend of increasing yearly (from

0.667 to 0.828), and carbon emissions showed a slow decrease (from 0.026 to

0.017). (2) Due to the infiltration of China’s economic development from the

eastern to the western, the spatial distribution of the integrated economy shows

a decreasing trend from east to west. The spatial distribution of carbon emissions

may be related to China’s industrial layout of heavy industry in the northern, and

light industry in the southern, showing a trend of low in the south and high in the

north. (3) The integrated economy can significantly reduce carbon emissions (the

coefficients of influence, -0.146), and the reduction effect will be more obvious if

spatial spillover effects are taken into account (-0.305). (4) The eastern coast, the

middle reaches of the Yangtze River, and the middle reaches of the Yellow River

economic zones all increase carbon emissions at a certain level of significance

(0.065, 0.148, and 3.890). The Northeast, South Coastal and Southwest

economic zones significantly reduce carbon emissions (-0.220, -0.092, and

-0.308). The results of the Northern Coast and Northwest are not significant

(-0.022 and 0.095). (5) China should tailor regional economic development

policies, such as strengthening investment in digital infrastructure in the

Northwest Economic Zone and fully leveraging the spatial spillover effects of

integrated economy in the Northeast, Southern Coastal, and Southwest

Economic Zones to reduce carbon emissions.
KEYWORDS

integrated economy, carbon emissions, digital economy, real economy, spatial
effect, China
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1 Introduction

In recent years, climate issues have become increasingly severe

(Yuan et al., 2024), with frequent occurrences of extreme weather

phenomena such as air pollution, haze pollution, and rising

temperatures (Tian et al., 2022). According to the International

Energy Agency (IEA), China has had the highest global carbon

emissions since 2007 (Cheng et al., 2018).In response to concerns

from the international community about China’s willingness to

contribute and share obligations towards global climate change goals,

China and the United States signed the Sino-US Joint Declaration on

Climate Change in 2014 (Gao et al., 2021; Xu et al., 2024).In 2021, the

Central Committee of the Communist Party of China and the State

Council issued the Action Plan for Carbon Peak before 2030,

incorporating ‘carbon peak and carbon neutrality’ into the overall

economic and social development, advocating for accelerating the

green transformation of production and lifestyle, and ensuring the

timely achievement of the ‘carbon peak’ goal before 2030 (Zhao et al.,

2022; Feng et al., 2024).

In the era of big data, the integrated economy is the focus point for

countries to seize the leading position in global strategy and has

become an inevitable choice to solve the problem of carbon

emissions (Shi and Sun, 2023; Sun et al., 2024). Integrated economy

refers to the integration of the digital economy and real economy. The

digital economy is the leading force in the current world technological

revolution and industrial transformation, and many countries regard it

as the new driving force for restructuring national core competitiveness

(Wang et al., 2023). The real economy is the foundation of a country,

the source of wealth, and the soul of industry, and is the strategic core

of economic development for all countries (Cheng et al., 2023). With

the vigorous development of digital technology, ‘integrated economy’

has become a new development model and concept (Liu et al., 2024).

In 2020, the Global Climate Action Summit released the Index

Climate Action Road map, which proposed implementing ‘digital’

solutions in physical industries that can help reduce global carbon

emissions by up to 15% (Feng et al., 2023a; Feng et al., 2023b). It can

be seen that the integration of ‘digital technology’ and physical

industries, namely the integrated economy, plays a sustained and

powerful role in the process of carbon reduction (Lopes de Sousa

Jabbour et al., 2022; Sun et al., 2024). To achieve economic

leadership and reduce pollution, countries have issued strategic

plans to promote the development of integrated economies

(Granados and Gupta, 2013; Xu et al., 2018), such as the United

States issuing the National Strategic Plan for Advanced

Manufacturing (Fatima et al., 2020), Germany issuing The High

Technology Strategy 2025 (Klippert et al., 2020), and the United

Kingdom implementing the Extraordinary Export Plan. Made in

China 2025 (Xu et al., 2017) also proposes carbon reduction

measures to promote China’s green and low-carbon development

through intelligent manufacturing and an integrated economy

(Wang et al., 2020). However, China is a vast country, and the

status of the integrated economy and carbon emission is different in

different regions. Studying the spatial effect of an integrated

economy on carbon emission is of great theoretical and practical

significance for realizing the coordinated development of

the economy.
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Based on this, this paper takes 30 provinces in China (excluding

Hong Kong Special Administrative Region, Macao Special

Administrative Region, Taiwan, and Tibet Autonomous Region

due to difficulties in data acquisition) as the research object, uses

panel data from 2011 to 2021 to construct a measurement system

for the development level of the digital economy and the real

economy, and applies the empirical method to analyze the spatial

effect of the integrated economy on carbon emissions. We attempt

to explore the following issues: (1) What is the current situation of

China’s integrated economy and carbon emissions? (2) What is the

impact of an integrated economy on carbon emissions? (3) What is

the spatial effect of the impact of an integrated economy on carbon

emissions? (4) What policies should be increased to promote green

and coordinated development across China’s regions to jointly

achieve the dual-carbon goal? So, the research content of this

article mainly includes the following aspects. Firstly, this article

uses Principal Component Analysis (PCA) to separately measure the

results of the subsystems of the digital economy and the real

economy. Based on the results of the digital economy and the real

economy, a coupled coordination model is used to integrate the

results of the two subsystems to calculate the integrated economy.

Secondly, based on comprehensive economic and carbon emission

data, the Natural Breaks Classification method using software such

as QGIS is used to analyze its time evolution and spatial distribution

trend. Thirdly, we use Moran’s index to analyze the spatial

autocorrelation of integrated economy and carbon emission

levels. Fourthly, we use spatial econometric models to examine

the impact of an integrated economy on carbon emissions and

decompose its spatial effects. Fifthly, we classify the Chinese region

into eight major economic zones and once again use spatial

econometric models to analyze the heterogeneity of the impact of

the integrated economy on carbon emissions in each region. Finally,

based on the results, targeted policy recommendations are proposed

to lay the foundation for achieving the ‘dual carbon goals’.

The main contributions of this article are reflected in the

following aspects. Firstly, the existing research gap lies in the fact

that few scholars have measured the integrated economy. However,

as an important form of economy, the integrated economy is

different from the traditional real economy and digital economy.

This article constructs a coupled coordination model based on the

two subsystems of the integrated economy, the digital economy and

the real economy, to accurately measure the level of China’s

integrated economy, filling the gap in existing research that lacks

measurement of the integrated economy. Secondly, existing studies

rarely mention the impact of an integrated economy on carbon

emissions, and more tend to discuss the impact of a digital economy

on carbon emissions. As a new form of economy, an integrated

economy requires the penetration and unification of the digital

economy and the real economy. This article incorporates the

integration economy and carbon emissions into the same

theoretical framework, analyzes the relationship between the two,

and fills the gap in research on the relationship between the

integration economy and carbon emissions. Finally, few scholars

have considered the spatial heterogeneity of the impact of an

integrated economy on carbon emissions. China, the subject of

the study, is a vast country with a wide range of landmasses, and
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inter-regional development is bound to have differences. Our study

of the spatial heterogeneity of the impact of the integrated economy

on carbon emissions from the perspective of the eight economic

zones has certain policy implications for the development of

the integrated economy in China’s provinces according to

local conditions.
2 Literature review and analysis of
theoretical mechanisms

2.1 Literature review

This paper divides the previous studies into three parts,

integration economy-related studies, carbon emission-related

studies, and studies on the relationship between integration

economy and carbon emission.

Firstly, there are fewer studies on the converging economy, mainly

focusing on exploring the intrinsic coordination mechanism between

the subsystems of the converging economy, i.e., the digital economy

and the real economy, as well as the current development situation

(Sun et al., 2024). The digital economy promotes the development of

China’s real economy through industrial digitization and digital

industrialization, with industrial structure optimization and

upgrading as the intermediary (Hong and Ren, 2023). The impact of

the digital economy on the real economy presents an inverted U-

shaped feature, with a crowding-out effect in the eastern part of China

and a promoting effect in the western part and the real economy (Jiang

and Sun, 2020; Xu et al., 2021). At present, the integrated economy is

showing a decreasing trend in the east, middle, and west, with problems

such as insufficient integration depth, lack of key technologies, and lax

market supervision (Zhang et al., 2022b). It is urgent to strengthen

investment in technological innovation and digital infrastructure

construction, create high-level manufacturing industries, and

improve and strengthen digital governance to promote the deep

integration of the digital economy and the real economy (Liu

et al., 2022a).

Secondly, the research direction of carbon emissions mainly

focuses on three aspects: the current status of carbon emissions (Xu

et al., 2019), carbon peak prediction (Wang and Feng, 2024), and

the influencing factors of carbon emissions (Tong, 2020; Xu, 2023).

