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Driving factors analysis and
scenario prediction of CO2

emissions in power industries of
key provinces along the Yellow
River based on LMDI and BP
neural network
Chuanbao Wu*, Shuang Sun, Yingying Cui and Shuangyin Xing

College of Economics and Management, Shandong University of Science and Technology,
Qingdao, China
Introduction: Power industry is one of the largest sources of CO2 emissions in China.

The Yellow River Basin plays a supportive role in guaranteeing the effective supply of

electricity nationwide, with numerous power generation bases. Understanding the

drivers and peak of CO2 emissions of power industry in the Yellow River Basin is vital

for China to fulfill its commitment to reach carbon emissions peak by 2030.

Methods: The Logarithmic Mean Divisia Index (LMDI) model was employed to

explore the drivers to the change of CO2 emissions in power industries of three

study areas, including Inner Mongolia Autonomous Regions, Shanxi Province, and

Shandong Province in the Yellow River Basin. And Back Propagation (BP) neural

network was combined with scenario analysis to empirically predict the trend of

the amount of CO2 emitted by power industry (CEPI) from provincial perspective.

Results: CEPI in Inner Mongolia under the scenarios of a low degree of CO2

emissions promotion with amedium degree of CO2 emissions inhibition (LM) and

a low degree of CO2 emissions promotion with a high degree of CO2 emissions

inhibition (LH) scenario can reach a peak as early as 2030, with the peak value of

628.32 and 638.12 million tonnes, respectively. Moreover, in Shanxi, only CEPI

under a low degree of CO2 emissions promotion scenarios (LL, LM, LH) can

achieve the peak in 2025 ahead of schedule, with amounts of 319.32, 308.07, and

292.45 million tonnes. Regarding Shandong, CEPI under scenarios of a low

degree of CO2 emissions promotion with a high degree of CO2 emissions

inhibition (LH) and a medium degree of CO2 emissions promotion with a high

degree of CO2 emissions inhibition (MH) could achieve the earliest peak time in

2025, with a peak of 434.6 and 439.36 million tonnes, respectively.

Discussion: The earliest peak time of CEPI in Shandong Province and Shanxi

Province is 2025, but the peak of CEPI in Shanxi is smaller than that of Shandong.

The peak time of CEPI in Inner Mongolia is relatively late, in 2030, and the peak is

larger than that of the other two provinces. The per capita GDP is the most

positive driving factor that contributes to the CEPI. Shandong has a strong

economy, and its per capita GDP is much higher than Shanxi’s. Therefore, even

under the same peak time, the CEPI in Shandong is much higher than that of
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Shanxi. Inner Mongolia is extensive and sparsely populated, which makes its per

capita GDP rank among the top in China. In addition, Inner Mongolia’s coal-

based power generation structure and high power generation also contribute to

its late CO2 peak time and large CO2 peak.
KEYWORDS

provincial power industry along the Yellow River, CO2 emissions peak, Logarithmic
Mean Divisia Index, back propagation neural network, scenario prediction
1 Introduction

The negative impact of CO2 emissions from human activities

on the environment is becoming increasingly evident. As the

largest emitter of CO2 emissions in the world, China made a

mandatory commitment to the world in 2020 to peak its CO2

emissions by 2030. Not only the birthplace of Chinese civilization

and an essential ecological region in China, the Yellow River

Basin, but also is home to many important energy, chemical, and

basic industrial bases, with more than half of China’s coal reserves

(Wu et al., 2023). In 2019, the total consumption of fossil energy

and total CO2 emissions of nine provinces in the Yellow River

Basin accounted for 35.1% and 40.5% of China, respectively (Zhao

et al., 2022). Therefore, there is no doubt that CO2 emissions

reduction effect of the Yellow River Basin is directly related to the

successful achievement of China’s CO2 emission peak target. With

the introduction of the significant national development strategy

of ecological protection and high-quality development in the

Yellow River Basin, accelerating the green and low-carbon

development of high-carbon emissions industries in the Yellow

River Basin and effectively has become the key to cracking the

environmental dilemma and the inevitable way to achieve the goal

of CO2 emissions peaking in the Yellow River Basin. The Yellow

River Basin has many coal, wind and photovoltaic power

generation bases, which play a supportive role in guaranteeing

the effective supply of electricity nationwide (Ma and Zhang,

2020). According to the Statistics of China Electricity Council,

as of the end of 2021, the installed power generation capacity of

major power companies in the Yellow River Basin is about 180

GW. Among them, the installed capacity of thermal power is 140

GW, accounting for the highest percentage about 77.7%. The

installed capacity of hydropower is 14.72 GW, accounting for

8.1%. The installed capacity of wind power is 17.04 GW,

accounting for 9.4%. And the installed capacity of solar power is

8.67 GW, accounting for 4.8% (Xia et al., 2022). It is apparently

that the large demand for electricity and the electricity production

being dominated by coal-fired power generation are the main

drivers for the increasing CO2 emissions in power industry of the

Yellow River Basin. Hence, whether or not CO2 emissions in

power industry can peak by 2030 will directly affect the time of

total CO2 emissions peaking in the Yellow River Basin.
02
Meanwhile, considering the significant differences in economic

development, resource endowment, fossil energy structure, and

power industry development among the provinces in the Yellow

River Basin, CO2 emissions reduction pathways of power industry

should be formulated according to diverse situations of

different regions.

Numerous institutions and scholars have studied on total CO2

emissions at national, provincial, and city levels. For example,

Ahmed et al. (2022) applied the long short-term method to

examine the degree of impact of various factors on CO2

emissions and predict CO2 emissions trend in China and India.