Firstly, the analysis of the current status of carbon emissions focuses

on industries with high carbon concentration, regions with high

carbon emissions, the carbon emissions of a certain region under

China’s 2030 carbon peak target, and the carbon emissions tracking

of a specific location or factory (Li et al., 2016; Ahmadi et al., 2019).

Secondly, regarding the research on carbon peak prediction, most of

the previous researchers used big data models and scenario analysis

methods to predict the future growth of carbon emissions. And the

results show that most of the provinces and cities in China can

achieve the goal of a carbon peak by 2030, and only individual

regions, such as Hubao, Eyu and Elm, have difficulties in achieving a

carbon peak (Zhang et al., 2022b; Dai et al., 2022). Finally,

according to existing research, public policy factors such as

carbon emission trading pilot programs and low-carbon city pilot

policies (Zhao et al., 2022), industrial structure factors such as
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energy structure and industrial robots (Meng et al., 2018; Li and

Zhou, 2021; Jiang et al., 2023), and macro technological factors such

as outward direct investment, population aggregation, digital

economy development (Zhao and Zhu, 2022; Liu et al., 2023),

and technological innovation will all have an impact on carbon

emissions, carbon intensity, or efficiency (Chen et al., 2023; Zha

et al., 2023).

Thirdly, there is currently limited research on the relationship

between integrated economy and carbon emissions. Most of the

related research focuses on the impact of the digital economy, a

subsystem of the integrated economy, on carbon emissions (Wu

et al., 2022). Most studies suggest that the digital economy can

improve carbon emission efficiency by reducing energy

consumption (Jiang et al., 2023). The rationalization (advanced)

of the industrial structure undermines (enhances) to some extent

the carbon-emission efficiency-enhancing effect of the digital

economy (Zhang et al., 2022a; Chang et al., 2023). The carbon

reduction effect of the digital economy varies in different regions of

China (Zhang et al., 2022a). The paths for the digital economy to

reduce regional carbon emission intensity or enhance carbon

emission efficiency mainly include increasing digital infrastructure

and formulating policy guidance based on regional characteristics

(Feng et al., 2023a; Feng et al., 2023b; Tang and Yang, 2023).

In summary, existing studies focus on the role of the digital

economy or industrial development in reducing carbon emissions,

but few scholars have scientifically measured the level of

development of the convergence economy, and fewer studies

consider its carbon reduction effect from the perspective of the

integrated economy. Therefore, the main contributions of this

article are reflected in the following aspects. Firstly, using

reasonable methods and indicator systems to measure the

integrated economy can fill the gap in the measurement of

the integrated economy in the existing literature. Secondly, the

innovative incorporation of integrated economy and carbon

emissions into the same theoretical framework has deepened the

theoretical research on low-carbon economy. Finally, analyze the

current situation and inherent relationship between integrated

economy and carbon emissions from a spatial perspective, and

deepen relevant research in spatial economics.
2.2 Theoretical mechanisms

The integrated economy is a large economic system constructed

by the digital economy subsystem and the real economy subsystem

(Jiang et al., 2023). The process of integrating internal subsystems is

essentially a process of mutual influence and mutual promotion, in

which industrial digitization and digital industrialization are

achieved (Hong and Ren, 2023). Therefore, industrial digitization

and digital industrialization are external manifestations of an

integrated economy. Digital industrialization refers to the

continuous expansion of digital technology industries such as the

Internet, big data, and cloud computing to form an industrial scale,

manifested as the materialization of the digital economy (Peng et al.,

2023). Industrial digitization refers to the application of digital

technology to achieve intelligent manufacturing in the process of
frontiersin.org
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physical industry development, manifested as the digitization of the

real economy (Yi et al., 2023). The integrated economy can

effectively reduce carbon emissions, mainly through the multiplier

effect of the digital economy and the efficiency effect of the

real economy.

On the one hand, the digital economy has natural green and

energy-saving characteristics, with a virtual and networked nature,

which can realize low-carbon growth (Sun et al., 2024). The

development of the digital economy has expanded the industrial

cornerstone of the real economy, changed traditional business

models, and injected green and low-carbon elements into the

development of the real economy (Jiang and Sun, 2020). Firstly, the

development of the digital economy has promoted the growth of

digital industries such as the Internet and cloud platforms that rely on

data elements. These digital industries are based on new digital

facilities, driven by innovation, and have natural high-tech

attributes. Knowledge and innovation spillovers together constitute

the multiplier effect of numbers. In the development of the digital

industry, through digital diffusion, green creation can be achieved

and regional industrial carbon emissions can be reduced. Secondly, in

the era of big data, people’s product needs have completely changed.

Through mining and analyzing data elements, some green and low-

carbon needs have been deeply explored, guiding green innovation in

enterprises. Modern enterprises have begun to be guided by

consumer green demands, breaking away from the traditional value

creation model of product research and development as the core.

On the other hand, using digital technology in the real economy

can fully leverage the efficiency effect of innovative technology,

accelerating the transformation and upgrading of the real industrial

structure towards low-carbon and environmentally friendly green

industries (Liu et al., 2023). The real economy provides a source of

data elements for the digital economy, increasing the demand for

digital technology in the real industry, driving digital technology

innovation, improving innovation efficiency, and achieving regional

carbon emissions reduction (Shi and Sun, 2023). Firstly, the major

industries of the real economy involve various aspects of social life

and are the main sources of carbon emissions. User characteristics,

individual needs, unknown risks, etc. can be accurately analyzed

and predicted through digital technology, reducing unnecessary

carbon pollution and waste. Secondly, the integration of the

physical industry and the digital economy can improve enterprise

productivity, reduce unnecessary carbon emissions in the product

manufacturing process, bring more value to the physical industry,

and force enterprises to continuously engage in green innovation

and achieve low-carbon development.

According to the theory of unbalanced growth, the path of

economic development is full of obstacles and bottlenecks, such as

shortages of technology, equipment, and products, and factor

endowments (Qi et al., 2013). The current state and path of

development, and policy orientations are not the same in different

regions, so the phenomenon of imbalance is presented regionally,

and therefore imbalance is the norm (Liu et al., 2022b). At the

current stage of development in China, there are still some policies,

resources, and factors that are biased, resulting in spatial differences

in the integration economy and carbon emission levels. According

to the theory of spatial economics, the integrated economy has both
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multiplier effects and efficiency effects. From a spatial perspective,

there must be spatial spillover effects, that is, the integrated

economy in the local area can affect the development of the

integrated economy and other economic variables in the

surrounding areas. According to the theory of externalities,

carbon emissions are an important pollutant in the climate

environment, and environmental pollution is bound to

accumulate maliciously in the region, affecting the ecology and

economy of the local and surrounding areas. In summary, the

spatial performance of the integrated economy and carbon

emissions will inevitably exhibit spatial agglomeration effects, and

the impact of the integrated economy on carbon emissions has a

certain spatial spillover effect.
3 Methods and data

3.1 Variable selection and data sources

3.1.1 Variable selection
3.1.1.1 Integrated economy

Referring to relevant research, this paper uses the coupling

coordination model to measure the level of Integrated economy (IE)

(Zhang et al., 2022). We divide IE into digital economy (DE) and

real economy (RE) subsystems, establish index systems, and use

principal component analysis (PCA) to independently calculate the

comprehensive values of the two subsystems. Considering the

availability of data, we refer to (Zhao et al., 2020) and measure

the development level of the digital economy from the aspects of

internet development and digital finance development. We measure

the level of development of the real economy from three aspects: the

scale and structure of the real economy and its future development.

The specific indicators and attributes are shown in Table 1.

3.1.1.2 Carbon emissions

In this paper, carbon intensity (The Amount of carbon

emissions/GDP) is used as a proxy variable for carbon emissions

respectively. This paper uses apparent carbon emissions to measure

the amount of regional carbon emissions. Data on carbon emission

quantities are from China Emission Accounts and Datasets

(CEADs) (Shan et al., 2016, 2018, 2020; Guan et al., 2021).

3.1.1.3 Other variables

According to the requirements of China’s high-quality

development: innovation, coordination, green, openness, and sharing,

this paper selects eight control variables, as shown in Table 2.

(1) Innovation. Scientific and technological innovation to guide

industrial innovation and accelerate the realization of green

transformation. Talent is the fundamental source of realizing green

innovation. So, technology innovation intensity (TI) and innovative

talents (IT) are the control variables associated with innovation. (2)

Coordination. Regional coordination will accelerate the rate of inter-

regional capital, technology, and talent flow, injecting capital vitality

into the research and development of industrial carbon reduction

technology. So, regional coordination (RC) and industry coordination

(IH) are the control variables associated with coordination. (3) Green.
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The increase in green governance capacity will accelerate the research

and development of digital green technology and solve the problem of

high pollution and high energy consumption of heavy physical

industry. So, green governance capability (GG) is the control variable

associated with green. (4) Open. The diversification of capital can

stimulate the vitality of enterprises to learn and introduce advanced

carbon reduction technologies from abroad, and foreign investment

will also inject new momentum into the development of domestic

industries. So, foreign investment intensity (FI) and traffic-developed

degree (TD) are the control variables associated with openness.

(5) Sharing. Well-developed transportation is the basis for realizing

the rapid circulation of physical industries. The Internet is the link of

modern industrial connection and the basis for the development of the

digital economy, which is of great significance to the green

manufacturing of enterprises. Social consumption capacity is the

embodiment of the purchasing power of the society, which pushes

the industry to elaborate research and development of a more green

and low-carbon, in order to provide green products and services. So,

internet development level (ID) is the control variable associated with

sharing. Among them, TI, FI, TD, and ID indicators are calculated by

the entropy method, and the other indicators are logarithmically

processed on the original data.

3.1.2 Data sources
This paper uses a sample of 30 provincial administrative units in

China (excluding China’s Hong Kong Special Administrative

Region, Macao Special Administrative Region, Taiwan, and Tibet
Frontiers in Ecology and Evolution 05
Autonomous Region, which has a lot of missing values) to conduct

empirical analysis for the years 2011-2021. Data from the Chinese

Research Data Services Platform (CNRDS) data service platform,

Easy Professional Superior (EPS) database, China Carbon

Accounting Database (CEADs), China Statistical Yearbook (2012-

2022), China Energy Statistics Yearbook (2012-2022), China

Information Industry Yearbook (2012-2022), Peking University

Digital Inclusive Finance Index (2011-2021) Index Report, China

E-Commerce Report (2011-2021), provincial statistical yearbooks

and government work reports, etc., where missing values are filled

in using linear interpolation.
3.2 Research method

The steps to use the method in this article are as follows: (1) Firstly,

this article uses Principal Component Analysis (PCA) to separately

measure the results of the subsystems of the digital economy and the

real economy. (2) Secondly, based on the results of the digital economy

and the real economy, a coupled coordination model is used to integrate

the results of the two subsystems to calculate the integrated economy.

(3) Thirdly, based on comprehensive economic and carbon emission

data, the Natural Breaks Classification method using software such as

QGIS is used to analyze its spatial distribution trend. (4) Fourthly, use

Moran’s index to analyze the spatial autocorrelation of integrated

economy and carbon emission levels. (5) Fifthly, use spatial

econometric models to examine the impact of an integrated
TABLE 1 Index measurement system of the digital economy and the real economy.

Subsystems First-level indicators Second-level indicators Definition Weights Attribute

Digital Economy (DE)

Internet development

Internet penetration
Number of Internet
broadband access users

0.196 +

Practitioners
Number of employees in
the computer services and
software industry

0.200 +

Industry output
Postal, telecommunications
business volume

0.193 +

Mobile subscription
Number of mobile phone
users per 100 people

0.190 +

Digital finance Digital inclusive finance
China Digital Inclusive
Finance Index

0.221 +

Real Economy (RE)

Industry scale

Output value Gross real economic output 0.156 +

Investment Fixed investment 0.137 +

Consumption Total retail sales of social 0.156 +

Import and export
Total import and export
of goods

0.144 +

Public income and expenditure
General fiscal revenue 0.156 +

General fiscal expenditure 0.145 +

Industry Structure Non-agricultural employees
The proportion of non-
agricultural employees

0.037 +

Development potential
Industrial science and technology
input intensity

Industrial R & D input
above designated size/profit

0.069 +
f

Gross real economic output refers to GDP except finance and real estate industry, and ‘+’ refers to the positive index.
rontiersin.org

https://doi.org/10.3389/fevo.2024.1374724
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang et al. 10.3389/fevo.2024.1374724
economy on carbon emissions and decompose its spatial effects. (6)

Sixth, classify the Chinese region into eight major economic zones and

once again use spatial econometric models to analyze the heterogeneity

of the impact of the integrated economy on carbon emissions in each

region. PCA and Coupled Coordination Model are used to measure the

integrated economy in section 3.2.1. The Natural Breaks Classification

is used to classify integrated economies and carbon emissions in section

3.2.2. Moran’s index is used to test spatial correlation in section 3.2.3.

The determination of spatial econometric models is in section 3.2.4.

The classification of the eight major economic zones is in section 3.3.5.
3.2.1 Measurement models of the core indicator
3.2.1.1 PCA

Using the principal component analysis method to measure the

development level of DE and RE subsystems can avoid the subjectivity

of human empowerment and has certain reliability. The specific steps

are as follows.

a. Construct the matrix according to the selection of each

subsystem index. If there are n samples and p indices, then the

original matrix x of size n × p can be formed as shown in Equation 1.

x =

x11 ⋯ x1p

⋮ ⋱ ⋮

xn1 ⋯ xnp

2
664

3
775 = (x1, x2,⋯, xp) (1)

b. The original matrix is standardized to obtain a standardized

matrix X as shown in Equations 2–4.

Xij =
xij � �xj

sj
(2)
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�xj =
1
no

n

i=1
xij, Sj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(Xij − �Xj)

2

n − 1

vuuut
(3)

X =

X11 ⋯ X1p

⋮ ⋱ ⋮

Xn1 ⋯ Xnp

2
664

3
775 = (X1,X2,⋯,Xp) (4)

c. Calculate the covariance matrix of the normalized sample as

shown in Equations 5, 6.

R =

r11 ⋯ r1p

⋮ ⋱ ⋮

rn1 ⋯ rnp

2
664

3
775 = (r1, r2,⋯, rp) (5)

rij =
1

n − 1o
n

k=1

(Xki − �Xi)(Xki − �Xj) (6)

d. Calculate the eigenvalue l and eigenvalue vector a of R where R

is a positive semidefinite matrix, eigenvalue l1 ≥ l2 ≥ ⋯ ≥ lp ≥ 0 as

shown in Equation 7.

a1 =

a11

a21

⋯

ap1

2
666664

3
777775
, a2 =

a12

a22

⋯

ap2

2
666664

3
777775
,⋯, a1 =

a1p

a2p

⋯

app

2
666664

3
777775

(7)

e. The principal component contribution rate c and the

cumulative contribution rate s are calculated shown in Equation

8, and the i-th principal component corresponding to the

eigenvalues with a cumulative contribution rate of more than 80%

is extracted. The index calculation result is Yi shown in Equation 9.

c =
li

o
p

k=1

lk
, s =

o
i

k=1

lk

o
p

k=1

lk
, (i = 1, 2,⋯, p) (8)

Yi = a1iX1 + a2iX2 +⋯+   aPiXP (9)
3.2.1.2 The coupling coordination model

The coupling coordination degree model can measure the

dependence and correlation between multiple subsystems to

analyze the coordinated development level between subsystems,

not only considering the overall coordination but also paying

attention to the development of subsystems (Shao et al., 2016).

This paper uses the coupling coordination model to calculate IE.

The steps are as follows:

a. The maximum and minimum normalization processing is

performed on the principal component calculation results of DE

and RE subsystem (the 0 value in the calculation result is translated,

and the translation unit is 0.1). Both DE and RE system indicators

are positive indicators, so the formula is as shown in Equation 10.
TABLE 2 Control variable description table.

Indicator Indicator description Attribute

Technology
innovation
intensity (TI)

Technology expenditure/Regional
fiscal revenue

+

Patent Number +

Innovative
talents (IT)

Number of college students
per 100,000

+

Regional
coordination (RC)

Regional per capita GDP/National per
capita GDP

+

Industry
coordination (IH)

The tertiary industry output value/
Secondary industry output value

+

Green governance
capability (GG)

Industrial pollution
treatment investment

+

Foreign investment
intensity (FI)

Foreign registered capital +

Total Foreign Investment +

Traffic developed
degree (TD)

Passenger capacity +

Cargo carrying capacity +

Internet development
level (ID)

Cable length/Provincial area +

Number of Internet access ports +
‘ + ’ refers to the positive index.
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Zitj =
(Yitj −minYj

)

(maxYj
−minYj

)
(10)

where i,t,j refer to the region, year and index, respectively, j=1

refers to DE, j=2 refers to RE, Zitj refers to the value of the

normalized t year j index in region i, Yitj refers to the value of the

t year j index in region i, and maxYj
and minYj

refer to the

maximum and minimum values of the j index, respectively.

b. According to the calculation results, the comprehensive

coordination index Tti is calculated. DEti is Yit1 and REti is Yit2.

The calculation formula is as shown in Equation 11.

Tti = a*DEti + b*REti (11)

a and b are coefficients of development and take 0.5 here.

c. Calculate the coupling level of the digital economy and real

economy Cti. The calculation formula is as shown in Equation 12.

Cti = 2*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DEti*REti

p
(DEti + REti)

(12)

d. Calculate the coupling coordination degree, that is, IE. The

calculation formula is as shown in Equation 13.