It concluded that energy consumption has the greatest effect and

renewable energy has the smallest impact on CO2 emissions in

both countries. Su and Lee (2020) proposed a cost- effectiveness

theoretical model to explore the optimal carbon emissions

trajectory and introduced an extended STIRPAT model to

predict carbon emissions. The findings showed that China’s

carbon emissions are likely to peak at an estimated 117.7

MtCO2e by 2028. Li et al. (2023b) used the random forest

model to choose seven predictors from 26 CO2 emissions

influencing indicators and constructed a BP neural network to

predict CO2 emissions under five scenarios. It concluded that

China can achieve its carbon peaking on time, reaching 10,434.082

Mt CO2 emissions in 2030 under the 14th Five-Year Plan scenario.

Wang et al. (2022) identified the main influencing carbon factors

with the help of Redundancy analysis and Monte Carlo

permutation tests and developed a method for determining the

status of carbon emissions at provincial level based on score

evaluation. The 30 provinces were assigned to four stages,

including those with significant reductions, marginal reductions,

marginal increases, and significant increases based on the progress

toward carbon emissions peak. Lin et al. (2023) combined the

SOM (Self-organizing map) neural network method, the

decoupling coefficient method and Mann-Kendall test to

conduct a cluster analysis and peak carbon trend assessment of

cities in underdeveloped western regions of China. The results

suggested that western cities are classified into resource-

dependent cities, low-carbon buffer cities, economic priority

cities, and low-carbon transition cities. Dong and Li (2022)

proposed the STIRPAT-IGWO-SVR model to forecast the

carbon emissions of Jiangsu Provinces under five scenarios.
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Zhang et al. (2021) predicted the urban block carbon emissions of

a city in China based on the BP neural network method.

In addition to the above, there are some researches focusing on

CO2 emissions at industry level. Some scholars analyzed the main

factors affecting CO2 emissions of different industries in China,

including power industry, transportation industry, logistics

industry (Quan et al., 2020; Liu et al., 2021; He et al., 2022).

Many researches evaluated the peak situation of CO2 emissions of

different sectors in China, including building, transporting,

industrial, agricultural and so forth (Chen et al., 2020; Huo

et al., 2021; Li et al., 2023a). For instance, Lu et al. (2020)

employed an improved PSO (Particle swarm optimization)

algorithm optimized BP neural network model to predict carbon

emissions for heavy chemical industry and its sub-sectors from

2017 to 2035. The findings indicates that the carbon emissions in

heavy chemical industry will reach peak earlier in 2021 and later in

2026 and the peaking value is in the interval of 9.3-9.5 billion tons.

Fang et al. (2022) investigated the Environmental Kuznets Curve

hypothesis for eight sectors in China by using regression analysis

and Monte Carlo simulation. The results show that CO2 emissions

from agriculture, construction, manufacturing, other industries,

and transportation are highly likely to peak by 2030, while

emissions from electricity and mining are likely to peak after

2030. Bakay and Agbulut (2021) forecasted the greenhouse

emissions of power sector in Turkey using deep learning,

support vector machine, and artificial neural network

algorithms. Tang et al. (2018) established a National Energy

Technology-Power model to assess the impact of advanced

technology promotion and fossil energy structure shift on

energy consumption and CO2 emissions in China’s power sector

from a regional perspective. The result indicated that with the

promotion of advanced technology and the development of

renewable energy, China’s power sector would reach a peak of

3717.99 Mt CO2 in 2023. Cai et al. (2022) took a power generation

enterprise as research subject and explored the pathway for power

sector to achieve carbon emissions peak and carbon neutrality

under five scenarios, with the help of the LEAP (Low Emission

Analysis Platform) model. The results suggest that the carbon

emissions in the enterprise is expected to reach a peak in 2023

under the low carbon scenarios and CCUS is the key technology to

achieve carbon emissions reduction.

In summary, despite numerous studies on the influencing

factors, peak and reduction pathways of CO2 emissions in various

industries, the previous studies focused on CO2 emissions in

power industry mostly at national level, and only a few

researches shed light on power industry at provincial or regional

level. Consequently, it may be more realistic to explore when and

how CO2 emissions peaks in power industry from the regional

perspective, which could provide targeted CO2 emissions

reduction recommendations for policymakers to make decisions.

This paper took power industries in Inner Mongolia

Autonomous Region, Shanxi Province, and Shandong Province

as research objects, respectively, and measured CO2 emissions of

power industry in each province from 2005 to 2019 based on

statistical data. After that, a LMDI decomposition model was used

to quantify the contribution of each influencing factor to the
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change of CO2 emissions in power industry. Additionally, the

accuracy in predicting CO2 emissions of BP neural network and

SVR model was compared with the help of evaluation indexes, and

a better model was employed to combine with scenario analysis to

predict future CO2 emissions of power industries in the above

three provinces. The main contributions of this work include:

1) CO2 emissions of power industries in Inner Mongolia

Autonomous Region, Shanxi Province, and Shandong Province

from 2005 to 2019 are calculated. 2) We use the LMDI method to

decompose CO2 emissions of the power industry and analyze

driving factors affecting CO2 emissions in terms of power

generation and power consumption. 3) We compare the

prediction accuracy of BP neural network and SVR model

regarding CO2 emissions with the help of evaluation indexes.

4) We set up nine scenarios and apply the trained BP neural

network to predict CEPI in three provinces from 2021 to 2035 and

analyze their peaking trends.