IEti =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cti*Tti

p
(13)

e. According to the value range of the coupling coordination

degree, it is divided into 10 grades by referring to, as shown

in Table 3:

3.2.2 Natural breaks classification
This article uses QGIS software to draw a spatial distribution

map of IE and CE in China, and the classification principle of the

map is based on natural breaks classification. The natural breaks

classification refers to a method of determining the segmentation

structure based on the characteristics of the data itself. This method

is commonly used for segmented analysis of time series or signal

data, to identify turning points or structural changes in the data,

thereby dividing it into different paragraphs or categories. The basic

idea of natural breakpoint classification is to use the inherent

properties of data to determine the optimal segmentation

structure by detecting inflection or mutation points in the data.

These inflection points or mutation points are called ‘natural
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breaks’, at which the properties of the data may undergo

significant changes. By identifying these natural breakpoints, data

can be divided into different paragraphs and further analyzed or

processed for each paragraph. The natural breaks classification

method can avoid the subjectivity of manual classification and

classify data reasonably through machine clustering algorithms.

This can reduce human bias and improve the objectivity and

accuracy of classification results. This also helps to reveal the

potential structure and patterns of data and improve the depth

and accuracy of data analysis. To clarify the spatial distribution

status of IE and CE in the 30 provinces studied in this article, the

natural classification algorithm configured in QGIS software was

used to divide the research data into three categories.

3.2.3 Spatial autocorrelation test method
We intend to use a spatial econometric model for regression

analysis. Considering the possible spatial dependence and

autocorrelation of IE and CE, we use Global Moran’s I to test the

spatial autocorrelation of IE as shown in Equation 14 and CE as

shown in Equation 15. The calculation formula is as follows:

IIE =
o
n

i=1
o
n

j=1
wij(IEi − IE)(IEj − IE)

SIE2o
n

i=1
o
n

j=1
wij

(14)

ICE =
o
n

i=1
o
n

j=1
wij(CEi − CE)(CEj − CE)

SCE2o
n

i=1
o
n

j=1
wij

(15)

where n represents the number of research objects, I is

Moran’s I,

S2 is the variance, SIE
2 =

o
n

i=1
(IEi − IE)2

n , SCE
2 =

o
n

i=1
(CEi − CE)2

n ,

IE is the mean of IE, CE is the mean of CE and wij is the spatial

weight matrix.

To increase the accuracy of the analysis, this paper adopts a

nested weights matrix by an inverse-distance-based spatial weights

matrix and an economic-based weights matrix (Case et al., 1993).

w = jw1 + (1 − j)w2,

w1 =
1=dij, i and j have a common boundary

0, i and j have no common boundary or i = j

8<
: ,

w2 =
1= �Xi − �Xj

�� ��, i ≠ j

0, i = j

8<
: .

Refer to Zhang et al. (2022c), j=0.5,

o
n

i=1
o
n

j=1
wij is the sum of all spatial weights. The value range of I is

[-1,1], I>0 represents spatial positive correlation, I<0 represents

spatial negative correlation, The closer |I| is to 1, the stronger the

spatial autocorrelation is.
3.2.4 Spatial econometric model
The spatial econometric model is different from the

traditional econometric model, as it can consider spatial
TABLE 3 IE grade division.

Value
ranges

Grade
standard

Value
ranges

Grade
standard

(0,0.1]
Extreme

disorder (B1)
(0.5,0.6]

Reluctant
integration (A1)

(0.1,0.2] Serious disorder (B2) (0.6,0.7]
Primary

integration (A2)

(0.2,0.3]
Moderate

disorder (B3)
(0.7,0.8]

Moderate
integration (A3)

(0.3,0.4] Mild disorder (B4) (0.8,0.9]
Good

integration (A4)

(0.4,0.5]
On the verge of
disorder (B5)

(0.9,1]
Best

integration (A5)
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factors and reduce the estimation error. Traditional spatial

econometric models include the spatial autoregressive model

(SAR) as shown in Equation 16, spatial error model (SEM) as

shown in Equation 17, and spatial Durbin model (SDM) as

shown in Equation 18. The specific expressions are as follows:

SAR :CEit = b0 +o
K

k=1

akXikt + rWCEit + dit (16)

SEM :CEit = b0 +o
K

k=1

akXikt + eit , eit = lWeit + mit (17)

SDM :CEit = b0 +o
K

k=1

akXikt + rWCEit + eit (18)

where i is area, t is time, k is the influencing factor(IE and 8

control variables are included), b0 is a constant term, ak is the

regression coefficient of the k-th influencing factor, Xikt is the k-th

influencing factor at time t in region i, r and   l   are the spatial

autoregressive coefficients, W is the n � 1-order spatial weight

matrix, and dit , ϵit and mit are random error terms.

To determine which spatial econometric model to use, the

Lagrange Multiplier Test (LM test) is carried out in this paper.

The test results show that the statistic of Robust-LM in the two

columns of Spatial error and Spatial lag rejects the null hypothesis at

the significance level of 0.01, indicating that there are both error and

lag effects, and the SDM model is selected. Subsequently, the

Hausman test was used to determine whether the random effect

model or the fixed effect model was used. The results show that the

null hypothesis is rejected at the significance level of 0.01, that is, the

fixed effect model is adopted. All test results are shown in Table 4.

3.2.5 The division of the eight major
economic zones

To further analyze the regional heterogeneity of the carbon

emission reduction effect of the integrated economy, we divide

China (mainly refers to China’s inland areas excluding Hong Kong,

Macao, Taiwan, and other places) into eight groups according to the

eight economic zones in the Strategy and Policy for Coordinated

Regional Development of the Development Research Center of the

State Council. Figure 1 shows the distribution of China’s eight

economic zones.

According to Figure 1, the northern coastal comprehensive

economic zone includes Beijing, Tianjin, Hebei and Shandong

provinces. The Northeast Comprehensive Economic Zone
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includes Liaoning, Jilin and Heilongjiang provinces. The eastern

coastal comprehensive economic zone includes Shanghai, Jiangsu

and Zhejiang provinces. The southern coastal economic zone

includes Fujian, Guangdong and Hainan provinces. The

comprehensive economic zone in the middle reaches of the

Yangtze River includes Hubei, Hunan, Jiangxi, and Anhui

provinces. The southwest comprehensive economic zone includes

Yunnan, Guizhou, Sichuan, Chongqing, and Guangxi provinces.

The comprehensive economic zone of the middle reaches of the

Yellow River includes Shaanxi, Shanxi, Henan, and Inner Mongolia

provinces. The Northwest Comprehensive Economic Zone includes

Gansu, Qinghai, Ningxia, Tibet, and Xinjiang provinces. It is worth

noting that when dividing the region, Tibet belongs to the

Northwest Comprehensive Economic Zone. However, due to the

difficulty of counting data for Tibet, only the other four provinces in

the Northwest Comprehensive Economic Zone are counted in

this paper.
4 Results

4.1 Measurement results of the
integrated economy

According to the coupling coordination model, the results of the

IE in China from 2011 to 2021 are shown in Table 5.

The grade of IE in the 30 provinces of China continued to rise

from 2011 to 2021, and the overall transformation from primary

integration (A2) to good integration (A4) and the integration status

was good in recent years. In 2011, most provinces were in a state of

primary integration (A2, 41.9%) and moderate integration (A3,

22.6%). In 2021, most provinces were in a state of moderate

integration (22.6%) and good integration (45.2%). Guangdong has

been at a high level of integration for a long time. Beijing, Jiangsu,

Zhejiang, and other head provinces are second only to Guangdong.

It is worth noting that the DRID in Hainan, Qinghai, Ningxia, and

Tibet has been in a state of imbalance or low integration, showing a

significant gap with the integration of other provinces.
4.2 The time evolution and spatial
distribution of IE and CE

4.2.1 Trends in time evolution
The national average time evolution of IE and CE from 2011 to

2021 is shown in Figure 2. It can be seen from Figure 2 that IE shows

a growth trend, and CE shows a general downward trend. It can be

seen that China has a significant implementation effect on

the integration of the digital economy and real economy and the

promotion of low-carbon emission reduction policies. With the

development of digital technology, physical industry manufacturing

began to shift to the intelligent trend, and the development of the

integrated economy is bound to show an upward trend. However,

after 2019, due to the impact of the epidemic, the overall pace of

economic development has slowed down, which has caused a

certain impact on both the physical industry and the digital
TABLE 4 Model test process and results.

Test Statistic selection

LM
Spatial error(R-LM) 19.085***

Spatial Durbin
Spatial lag(R-LM) 20.846***

Hausman chi-square 34.730*** Fixed Effect

The final application model SDM with fixed effect
*** indicate that the statistics are significant at the significance level of 0.01. The values in the
table retain the last three decimal places, the same below.
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FIGURE 1

Distribution of China’s eight economic zones.
TABLE 5 The level of IE in China from 2011 to 2021.