The structure of this paper is organized as follows. Section 2

introduces the current status of research subjects. Section 3

displayed the methodology and data. The results and related

discussions are interpreted in Section 4. Finally, conclusions and

policy implications are summarized in Section 5.
2 Case study

Inner Mongolia Autonomous Region, thanks to high-quality

coal and wind energy resources endowment, in 2020, the power

generation was 581.10 TWh, ranking No.2 in China, and the

installed power capacity of the region was 146 GW, including the

Wind power installed capacity is 37.85 GW, strongly supporting

the National Action Plan for Air Pollution Prevention and Control

and clean energy development in China. Furthermore, Inner

Mongolia’s outgoing electricity was 208.20 TWh in 2020,

ranking first among provinces in China, which ensures national

energy security and enhances stable energy supply effectively

(IMEB, 2022).

Shanxi Province owns three ten million kilowatts of large coal

power bases(Northern Shanxi, Central Shanxi, Eastern Shanxi)

that are China’s focus on the construction (GOSC, 2014). In

addition, Shanxi Province ranked among the top ten in China,

with a power generation of 339.50 TWh and thermal power

generation of 303.25 TWh in 2020 (SXEA, 2023). Therefore, as

a traditional energy province, Shanxi Province has large total CO2

emissions, high CO2 emissions intensity, and high per capita CO2

emissions, causing it challenging to accomplish the target of

carbon peaking and carbon neutralization.

As one of the “Five Poles” in the development pattern of the

Yellow River Basin, Shandong Province has outstanding

advantages in economic development and comprehensive

strength, contributing to promoting the high quality of central

cities and urban clusters along the Yellow River. At the same time,

according to the data from the National Bureau of Statistics, in the

past decade, Shandong Province has been the largest thermal

power generation province in China, which means that the power

industry in Shandong Province should be assigned major
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responsibility for low-carbon transformation and should play a

demonstration and leading role in achieving CO2 emissions

reduction of the Yellow River Basin.

In short, these three provinces, as the major thermal power

provinces in the Yellow River basin, are the key areas of CO2

emissions. The CO2 peaking process of their power industry

directly affects the realization of the CO2 peaking target of the

whole basin. Therefore, we choose these three provinces as the

research objects of this paper. And the geographical location and

elevation of the study area is shown in Figure 1.
3 Methodology and data

3.1 CO2 emissions measurement

Since it is generally believed that CO2 emissions from non-fossil

energy sources are zero, the amount of CO2 emitted by power

industry (CEPI) calculated in this paper are that from fossil energy

sources in the process of thermal power generation. This paper

refers to the method provided by the IPCC in 2006 (IPCC, 2006),

which is currently more common internationally, to measure CO2

emissions. As a result of different types of major energy

consumption in power industry of each province, the energy

types covered in the calculation of CEPI vary from province to

province, as shown in Table 1. The specific calculation formulas are

shown in Equations 1 and 2:

C =o
i
Ei · NCVi · CCi · Oi ·

44
12

(1)

CI =
C
H

(2)

where C refers to CEPI, i refers to energy type used in thermal

power generation; Ei refers to the consumption of energy type i;

NCVi refers to the average low calorific value of energy type i; CCi

refers to the carbon content per unit calorific value of energy type i

; Oi refers to the carbon oxidation rate of energy type i; 44/12

refers to the ratio of carbon dioxide to the carbon molecular
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weight; CI refers to CO2 emissions per unit of electricity; H refers

to the thermal power generation. The specific values are shown

in Table 2.
3.2 Analysis of influencing factors of CEPI
based on the LMDI model

The method of factor decomposition analysis can effectively

reflect the degree of contribution of each influencing factor to the

change of the target variable at any time. Ang (2004) proposed the

LMDI method in 2004, which is widely used in factor decomposition

because its advantage of complete decomposition, no residual term,

and can handle zero value issues (Luo et al., 2023; Zhang et al., 2023).

Accordingly, this paper decomposes the driving forces of CEPI into

eight factors: carbon emission coefficient, fossil energy structure, coal

consumption for power generation, power generation structure,

inter-regional transfer of power, power consumption intensity,

GDP per capita, and population to obtain the effect of each factor

to the change of CEPI, adopting the extended LMDI method.

Specifically, the related equation is as follows:

C =o
i
C =

Ci

Fi
·
Fi
F

F
H

·
H
E
·
E
X
·
X
G
·
G
P
· P

=o
i
CFi · CSi · FH · HE · EX · XG · GP · P (3)

The implications of all the variables in Equation 3 are shown

in Table 3.

According to the LMDI model, the change in regional CO2

emissions from period 0 (base period) to period T (target period)

can be decomposed as the sum of the contributions of each driving

factor. Since the paper assumed that carbon emission coefficient of

each energy type does not change over the time span studied,

carbon emission coefficient effect is considered to be zero. The

decomposition expressions for the other seven factors are shown in

Equations 4–11:

DCCSt =o
i
L(Ct

i ,C
0
i )� ln (

CSti
CS0i

) (4)

DCFHt
=o

i
L(Ct

i ,C
0
i )� ln (

FHt
i

FH0
i
) (5)
TABLE 1 The main types of energy consumption of power industries in
three provinces.