Province 2011 2013 2015 2017 2019 2021 Changes in IE’s grade

Mean 0.655 0.750 0.780 0.800 0.843 0.817 A2→A4

Beijing 0.813 0.866 0.892 0.907 0.930 0.923 A4→A5

Tianjin 0.685 0.744 0.772 0.785 0.817 0.816 A2→A4

Hebei 0.719 0.802 0.826 0.846 0.891 0.878 A3→A4

Shandong 0.781 0.862 0.890 0.908 0.936 0.922 A3→A5

Liaoning 0.754 0.829 0.829 0.829 0.856 0.829 A3→A4

Jilin 0.638 0.734 0.759 0.774 0.791 0.748 A2→A3

Heilongjiang 0.640 0.733 0.757 0.773 0.802 0.769 A2→A3

Shanghai 0.791 0.850 0.871 0.889 0.926 0.939 A3→A5

Jiangsu 0.822 0.893 0.918 0.934 0.971 0.960 A4→A5

Zhejiang 0.819 0.878 0.908 0.929 0.962 0.958 A4→A5

Fujian 0.747 0.820 0.843 0.863 0.897 0.883 A3→A4

Guangdong 0.863 0.929 0.952 0.973 1.000 0.988 A4→A5

Hainan 0.490 0.610 0.642 0.671 0.721 0.688 B5→A2

Jiangxi 0.612 0.728 0.771 0.792 0.846 0.839 A2→A4

Hubei 0.705 0.791 0.825 0.843 0.891 0.864 A3→A4

Hunan 0.676 0.772 0.802 0.824 0.880 0.864 A2→A4

Anhui 0.656 0.760 0.796 0.820 0.878 0.865 A2→A4

Guangxi 0.633 0.726 0.770 0.791 0.846 0.814 A2→A4

(Continued)
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industry. Therefore, the development of an integrated economy has

a little downward trend. In recent years, President Xi Jinping has

put forward the green development concept of ‘green mountains

are golden mountains’ and the dual-carbon goal of ‘achieving

carbon peak by 2030 and carbon neutrality by 2060’, which has

made people more concerned about green development and

reducing carbon emissions. Carbon emissions have begun to

show a downward trend year by year. However, due to China’s

large population and industrial base, energy consumption is still

high all year round, and the downward trend is not obvious.

4.2.2 Spatial distribution and evolutionary trends
In order to clarify the evolution trend of the spatial distribution

of IE and CE, the spatial distribution maps of IE and CE in 2011 and

2021 are drawn respectively, as shown in Figures 3–6. In this paper,

the relevant maps are drawn by QGIS software, and the

classification principle of drawing is based on Python’s natural

breaks classification.
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Figures 3 and 4 show the spatial distribution of IE in 2011 and

2021. From Figures 3 and 4, it can be seen that, firstly, the regions

with high IE values in 2011 are mainly concentrated in the eastern

coastal provinces, while Qinghai, Gansu, Ningxia, Guizhou, and

Hainan have low IE values, and most of the central regions have

medium IE values. It can be seen that in 2011, IE had just started

and had not yet been popularized nationwide, and the eastern

region had been ahead of other regions in realizing the integration

of the digital economy with the real economy. Second, in 2021, the

IE dominant regions started to penetrate the interior, and Henan,

like many coastal cities, had a high level of IE. The three western

poor regions of Qinghai, Gansu, and Ningxia have relatively low IE,

and most central provinces still have medium IE levels. Finally,

according to the categorized data in the legend, it can be seen that

from 2011 to 2021, the level of IE in each province has been

increasing and the inter-provincial gap has been narrowing. In

short, the spatial distribution of IE shows a trend of ‘decreasing

from east to west’, with regional differences decreasing with the

evolution of time.

Figures 5 and 6 show the spatial distribution of CE from 2011 to

2021. According to Figures 5 and 6, firstly, the CE in 2011 shows a

polarization trend of low in the south and high in the north, and

regions with high CE account for the majority of the country.

Ningxia and Shanxi may have a higher CE than the rest of the

country because of the development of heavy-polluting industries

such as coal, iron, and steel. Secondly, by 2021, the CE low-level

areas in 30 provinces will be far more than the medium-level areas,

and only Shanxi Province has a long-term high CE due to the

development of coal and mineral resources. Finally, from 2011 to

2021, CE decreased to a certain extent, and the low-emission area

expanded significantly, indicating that the carbon emission

reduction policy has achieved some success. Overall, China’s CE

shows a distribution of ‘low in the south and high in the north’, with

low-carbon areas continuing to spread from south to north.
TABLE 5 Continued

Province 2011 2013 2015 2017 2019 2021 Changes in IE’s grade

Chongqing 0.650 0.750 0.788 0.809 0.855 0.834 A2→A4

Sichuan 0.713 0.811 0.845 0.867 0.916 0.889 A3→A4

Guizhou 0.551 0.693 0.739 0.767 0.824 0.783 A1→A3

Shaanxi 0.690 0.772 0.803 0.823 0.870 0.839 A2→A4

Henan 0.691 0.807 0.841 0.867 0.914 0.895 A2→A4

Shanxi 0.656 0.747 0.772 0.777 0.822 0.806 A2→A4

Inner Mongolia 0.668 0.755 0.766 0.776 0.815 0.777 A2→A3

Gansu 0.530 0.665 0.704 0.716 0.766 0.704 A1→A3

Qinghai 0.385 0.526 0.568 0.576 0.628 0.572 B4→A1

Ningxia 0.430 0.554 0.596 0.629 0.665 0.625 B5→A2

Tibet 0.316 0.412 0.452 0.506 0.576 0.484 B4→B5

Xinjiang 0.577 0.700 0.721 0.739 0.802 0.765 A1→A3
Due to the limited space, this paper only gives the calculation results of some years.
FIGURE 2

Time evolution trend of IE and CE from 2011 to 2021. The red font
is a negative value.
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4.3 Spatial autocorrelation of IE and CE

4.3.1 Global spatial autocorrelation
Figure 7 shows the evolution of spatial correlation between IE

and CE from 2011 to 2021.

First of all, it can be seen from Figure 7 that IE has strong spatial

autocorrelation, that is, places with strong IE tend to gather positively,
Frontiers in Ecology and Evolution 11
and vice versa. Secondly, except for 2013 to 2015 (in 2013-2015, CE

was negatively correlated but the results were not significant and not

statistically significant), CE has a positive and significant spatial

correlation, which indicates that CE has ‘good neighbors’ or ‘beggar

neighbors’. Finally, the spatial correlation of IE is much higher than

that of CE, indicating that the economic effect is more likely to form

spatial agglomeration than the environmental effect.
FIGURE 4

The spatial distribution of IE in 2021.
FIGURE 3

The spatial distribution of IE in 2011.
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4.3.2 Local spatial correlation
The local Moran’s I index is the key to accurately capturing the

heterogeneity of local spatial elements, reflecting the correlation

between the value of an attribute in a region and neighboring

regions (He et al., 2023). In this paper, the Moran index scatter plots

of IE and CE from 2011 to 2021 are drawn to describe the local
Frontiers in Ecology and Evolution 12
spatial correlation. Due to space limitations, only the Moran scatter

plots of 2011 and 2021 are shown, as shown in Figures 8, 9.

According to Figure 8, we can see that the IE of 30 provinces is

mainly concentrated in the first and third quadrants from 2011 to

2021, indicating that ‘good neighbors’ and ‘beggar neighbors’

coexist. This two-way agglomeration may lead to the emergence
FIGURE 6

The spatial distribution of CE in 2021.
FIGURE 5

The spatial distribution of CE in 2011.
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of a gap. It can be seen from Figure 9 that the Moran scatter plot of

30 provinces in China in 2011 is mainly concentrated in the second

and third quadrants, and the third quadrant is more, indicating that

mixed agglomeration and ‘low-low agglomeration’ coexist, and the

agglomeration of places with lower carbon emissions is more

obvious. The Moran scatterplot of China’s 30 provinces in 2021 is

mainly concentrated in the third quadrant, significantly more than

in 2011, indicating that the carbon emission situation has eased in

the past 10 years, and the low-carbon emission areas have increased

and continued to gather.
4.4 The spatial effect of IE on CE

4.4.1 Spatial econometric model results
4.4.1.1 Spatial modeling regression results

The measurement results of SDM with fixed time are shown in

Table 6. According to Table 6, first of all, the spatial autoregressive

coefficient is -0.383, which is significant at the significance level of

0.05, indicating that the more concentrated the regions with large

carbon emissions, the more conducive to centralized governance
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and the easier it is to reduce carbon emission intensity. Secondly, IE

can significantly inhibit CE, and the coefficients are -0.146 and

-0.305 without considering and considering the spatial effect of the

spatial matrix, respectively. It can be seen that IE has a stronger

inhibitory effect on CE when considering spatial spillover. Finally,

under the consideration of the spatial matrix, the control variables

such as TI, RC, GG, etc. have a significant reduction effect on CE.

4.4.1.2 Spatial Spillover Effect Decomposition

To further analyze the spatial effect of IE on CE, the spatial

spillover effect is decomposed, and the results are shown in Table 7.

It can be seen from Table 7 that the direct and spatial effects of IE on

CE are significant, and the indirect inhibitory effect on CE is

stronger than the direct effect.

4.4.2 Robustness test
The robustness test of this paper is divided into two categories:

First, the robustness test of the model. On the one hand, according

to the model selection process in Table 4 in section 3.2.4, it can be

determined that the model selected in this paper is appropriate. On

the other hand, to further determine the credibility of the

conclusions, the SDM model with both OLS and individual time

fixed is selected for testing in this paper. Second, the robustness test

of the spatial matrix. In this paper, the economic distance matrix is

used for the test. The above test results are shown in Table 8.

According to Table 6, it can be seen that IE has a significant

reduction effect on CE (all at the 0.01 level of significance),

indicating that the previous test results are robust.
4.5 Regional heterogeneity analysis

Spatial econometric regression of the data for the eight

integrated economic zones based on the selected time-fixed SDM

model described above is shown in Table 9. IE in the North Coastal

Economic Zone all had a reducing effect on CE, but the results were

not significant. The Northeast Economic Zone, the Southern
FIGURE 8

Moran scatterplot of IE in 2011 and 2021.
FIGURE 7

Moran‘s I of IE and CE from 2011 to 2021. The red triangles in the
figure are marked as insignificant results, and the others are significant
at the significance level of 0.01 or 0.1. The red font is a negative value.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1374724
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang et al. 10.3389/fevo.2024.1374724

Frontiers in Ecology and Evolution 14
Coastal Economic Zone, and the Southwest Economic Zone IE have

significant decreasing effects on CE (coefficients of -0.220, -0.092,

and -0.308), and the decreasing effects are even stronger when

spatial effects are taken into account (-0.344, -0.118, and -0.724).

The Eastern Coastal Economic Zone and the Middle Yangtze River

Economic Zone IE have a significant contributing effect on CE.

However, it is not significant when spatial effects are considered.

The middle reaches of the Yellow River economic zone IE have a

significant contribution to CE (3.890), which is stronger when

spatial effects are considered (11.668). The Northwest Economic

Zone IE has a facilitating effect on CE when spatial effects are

considered (1.947). In addition, different control variables have

different effects in different regions.
5 Discussion

5.1 Discussion of results

The main contributions of this article are reflected in the

following aspects. Firstly, using reasonable methods and indicator

systems to measure the integrated economy can fill the gap in the

measurement of the integrated economy in the existing literature.

Secondly, the innovative incorporation of integrated economy and

carbon emissions into the same theoretical framework has

deepened the theoretical research on low-carbon economy.

Finally, analyze the current situation and inherent relationship

between integrated economy and carbon emissions from a spatial

perspective, and deepen relevant research in spatial economics.

Therefore, for the discussion of the test results this paper will

develop 3 aspects. (1) An in-depth discussion of the measured

results of the integrated economy and carbon emissions, which

includes a discussion of the temporal evolution, spatial distribution,

and spatial correlation of IE and CE. (2) In-depth discussion of the

test results of the impact of an integrated economy on carbon
TABLE 6 Model measurement results.

variable coefficient standard error Z p

IE -0.146*** 0.023 -6.410 0.000

TI -0.006 0.013 -0.500 0.619

IT 0.0183*** 0.006 2.920 0.003

RC -0.001 0.004 -0.220 0.829

IH -0.000 0.003 -0.100 0.923

GG 0.0108*** 0.001 8.280 0.000

FI 0.0180 0.014 1.320 0.187

TD -0.009 0.011 -0.820 0.411

ID -0.017 0.017 -1.040 0.296

W*IE -0.305** 0.130 -2.350 0.019

W*TI -0.242*** 0.076 -3.170 0.002

W*IT 0.221*** 0.038 5.780 0.000

W*RC -0.081*** 0.030 -2.740 0.006

W*IH -0.010 0.023 -0.440 0.658

W*GG -0.016** 0.008 -2.090 0.037

W*FI 0.130 0.102 1.280 0.202

W*TD 0.075 0.060 1.250 0.213

W*ID 0.401*** 0.097 4.120 0.000

r -0.383** 0.157 -2.440 0.015

N 330

R2 0.119

Log-L 926.5552
*, **, *** indicate that the statistics are significant at the significance levels of 0.1,0.05 and
0.01, respectively.
FIGURE 9

Moran scatterplot of CE in 2011 and 2021.
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emissions. (3) In-depth discussion of the regional heterogeneity of

the impact of the integrated economy on carbon emissions in the

eight economic regions.

5.1.1 In-depth discussion of measurement results
In this section, the results of the IE and CE measurements are

discussed, which are mainly divided into the discussion of the

results of the IE measured by the coupled coordination model, the

evolutionary characteristics of the IE and CE, and the spatial

autocorrelation of IE and CE.

5.1.1.1 Measurement results of the integrated economy

Table 5 shows the measurement results of the integrated

economy. Firstly, the IE grades of China’s 30 provinces show an

upward trend during the study period, and the overall shift from A2

to A4 is realized, which is consistent with the findings of (Zhang et al.,

2022). This indicates that China’s economy still maintains a high level

of growth, and IE formed by the coupling and coordination of the

digital economy and the real economy has become a new type of

economic form. This is related to China’s policy move since 2015 to

focus on the real economy and vigorously develop the digital

economy. This paper constructs an indicator system to measure the

development level of the real economy from three aspects: scale,

structure, and development potential, which is different from the

measurement of the real economy by scholars such as (Zhang et al.,

2022; Shi and Sun, 2023), and has certain innovation and application

value. Secondly, the level of IE varies among the 30 provinces in the
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country. Guangdong has been highly integrated for a long time. The

headline provinces of Beijing, Jiangsu, and Zhejiang are second only

to Guangdong. Notably, the IE of Hainan, Qinghai, Ningxia, and

Tibet have been in an unbalanced or low integration state, with a large

gap between their integration levels and those of other provinces.

Differences in regional development are related to China’s policy

preferences. China’s economic development started in the eastern

coastal region and penetrated from the east to the west (Chen, 2022).

Thus Guangdong, Beijing, Jiangsu, and Zhejiang have higher levels of

integrated economic development than Qinghai, Ningxia, and Tibet

in the west. This reveals that China should make full use of the

penetration effect of the eastern region in policy formulation to

reduce regional differences.

5.1.1.2 The time evolution and spatial distribution of IE
and CE

Figure 2 shows the change in national mean time for IE and CE

from 2011 to 2021. From Figure 2, it can be seen that IE shows an

increasing trend (decreasing after 2019) and CE shows a slow

decreasing trend in general. The fluctuation of IE in 2019 is

related to the impact of the new crown epidemic on the

development of the real economy (Takyi et al., 2023). As China’s

national attention to carbon reduction and emission reduction

continues to increase, and policy pilots continue to grow, carbon

emissions will also show a significant downward trend (Feng et al.,

2024). However, given China’s large energy consumption base,

carbon emissions will only decline slowly.

Figures 3 and 4 show the spatial distribution of IE in 2011 and

2021. Comparing the two figures, it can be found that: firstly, from

2011 to 2021, the level of IE in each province has been increasing,

and the inter-provincial gap has been decreasing. This suggests that

China’s policy initiatives for IE have achieved some success, and the

digital economy can effectively reduce regional disparities (Zhou

et al., 2023), which is consistent with the findings of (Zhang et al.,

2022). The spatial distribution of IE shows the trend of “decreasing

from the east to the west”, and regional disparities are reduced over

time, which is similar to the results of the study of (Wu et al., 2023).

This is related to China’s long-standing policy bias, where all of

China’s eastern coastal cities are developed cities, the western region

is economically backward, and environmental and geographic

factors are strong impediments to the development of the

economy, so the regional distribution of most economic forms

shows a decreasing trend from east to west. The results of this paper

reveal the spatial evolution trend of IE, effectively proving the
TABLE 8 Results of the robustness test.

Model replacement
Spatial matrix replacement

OLS SDM (both fixed)

IE -0.086*** -0.107*** -0.105*** -0.060*** -0.054*** -0.101***

Cons/r 0.088*** -0.062 -0.216 -0.223 -13.116*** -11.206***

N 330 330 330 330 330 330

R2 0.187 0.344 0.173 0.037 0.323 0.525

Controls No Yes No Yes No Yes
*** indicate that the statistics are significant at the significance level of 0.01.
TABLE 7 Spatial spillover effect decomposition results.

variable Direct Indirect Total

IE -0.140***(0.023) -0.180*(0.093) -0.320***(0.096)

TI -0.002(0.012) -0.183***(0.061) -0.185***(0.066)

IT 0.014**(0.006) 0.161***(0.029) 0.175***(0.031)

RC 0.009(0.004) -0.062***(0.020) -0.061***(0.021)

IH -0.000(0.003) -0.007(0.018) -0.007(0.018)

GG 0.011***(0.001) -0.016***(0.006) -0.005(0.006)

FI 0.016(0.013) 0.093(0.077) 0.109(0.081)

TD -0.011(0.010) 0.061(0.048) 0.050(0.046)

ID -0.026(0.016) 0.306***(0.078) 0.280***(0.082)
*, **, *** indicate that the statistics are significant at the significance levels of 0.1,0.05 and 0.01,
respectively. The numbers in parentheses are standard errors. The same is below.
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important role of the digital economy in narrowing regional gaps

and promoting high-quality development.