Provinces Fossil energy types

Inner
Mongolia
Autonomous
Region

Raw Coal, Cleaned Coal, Other Washed Coal, Briquette, Coal
Gangue, Coke Oven Gas, Blast Furnace Gas, Converter Gas,
Crude Oil, Diesel, Fuel Oil, Natural Gas

Shanxi
province

Raw Coal, Other Washed Coal, Coal Gangue, Coke Oven Gas,
Blast Furnace Gas, Converter Gas, Natural Gas

Shandong
province

Raw Coal, Cleaned Coal, Other Washed Coal, Briquette, Coke,
Coke Oven Gas, Blast Furnace Gas, Converter Gas, Diesel, Fuel
Oil, Petroleum Coke, Refinery Gas, Natural Gas
FIGURE 1

Geographical location and elevation of the study area.
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DCHEt =o
i
L(Ct

i ,C
0
i )� ln (

HEt
HE0

) (6)

DCEXt
=o

i
L(Ct

i ,C
0
i )� ln (

EXt

EX0
) (7)

DCXGt
=o

i
L(Ct

i ,C
0
i )� ln (

XGt

XG0
) (8)
Frontiers in Ecology and Evolution 05
DCGPt =o
i
L(Ct

i ,C
0
i )� ln (

GPt
GP0

) (9)

DCPt =o
i
L(Ct

i ,C
0
i )� ln (

Pt
P0

) (10)

L(Ct
i ,C

0
i ) =

Ct
i − C0

i

lnCt
i − lnC0

i
(11)
3.3 Comparison of BP neural network and
SVR model

To obtain the most accurate prediction results of CEPI, this paper

adopted BP neural network and SVR model to train and analyze

power industry data of each province from 2005 to 2019, respectively.

Then, in order to evaluate the prediction ability and accuracy of

models intuitively, the Root Mean Square Error (RMSE), Mean

Absolute Error (MAE), and Mean Absolute Percentage Error

(MAPE) are chosen as evaluation indicators to compare the

prediction results of two models. The smaller the error indicators,

the higher the prediction accuracy and the better the effect of the

model. The related equations are shown in Equations 12–14:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

j=1
(yj − ŷ j)

2

s
(12)

MAE =
1
no

n

j=1
yj − ŷ j

�� �� (13)

MAPE =
100%
n o

n

j=1

yj − ŷ j

yj

�����
����� (14)

where yj is the real value, ŷ j is the predicted value, and n is the

number of samples.
TABLE 3 Symbolism of each variable in LMDI model.

Variable Meaning Unit Variables Meaning Unit

Ci The amount of CO2 emitted by energy type iin
power industry

104 tonnes CFi CO2 emission coefficient of energy type i tonne/tce

Fi The amount of standard coal energy type i
consumed by thermal power generation

104 tce CSi The proportion of energy type iin total energy
in thermal power generation

%

F The amount of standard coal energy consumed by
thermal power generation

104 tce FH The amount of standard coal consumed per
kWh of power generation

g tce/KWh

H The amount of thermal power generation 108 KWh HE The proportion of thermal power generation in
power generation

%

E The amount of total power generation 108 KWh EX The ratio of power generation to
power consumption

%

X The amount of power consumption 108 KWh XG Power consumption intensity KWh/CNY

G Gross regional product 108 CNY GP GDP per capita CNY/people

P Total population 104 people
fr
TABLE 2 The value of the coefficient.

Fossil
energy
Types

NCVi (KJ/
Kg, KJ/m3)

CCi

(tC/KJ)
Oi (%)

Raw Coal 20908 26.37 0.94

Cleaned Coal 26344 25.41 0.98

Other
Washed Coal

8363 25.41 0.98

Briquette 20908 33.56 0.90

Coal Gangue 8363 29.42 0.98

Coke 28435 29.5 0.93

Coke Oven Gas 16726 13.58 0.99

Blast
Furnace Gas

3763.44 70.8 0.99

Converter Gas 7945.04 49.6 0.99

Crude Oil 41816 20.1 0.98

Diesel 42652 20.2 0.98

Fuel Oil 41816 21.1 0.98

Petroleum
Coke

31947.42 27.5 0.98

Refinery Gas 46055 18.2 0.98

Natural Gas 38932 15.3 0.99
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3.3.1 BP neural network
BP neural network is a multi-layer feed-forward neural network

with backward propagation of error, consisting of three parts: input

layer, implicit layer, and output layer (Sun and Huang, 2020). BP

neural network is a nonlinear complicated network model with

solid stability and autonomy, often used for regression and

prediction. It has at least one hidden layer, but it is challenging to

determine its node counts. As a result, the ideal node figures are

largely determined by experiments while building a neural network.

The hidden layer’s node numbers typically clearly affect the output

solutions to actual issues. Figure 2 shows the structure of a three-

layer BP neural network model. The principle is as follows. Suppose

there is a set of training samples (Xr ,Yr), r = 1, 2, 3⋯, nf g,Xr ∈
Rn,Yr ∈ Rn, where, Xr = (Xr0,Xr1,Xr2,⋯,Xre) is the input value of

the sample, Yr = (Yr0,Yr1,Yr2,⋯,Yrm) is the real value. At the same

time, it is assumed that the number of nodes in the input layer is e,

the number of nodes in the hidden layer is h, the number of nodes

in the output layer is m, the weight and bias of the p node of the

input layer to the k node of the hidden layer are upk, ak,respectively,

and the weight and bias of the k node of the hidden layer to s node

of the output layer are uks, bk. The output of the hidden layer and

output layer are shown in Equations 15 and 16.

Zk = g(o
e

p=1
upkxrp + ak) (15)

Zs = o
m

k=1

Zkuks + bk (16)

where Zk is the output of the hidden layer, Zs is the output of the

output layer, and g(x) is the transfer function. The error calculation

is defined as Equation 17.

E =
1
2o

m

s=1
(Ys − Zs)

2

(17)

If E is less than the expected accuracy c, the accuracy

requirement is satisfied. Otherwise, error back propagation is

required and the calculation process is repeated until the error is
Frontiers in Ecology and Evolution 06
within the allowed range or the maximum number of iterations

is reached.

In this study, according to BP neural network construction

steps, firstly, the data from fifteen samples of each province from

2005 to 2019 are normalized and pre-processed. Secondly, the four

selected influencing factors are input variables of the model, and

CEPI are output variable. Then, nine samples are randomly selected

as training samples, the remaining six samples are chosen as test

samples. Simultaneously, “tansig” and “purelin” are selected as the

transfer functions of the implicit layer and output layer,

respectively, and “trainlm” for the training function. Finally, the

model is constructed by the training samples, the accuracy of the

model is determined by the test samples, and the number of nodes

in the implicit layer is determined by multiple training adjustments,

so as to obtain the optimal BP neural network structure.
3.3.2 SVR model
Support vector machine (SVM) is a machine learning

method that performs binary data classification in a supervised

learning approach. Support vector regression (SVR) is a vital

application branch of SVM, which has many strengths, such

as solving nonlinear high-dimensional problems with small

data size, obtaining the global optimum point in theory, and

the computational complexity is independent of the number of

sample dimensions, so it is widely used in function approximation

and regression prediction. But it is sensitive to outliers and

requires careful choice of kernel functions and parameters

(Zhang et al., 2022). Its principle is to obtain a regression

model on the known sample set to make f (x) and y as close

as possible (shown in Figure 3). The sample is shown in

Equation 18 and the characteristic function of SVR model is

defined as Equation 19:

D = (x1, y1), (x2, y2),⋯, (xk, yk), xk ∈ Rn, yk ∈ R, k = 1, 2,⋯, nf g
(18)

f (x) = wx + b (19)
FIGURE 2

Schematic diagram of BP neural network.
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where xi is the input value of sample i, yi is the output value of

sample i, and n is the number of samples,w is the weight, b is the bias.

Unlike the general linear model, the SVR model defines the interval ϵ

on both sides of the hyperplane and calculates the loss when and only

when the absolute value of the gap between f (x) and y is greater than ϵ,

while no loss is calculated if it is within the interval band.

The function estimation problem can be transformed into the

optimization problem of Equation 20:

min
w ,b

1
2

wk k2+Co
n

k=1

le (f (xi) − yi)

le(f (xi) − yi) =
0 f (xi) − yij j < e

f (xi) − yij j − e else

( (20)

where wk k2 is the penalty function, C is the penalty factor, and

le is the e-insensitive loss function.
In practical tasks, it is often difficult to directly determine the

appropriate e so that most points are within the interval band, so

the relaxation variable xk, x*k are introduced thereby relaxing the

interval requirement of the function and allowing some training

samples to fall outside the interval. Therefore, Equation 20 can be

transformed into Equation 21:

min
w ,b

1
2

wk k2+Co
n

k=1

(xk + x*k )

s : t :

yk − wx − b ≤ e + xk

wx + b − yk ≤ e + x*k

xk, x*k ≥ 0, k = 1, 2⋯, n

8>><
>>:

(21)

By introducing the Lagrange factors ak,a*k , constructing the

Lagrange function, and introducing the kernal function, the above
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optimization problem is transformed into a dual problem, and the

decision function is obtained, as shown in Equations 22 and 23:

f (x) = o
n

k=1

(ak − a*k )K(xk, xj) + b (22)

K(xk, xj) = exp ( −
xk − xj

�� ��2
2g 2 ) (23)

where K(xk, xj) is the kernal function, xj is the input value of the

sample, and g is the kernal function parameter.

This paper follows the steps of first normalizing the data of

power industry in each province, randomly selecting nine training

samples and six test samples. Secondly, the radial basis function was

selected as the kernel function to process training samples and

construct the ϵ-SVR model. Thirdly, we determine the penalty

coefficients and kernel parameters applying the method of grid

search and cross-validation and simulate the training sample data to

obtain the optimal solution of the model. Fourth, the training

samples and test samples were substituted into the model to

output the fitted values. Finally, we judge the learning and

promotion ability of the model by the relevant evaluation indexes,

and repeatedly train until the optimal model is obtained.
3.4 Scenario design

According to the decomposition results of the LMDI model, it

can be seen that GDP growth is the major factor in increasing CO2

emissions in all three provinces. Balancing the relationship between

economic development and CO2 emission reduction and integrating

the path of achieving CO2 emissions peak into the overall economic

and social development is an important issue facing the realization of

green and high-quality economic development. In order to more

comprehensively understand the changes in CO2 emissions under

different development rates and emission reduction rates of the

power industry in each province, this paper divides the four

variables that have a strong influence on CEPI in each province

into two types of variables: CO2 emissions promotion and CO2

emissions inhibition. Furthermore, three modes of change were set

for the two types of variables, respectively, including high degree,

medium degree, and low degree. Then, we designed nine different

development scenarios of power industry by arranging and

combining six modes and set the change rate of relevant

influencing factors for a planning period of five years, combining

the existing data of the change rate of each influencing factor in

previous years. What’s more, we regarded the medium degree of CO2

emissions promotion scenario as the baseline scenario which refers to

the development scenario of the power industry in accordance with

the existing planning and policies, and set the change rates of low-

speed and high-speed accordingly. The CO2 emissions inhibition

scenarios are set in the same way. The definition of nine scenarios of

three provinces are shown in Supplementary Tables S1–3, and the
FIGURE 3

Schematic diagram of SVR model.
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specific indicators of three provinces in different scenarios are