Figures 5 and 6 show the spatial distribution of CE in China from

2011 to 2021. The comparison shows that the national distribution of

China’s CE has changed from polarization (i.e., the gap between CE in

the north and south regions was large in 2011) to a trend of

concentration and diffusion (i.e., a smaller gap between CE in the

north and south in 2021, with regional agglomeration). 2011, China’s

industrial layout was that the north was dominated by heavy

industry, the south was dominated by light industry and service

industry, and the north’s carbon emissions were higher. In 2011,

China’s industrial layout was dominated by heavy industries in the

north and light industries and services in the south, with higher

carbon emissions in the north. By 2021, after 10 years of industrial

transformation and the application of decarbonization technologies,

carbon emissions in the north will be lower, and thus the gap between

the north and the south of CE will be gradually narrowed. The results

of this study are similar to (Wang et al., 2014), but this paper reveals

the trend and characteristics of CE, which is a reference value for

understanding the current situation of CE in China’s provinces.
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5.1.1.3 Spatial autocorrelation of IE and CE

Figure 7 plots the trend of the global Moran’s index of IE from

2011 to 2021. First, IE has strong spatial autocorrelation (i.e., places

with strong IE tend to be positively clustered and vice versa), which

is consistent with the findings of (Zhang et al., 2022). IE belongs to

the new economic form, which has strong industrial agglomeration

characteristics. Relevant industries will cluster to give full play to the

scale advantage of the industry, such as the Internet industry cluster,

which can make full use of the infrastructure advantage and

knowledge spillover effect in the space. Second, the CE all have

significant positive spatial correlations (except for 2013-2015),

indicating that carbon emissions also have spatial agglomeration

characteristics. Because energy consumption is closely related to

industrial layout, high-carbon emission industries tend to cluster to

give full play to the scale effect of the industry. This is similar to the

findings of (Zhang et al., 2024). Finally, the spatial correlation of IE

is much higher than that of CE, indicating that economic effects are

more likely to form spatial agglomeration than environmental

effects, which is because economic activities are more affected by

distance, while environmental pollution is more likely to spread.
TABLE 9 The spatial econometric regression results of the eight comprehensive economic zones.

variable
Northern
coastal

Northeast
Eastern
coastal

Southern
coastal

Middle reaches
of the

Yangtze River
Southwest

Middle reaches
of the

Yellow River
Northwest

IE -0.022 -0.220*** 0.065* -0.092*** 0.148*** -0.308*** 3.890*** 0.095

TI -0.005 0.097*** 0.005 0.001 -0.043*** -0.027 0.099 0.147**

IT -0.002 0.040*** 0.022*** -0.0122 -0.029*** -0.004 -0.202*** -0.044***

RC -0.000 0.001 0.095*** 0.044*** -0.000 0.041*** 0.036 -0.041***

IH 0.000 0.011*** 0.011** 0.012*** 0.002 0.011** -0.067*** 0.034**

GG 0.001 -0.002** 0.005*** 0.001 0.002*** -0.002 0.018** 0.004

FI -0.016** 0.134*** -0.064* -0.012*** -0.097** 0.0169 -23.548*** -0.212

TD 0.005** -0.002 0.005 0.009*** -0.004 0.020 -0.117 -0.166***

ID 0.030*** -0.101*** 0.062*** -0.039*** -0.110*** -0.026 -0.141 -0.010

W*IE -0.073 -0.344*** 0.036 -0.118*** 0.104 -0.724*** 11.668*** 1.947***

W*TI -0.027 0.152*** 0.005 -0.006 -0.059*** -0.144** -0.001 0.064

W*IT 0.000 0.062*** 0.049*** -0.024 -0.064*** 0.070** -0.467*** -0.084

W*RC 0.029 0.025** 0.188*** 0.098*** 0.034** 0.199*** 0.254** -0.094**

W*IH 0.012 0.024*** 0.003 0.038*** 0.0169 0.046** -0.159*** 0.035

W*GG 0.003 -0.004** 0.009*** 0.002** 0.004** 0.001 0.051** 0.022**

W*FI -0.163*** 0.114 -0.057 -0.024*** -0.468*** -0.136 -65.247*** -3.399

W*TD 0.021*** -0.011 0.011 0.010** -0.037** 0.046 -0.307 -0.234***

W*ID 0.109*** -0.273*** 0.139*** -0.050** -0.320*** -0.056 -0.296 -0.212

r -0.122 -0.110 0.128 -0.043 -0.335 -0.138 -0.256 -0.230

N 330 330 330 330 330 330 330 330

R2 0.579 0.226 0.605 0.350 0.458 0.351 0.025 0.139

Log-L 290.531 226.660 271.457 248.790 274.706 297.551 196.551 181.496
*, **, *** indicate that the statistics are significant at the significance levels of 0.1,0.05 and 0.01, respectively.
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This study reveals the important role of economic effects in regional

agglomeration theory and also proves that environmental pollution

can form regional agglomeration in the diffusion to surrounding

areas, enriching relevant theoretical research.

Figures 8, 9 shows the localized Moran’s index results for IE and

CE in 2011 and 2021. It can be seen that from 2011 to 2021, the IE of

the 30 provinces is mainly concentrated in the first and third

quadrants. This is because regions with higher IE levels will have a

diffusion effect on their neighbors, promoting IE in the surrounding

provinces and forming ‘high - high agglomeration’, while places with

lower IE levels are not led by the leading provinces and it is difficult

for them to leap forward in the hierarchy, thus forming ‘low - low

agglomeration’. The ‘low-low agglomeration’ is formed. This is

consistent with the findings of (Zhang et al., 2022). However, this

study finds that this two-way agglomerationmay lead to the widening

of the East-West regional gap and exacerbate the Matthew effect, and

it is expected that ‘low-low agglomeration’ can be reduced through

effective policy instruments. The Moran scatterplot of CE for 30

provinces in China in 2011 is mainly concentrated in the second and

third quadrants, and there are more in the third quadrant. This

suggests that ‘mixed agglomeration’ and ‘low-low agglomeration’ co-

existed in 2011, and the agglomeration is more obvious in places with

lower carbon emissions. In 2021, the Moran scatterplot of China’s 30

provinces mainly concentrates in the third quadrant and most of

them are southern cities, and the number of low-carbon emission

areas increases and continues to be agglomerated. This is related to

the implementation of low-carbon pilot policies (Feng et al., 2024).

Unlike previous spatial agglomeration analyses of carbon emissions,

the study in this paper can effectively demonstrate the impact of

policy preferences on carbon emissions, for example, taking

developed coastal cities (Zhejiang, Shanghai, Jiangsu, etc.) as the

pilot areas for low-carbon policies can effectively reduce carbon

emissions in the local area and neighboring regions.

5.1.2 In-depth discussion of the impact of IE
on CE
5.1.2.1 Spatial modeling regression results

The results of the spatial effect test of IE on CE are shown in

Table 6. Firstly, the spatial autoregressive coefficient is negative and

significant. This indicates that the more concentrated the area with

large carbon emissions is, the more favorable it is for centralized

management, and the easier it is to reduce the intensity of carbon

emissions. Second, IE has an obvious inhibitory effect on CE, and the

inhibitory effect is stronger when considering the spatial spillover

effect. It can be seen that IE can give full play to the clean production

characteristics of the digital economy and green the real economy,

which is similar to the findings of (Wu et al., 2023). The impacts of IE

have spatial spillovers, i.e. the development of local IE can effectively

reduce carbon emissions in neighboring areas. Unlike previous

studies, this paper focuses on exploring the carbon reduction effect

of IE from a spatial perspective, aiming to propose feasible regional

policies. Finally, the control variables such as TI, RC, and GG have a

significant reduction effect on CE when the spatial matrix is

considered (the influence coefficients are -0.242, -0.081, and -0.016,

respectively). This is an important finding of this paper that is

different from other studies. Therefore, policymakers should fully
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consider the coordination and linkage among technological

innovation, regional coordination, green development policies, and

IE to help reduce carbon emissions.

5.1.2.2 Spatial Spillover Effect Decomposition

The decomposition results of the spatial spillover effects are

shown in Table 7. From Table 7, it can be seen that the direct and

spatial effects of IE on CE are both significant, and the indirect

inhibition effect on CE is stronger than the direct effect. It shows

that IE in this region and adjacent areas will reduce CE, and IE in

adjacent areas has a stronger effect. The development of IE in this

region will have a demonstration effect on IE in neighboring areas,

prompting neighboring areas to vigorously promote IE, thereby

reducing CE in neighboring areas. The results of the study can

inform the formulation of regional development policies.