explained in Supplementary Tables S4–6.
3.5 Data source

In this study, various fossil energy consumption data are

collected from the Energy Balance Sheet of Inner Mongolia, the

Energy Balance Sheet of Shanxi, and the Energy Balance Sheet of

Shandong in the China Energy Statistical Yearbook (NBSC, 2005–

2019) from 2005 to 2019. The data on the average low calorific value

of the fossil energy are from Appendix 4 in the China Energy

Statistics Yearbook. Moreover, the data of carbon content per unit

calorific value and carbon oxidation rate of fuels are given by

Guidelines for the Preparation of Provincial Greenhouse Gas

Inventories (NDRC, 2011). The National Bureau of Statistics of

China (NBSC, 2019) is the source for the data related to power

generation, thermal power generation, and social electricity

consumption of the three provinces, and the regional GDP and

population data are collected from Inner Mongolia Autonomous

Region Statistical Yearbook, Shanxi Statistical Yearbook and

Shandong Statistical Yearbook from 2005 to 2019 (IMBS, 2005–

2019; SXBS, 2005–2019; SDBS, 2005–2019). At the same time, to

eliminate the influence of the price index, we selected 2005 as the

base period to calculate China’s GDP data.
4 Results and analysis

4.1 CO2 emission measurement results

CO2 emissions and CO2 emissions intensity in power industries

from three provinces were measured based on Equations 1 and 2,

and the results are shown in Figure 4. It can be seen that CEPI in all

three provinces showed a growth trend during 2005-2019, in which

CEPI in Inner Mongolia Autonomous Region grew from 119.34 to

518.20 million tonnes, with a rapid annual growth rate of 22.28%,

and CEPI in Shanxi province rose from 122.56 to 263.61 million

tonnes at an average annual growth rate of 7.67%. CEPI in

Shandong Province increased from 199.89 to 434.87 million

tonnes with the annual growth rate of 7.84%. Contrary to the

increasing trend of CO2 emissions, CO2 emissions intensity
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presented a declining trend in the past fifteen years. From 2005 to

2019, CO2 emissions intensity of power industry in Inner Mongolia

Autonomous Region fluctuated but decreased from 1145.05 to

1128.94 g/KWh. For Shanxi Province, the power industry had a

decline from 948.86 to 934.05 g/KWh in CO2 emissions intensity.

Moreover, CO2 emissions intensity of power industry in Shandong

Provinces was down to 787.12 g/KWh in 2019, a decrease of 24.81%

compared with that in 2005.
4.2 LMDI decomposition results of
CO2 emissions

The annual contribution value of each factor to CEPI in each

province were calculated, as displayed in Supplementary Tables S7–9.

And then they were summed to obtain the cumulative contribution

rate of each factor, as shown in Figure 5. CEPI in Inner Mongolia

increased by 398.86 million tonnes from 2005 to 2019. During this

period, the GDP per capita of Inner Mongolia increased at an average

rate of 21.13%, which caused 414.59 million tonnes growth in CEPI.

This was the major positive driving force, contributing to 103.95% of

CO2 growth. The power consumption intensity increased from

1895.74 to 2473.20 gtce/KWh, thus exhibiting a positive effect (DC
= 83.76 million tonnes) on CEPI. The change of fossil energy

structure has accounted for an increase of 3.93 million tonnes on

the growth of CEPI. Also indicated, was that the power generation

structure effect was the main negative effect (DC = −46.78 million

tonnes) on change of CEPI, followed by inter-regional transfer of

power effect (DC = −27.98million tonnes). The proportion of thermal

power generation in total power generation decreased from 98.64% to

83.86% in the past years. Correspondingly, the power generation

structure effect reflected a significant negative effect that suppressed

11.72% of CEPI. The coal consumption for thermal power generation

has a negative effect (DC = −25.14 million tonnes), and the

population had no obvious effect (DC = −3.52 million tonnes) on

the change of CEPI.

By calculation, it can be clearly seen that CEPI of Shanxi

Province increased by 2.15 times, with a total increase of 141.05

million tonnes. During the whole study period, economic effect,

inter-regional transfer of power effect, and population effect

collectively drove the increase of CEPI by 216.20 million tonnes

(196.71, 14.23 and 5.26 million tonnes, respectively). On the other
FIGURE 4

CO2 emissions and CO2 emissions intensity of power industry in three provinces.
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hand, the change of power consumption intensity, power

generation structure, coal consumption for power generation, and

fossil energy structure jointly offset 75.15 million tonnes of CEPI

growths (−37.05, −25.67, −11.09, and −1.35 million tonnes,

respectively). Obviously, from Figure 5, the GDP per capita

growth from 12158.34 CNY to 32683.10 CNY was the most

dominant factor in the increment of CEPI, leading to 139.46%

growth in CEPI. As the ratio of power generation to power

consumption growing from 1.39 to 1.49, the effect of inter-

regional transfer of power became the other key cause of CEPI

increase, pulling 10.09% of CEPI growth. The contribution rate of

the population effect was patently weaker than the other two factors,

with only 3.73%. In respect to the power consumption intensity

effect, in the whole period, it reduced from 2318.98 to 1979.29

KWh/CNY, thus showing inhibitory effects on CEPI, with −26.27%

of the DC. In the meantime, because of the decline in the ratio of

thermal power generation to power generation, 18.19% of CEPI

growth was inhibited. The coal consumption for power generation

exhibited a negative effect on CEPI that explains −7.86% of the total

change of CEPI, and the fossil energy structure had a subtle effect on

CEPI, with a contribution rate of −0.95%.