5.1.3 In-depth discussion of
regional heterogeneity

Spatial econometric regression of the data for the eight integrated

economic zones based on the selected time-fixed SDM model described

above is shown in Table 9. Table 9 shows that, firstly, the IE of the three

regions of the Northeast, the Southern Coastal Region, and the

Southwest Comprehensive Economic Zone can significantly reduce CE

(similar to the results of Shi and Sun, 2023), and the carbon emission

reduction effect is stronger after considering the spatial spillover effect.

This is because the Northeast Economic Zone is an old industrial base

with a larger carbon emission base, and IE has a stronger carbon

emission reduction effect in the region. The southern coastal economic

zone has a more developed digital economy, which has a double carbon

reduction effect. The Southwest Comprehensive Economic Zone has a

stronger carbon sink capacity, which can promote the IE effect to a large

extent. Secondly, the IE to CE enhancement effect is obvious in the

Middle reaches of the Yangtze River Comprehensive Economic Zone

and the Middle reaches of the Yellow River Comprehensive Economic

Zone, which may be related to the fact that the current comprehensive

economies of these two regions are dominated by high-carbon

manufacturing and supplemented by digital intelligent manufacturing.

It is worth noting that, considering the spatial effect, the enhancement

effect of IE on CE is more obvious in the Middle Yellow River

Comprehensive Economic Zone. Finally, the effect of IE on CE in the

North Coastal Integrated Economic Zone is negative and insignificant,

which may be due to the inconsistent development of the internal

provinces. The IE of the East Coast Comprehensive Economic Zone has

an increasing effect onCE, but the effect is not strong, and the effect is not

significant when spatial spillover effects are considered. Considering the

spatial effect, the IE of the Greater Northwest Comprehensive Economic

Zone can significantly increase CE, which may be due to the imperfect

construction of digital infrastructure in the Northwest. The results of the

study prove that the effects of IE on CE impacts in China’s eight

economic regions are different, and not all regions have a lowering effect

of IE on CE. This reveals that we should formulate policies according to

the characteristics of regional development to avoid the enhancing effect

of IE on CE. In addition, different control variables have different effects

in different regions, which also makes the eight economic zones IE have

different effects on CE, and the result has important implications for the

harmonization of different regional policies.
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5.2 Policy implications

Based on these findings and discussion, this paper offers the

following policy implications. These policy insights, combined with

regional development characteristics and the findings of this paper,

can provide a reference for policymakers to effectively reduce

carbon emissions and achieve green and high-quality development.

(1) Continuously strengthening investment in digital

infrastructure. Accelerating the construction of new digital

infrastructure such as 5G, data centers, artificial intelligence, the

Internet of Things and the industrial Internet in all provinces,

especially in the western provinces, so as to build a firm foundation

of integration for the development of an integrated economy and

promote the interconnection of the digital economy and the real

economy. The real economy will be transformed and upgraded

through intelligent and collaborative new modes of production, and

the divide in the development of the convergence economy will be

reduced with the help of the digital economy dividend.

(2) Give full play to the spatial spillover effect of the integrated

economy to reduce carbon emissions. First, the development

advantages of the head provinces, such as Beijing, Shanghai, and

Jiangsu, should be promoted to establish ‘demonstration zones’ for

the integration and development of the digital economy and the real

economy, so as to form a diffusion effect and drive the development

of the surrounding regions with the center. Secondly, the central

region should fully cooperate with the east, fully absorb the overflow

from the east, and realize a new situation of regional green

development. Finally, the disadvantaged western provinces should

make full use of the role of the ‘One Belt and One Road’ and

‘Western Development’ strategies to reduce the spatial spillover

effect of the disadvantaged regions and embark on the road of

ecological protection and green development based on their

resource endowments and environmental characteristics.

(3) ‘Tailor-made’ regional economic development policies.

Differentiated macroeconomic control policies have been

implemented by the actual situation of the economic zones, and

different high-quality development policies have been focused on

promoting integrated economic development and carbon emission

reduction. On the one hand, encourage the construction of a digital

economy in the Northeast, Southern Coastal, and Southwest

Comprehensive Economic Zones, to promote industrial integration

through the development of a digital economy and realize the effective

reduction of carbon emissions. On the other hand, strengthen the

development of industrial modernization in the middle reaches of the

Yangtze River and the middle reaches of the Yellow River

comprehensive economic zones, reduce the proportion of high-

energy-consuming industries in the integration economy, and reduce

carbon emissions within the economic zones. In addition, regional

economic development strategies under the global framework are

formulated to reduce the overall differences in the integrated economy.
5.3 Research limitations

Taking China as the research object, this study analyzes the spatial

impact effect of the integration economy on carbon emissions using
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data from 30 provinces from 2011 to 2021. However, this study has

certain limitations in terms of variable selection, data collection, and

research object, which need to be improved and refined in subsequent

studies. First, this study examined the spatial impact of the integration

economy on carbon emissions at the national level, but it lacked the

consideration of intermediate action mechanisms. Future studies

should analyze in depth the intrinsic mechanisms through which

the integration economy acts on carbon emissions. Second, due to the

limitation of data availability, the relevant calculation results may not

accurately represent the variables. Therefore, future research should

start with data to enhance the accuracy and completeness of variable

measurement. Finally, based on eight comprehensive economic zones,

this study analyzed the regional heterogeneity of the impact of IE on

CE based on provincial data but did not consider the city, county, and

district levels. Subsequent studies could focus on specific regions such

as the city and county levels.
6 Conclusions

This paper takes 30 inland provinces in China (Hong Kong

Special Administrative Region, Macao Special Administrative

Region, Taiwan, and Tibet Autonomous Region are excluded

from the study due to data acquisition problems) as the research

subjects. Based on the panel data from 2011 to 2021, this paper

analyzes the spatial characteristics of the impact of the integrated

economy on carbon emissions by using principal component

analysis, coupled coordination degree model, Moran index, and

spatial econometrics. The contributions of this article are reflected

in the following aspects. Firstly, using reasonable methods and

indicator systems to measure the integrated economy can fill the

gap in the measurement of the integrated economy in the existing

literature. Secondly, the innovative incorporation of integrated

economy and carbon emissions into the same theoretical

framework has deepened the theoretical research on low-carbon

economy. Finally, analyze the current situation and inherent

relationship between integrated economy and carbon emissions

from a spatial perspective, and deepen relevant research in spatial

economics. The main conclusions of the study are as follows.
(1) Characterizing the spatial and temporal evolution of the

integrated economy and carbon emissions. Over the study

period, the integrated economy showed a yearly increase

while carbon emissions showed a yearly decrease. The

spatial distribution of IE shows a trend of ‘decreasing

from east to west’, with regional differences decreasing

with the evolution of time. China ’s CE shows a

distribution of ‘low in the south and high in the north’,

with low-carbon areas continuing to spread from south

to north.

(2) Analyzing the spatial correlation between the integrated

economy and carbon emissions. From the global perspective

of China, both integrated economy and carbon emissions

have significant positive spatial correlations. From the local

perspective, an integrated economy is mainly characterized

by ‘high-high agglomeration’ and ‘low-low agglomeration’,
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while carbon emissions are characterized by ‘low-

low agglomeration’.

(3) Exploring the spatial impact effects of an integrated

economy on carbon emissions. Using the time-fixed SDM

model, it is found that the integrated economy has a

significant negative effect on carbon emissions, and the

negative effect is even stronger when spatial spillover effects

are considered, and the result still holds under multiple

robustness tests. This suggests that the integrated economy

has a strong spatial effect and can effectively reduce carbon

emissions in China.

(4) Discussing the spatial heterogeneity of the impact of the

integrated economy on carbon emissions. The impact of an

integrated economy on carbon emissions varies from one

integrated economic zone to another. The integrated economy

of the three regions of the Northeast, the Southern Coastal

Region, and the Southwest Comprehensive Economic Zone

can significantly reduce carbon emissions. The integrated

economy to carbon emissions enhancement effect is obvious

in the Middle reaches of the Yangtze River Comprehensive

Economic Zone and the Middle reaches of the Yellow River

Comprehensive Economic Zone. The effect of an integrated

economy on carbon emissions in the North Coastal Integrated

Economic Zone is negative and insignificant. The integrated

economy of the East Coast Comprehensive Economic Zone

has an increasing effect on carbon emissions, but the effect is

not strong.

(5) Providing insights for policy development. First, investment

in digital infrastructure should be continuously strengthened.

Accelerate the construction of new digital infrastructure in all

provinces, especially in the western provinces, and promote

the interconnection of the digital economy with the real

economy. Second, give full play to the spatial spillover effect

of the integrated economy to reduce carbon emissions.

Promote the development advantages of headline provinces

such as Beijing, Shanghai, and Jiangsu, and establish

“demonstration zones” for the integrated development of

the digital economy and the real economy, so that the center

can drive the development of the surrounding areas. Finally,

‘tailor-made’ regional economic development policies.

Implement differentiated macro-control policies based on

the actual situation of economic zones, and implement

different high-quality development policies around

promoting integrated economic development and carbon

emission reduction.
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