With regard to Shandong Province, the whole growth of CEPI in

2019 enlarged by 1.09 times (217.98 million tonnes) compared with

that in 2005. As depicted in Figure 5, the changes of CEPI were

mainly influenced by four factors, which are economic effect,

population effect, coal consumption for power generation effect,

and power generation structure effect. Among them, the growth of

GDP per capita from 15947.51 to 53412.05 CNY played a particularly

prominent role in driving the increase of CEPI (329.67 million

tonnes), equaling to 151.24% of DC throughout the study period in

total. And the rise of population promoted 26.98 million tonnes CEPI

increase, accounting for 12.38% of DC. In the matter of coal

consumption for power generation, in the entire period, it

decreased from 393.40 to 269.04 gtce/KWh, bringing about a

reduction of 92.30 million tonnes in CEPI, amounting to −42.34%

of DC. The power generation structure was conducive to CO2

emissions reduction owing to the decrease of the ratio of thermal

power generation to power generation, thus avoiding 39.39 million

tonnes of CEPI. Apart from the above factors, the change of fossil

energy structure also became a positive driving force resulting in a

total increase of 14.58 million tonnes CEPI, amounting to 6.69% of
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DC. The decline of power consumption intensity and inter-regional

transfer of power collectively reduced CEPI by 21.57 million tonnes,

with the equivalent to −6.40%, −3.50% of DC, respectively.
4.3 Selection result of the
prediction model

Based on the preliminarily analyze in Section 4.2, four factors

that have a greater impact on CEPI were selected as input variables

for models in this paper, among which the factors selected for Inner

Mongolia Autonomous Region are power generation structure,

inter-regional transfer of power, power consumption intensity

and GDP per capita, for Shanxi Province are power generation

structure, inter-regional transfer of power, power consumption

intensity and GDP per capita, and for Shandong Province are

coal consumption for power generation, power generation

structure, GDP per capita and population. Meantime, CEPI of

each province are taken as the output variable. According to the

above, we perform a fitting experiment comparison between BP

neural network and SVR model, of which 60% of the samples are

used for training and 40% are used for testing.

The optimal computational results of BP neural network and

SVRmodel are selected for comparative analysis, as shown in Table 4

and Figure 6. Apparently, for Inner Mongolia Autonomous Region,

although the accuracy of SVR model in the training period is slightly

higher than that of BP neural network, the error indicators in the

testing period is much larger than BP neural network. In a

comprehensive view, BP neural network is more suitable than SVR

model. Nonetheless, for Shanxi Province and Shandong Province, the

error indicators of BP neural network are obviously smaller than that

of SVR model. In addition, the prediction accuracy of SVR model is

closely related to the selection of parameters. Parameter adjustment

requires constant trial and error to complete, which leads to a lot of

work and is prone to overfitting or poor prediction. In contrast, BP

neural network can update the rules and continuously adjust the

weight and threshold parameters in the neural network according to

the preset parameters. In short, compared with SVRmodel, BP neural

network in this paper has higher accuracy and superiority which can

better predict the arrival of CO2 emissions peak in power industries of

three provinces.
FIGURE 5

Cumulative contribution rate of each factor of CEPI change from 2005 to 2019 in three provinces.
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4.4 CO2 peak prediction results

By putting the normalized influencing factors data from

different scenarios into the trained BP neural network for

prediction, CEPI change trend of each province from 2021 to

2035 under the nine scenarios was obtained. The predicted results

are displayed in Figure 7. It can be seen from the predicted results

that there is a significant difference in the trend of CEPI in each

province from 2021 to 2035 under nine scenarios.

As indicated in Figure 7 and Table 5, the total CEPI of Inner

Mongolia Autonomous Region under nine scenarios, in descending

order, are HL > HM > HH > ML > MM > MH > LL> LM > LH.

Among them, CEPI under LM and LH scenarios will peak earliest,

reaching its peak in 2030 and equaling to 638.12 and 628.32 million
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tonnes, respectively. Then, under MH scenario, CEPI will achieve a

peak at 652.81million tonnes in 2031. After that, CEPI will peak in

2032 under LL scenario, with an amount of 649.63 million tonnes.

Finally, in the MM scenario, CEPI will peak in 2034, with a peak of

658.23 million tonnes, while CEPI in the three CO2 emissions

inhibition scenarios with high-speed growth of CO2 emissions

promotion factors (HL, HM and HH) and ML scenario show an

upward trend in CO2 emissions, none of which peak before 2035.

And in 2035, CEPI under them will reach 668.28, 666.82, 664.61,

and 664.47 million tonnes, respectively.

In respect of Shanxi Province, the total CEPI under nine

scenarios, in descending order, are HL > HM > HH > ML > MM

> MH > LL> LM> LH. Under the three scenarios with low-speed

growth (LL, LM, LH), CEPI will peak in 2025, with a peak of 319.32,
FIGURE 7

Prediction of CEPI in three provinces under nine scenarios.
TABLE 4 Comparison of CEPI prediction error indicators between BP neural network and SVR model.

Error indicators Inner Mongolia
Autonomous Region

Shanxi Province Shandong Province

BP neural network SVR BP neural network SVR BP neural network SVR

Training Set RMSE 3170.57 2252.24 884.61 941.56 1603.80 2079.90

MAE 1601.57 1345.18 405.67 529.22 1317.75 1489.93

MAPE(%) 4.85 3.66 1.68 2.76 3.96 4.24

Test Set RMSE 2022.94 2746.53 1088.34 1026.66 1394.91 2323.04

MAE 1478.51 2598.59 722.76 855.13 1029.47 1805.20

MAPE(%) 3.82 7.93 4.16 5.05 3.29 5.27
fro
FIGURE 6

Comparison of BP neural network and SVR model prediction results in three provinces.
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308.07, and 292.45 million tonnes, respectively, which will realize

the goal of China’s total CO2 peak in 2030 ahead of schedule.

Nevertheless, CEPI under other six scenarios (HL, HM, HH, ML,

MM, MH) will not peak and exhibit an increasing trend year by

year, accounting for 344.52, 344.49, 344.39, 342.86, 340.71, 332.03

million tonnes of CEPI in 2035.

Unlike two provinces mentioned above, Figure 7 reveals that

CEPI of Shandong Provinces under different scenarios, in descending

order, are HL >ML > LL > HM>MM> LM>HH>MH> LH. CEPI

under LH scenario and MH scenario will achieve its peak in 2025,

followed by CEPI under HH, LM, and MM scenarios which will

reach a peak in 2030, with a peak of 434.60, 439.3, 448.75, 465.44, and

472.83 million tonnes, respectively. However, under the three

emissions growth scenarios with low degree of CO2 emissions

inhibition (HL, ML, LL) and HM scenario, by 2035, the total CEPI

shows a continuous growth trend and does not peak. Among them,

the fastest growth in CO2 emissions is HL scenario, followed by ML,

LL, and HM scenarios, with CEPI of 506.98, 499.0, 492.08, and 483.85

million tonnes by 2035, respectively.

The decomposition result of the LMDI model proves that the

growth of GDP per capita and power consumption intensity are the

main reasons for the increase of CEPI of Inner Mongolia

Autonomous Region. Nowadays, Inner Mongolia’s economy is in

the stage of high-speed development, with a wide area and abundant

resources, which leads to the high GDP per capita. At the same time,

due to the heavy industrial structure, industry, especially high energy-

consuming fossil energy extraction industry accounts for a relatively

large share of power consumption structure. Besides, the backward

technology of industrial capacity gives rise to the low efficiency of

power consumption in the production process, resulting in the waste

of electricity resources, thus causing high power consumption

intensity and promoting the growth of CEPI. For another, the

factors that inhibit CEPI are mainly power generation structure

and inter-regional transfer of power. As a substantial national

energy base, Inner Mongolia Autonomous Region is gradually

intensifying the transformation of energy supply to green and low-

carbon under the premise of doing a good job in supplying traditional

fossil energy, and striving to take a lead in building a new power

system with new energy as the mainstay, so that the proportion of

thermal power generation in total power generation is decreasing

year by year. Inter-regional transfer of power represents the regional

shift of power. As a significant province of power generation, Inner
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Mongolia Autonomous Region’s demand for its power consumption

side is increasing while it is delivering electricity to other provinces.

And the trend of clean end-use energy consumption is accelerating,

thus curbing the increase of CEPI. The prediction results of CEPI in

Inner Mongolia visually suggest that when such factors as power

consumption intensity and GDP per capita increases at a high rate,

no matter how to optimize CO2 emissions inhibition factors such as

power production structure and inter-regional transfer of power, the

peak of CEPI cannot be achieved in 2035. Besides, when the CO2

emissions promotion factors increase at a medium rate, and the

future power generation structure continues to achieve certain

optimizations and adjustments to reach a medium or high

reduction rate of decline, CEPI can reach the peak by 2035, but

cannot by 2030. When the economy and power consumption

intensity in a certain range of low-speed growth, only the CO2

emissions inhibition degree of thermal power share and inter-

regional transfer of power to medium or high can ensure that

CEPI in Inner Mongolia can complete the goal of peaking in 2030.

For Shanxi Province, the main factors leading to the

increase in CEPI are the growing economic development level

and inter-regional transfer of power, among which the growth of

GDP per capita is the biggest driver of CEPI because the

accelerated industrialization and urbanization will undoubtedly be

accompanied by large consumption of energy and CO2 emissions.

Being considered as a national coal base, power transmission base,

and hub for west-east and north-south power transmission, Shanxi

Province’s outbound power supply is growing year by year.

Although it has secured the national energy and power supply,

Shanxi Province pay the price of generating more CO2 emissions in

the process of power generation. What is more, reducing the

intensity of electricity consumption and the share of thermal

power generation in total power generation is an effective way to

diminish CEPI. Though thermal power generation is still the main

power source in Shanxi Province, with the in-depth implementation

of development strategies such as technological reform and energy

revolution, the capacity of new energy generation will gradually

appear in the future and the efficiency of electricity consumption

will also be further improved. Similar to Inner Mongolia, the impact

of CO2 emissions promotion factors on CEPI is stronger than that

of CO2 emissions inhibition factors in Shanxi Province. When CO2

emissions promotion factors grow at medium or high rates, even

through a series of initiatives such as increasing the adjustment of
TABLE 5 The peak year and level of CEPI of three provinces in different scenarios.

Provinces Scenarios LL LM LS MW MM MS HW HM HS

Inner Mongolia Autonomous Region Peak year 2032 2030 2030 / 2034 2031 / / /

Emission (million tonnes CO2) 649.75 638.12 628.32 / 658.23 652.81 / / /

Shanxi Province Peak year 2025 2025 2025 / / / / / /

Emission (1 million tonnes CO2) 319.32 308.07 292.45 / / / / / /

Shandong Province Peak year / 2030 2025 / 2030 2025 / / 2030

Emission (million tonnes CO2) / 465.44 434.60 / 472.83 439.36 / / 449.75
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power supply structure on the power generation side, enlarging the

installed capacity of new energy generation to ensure that the share

of thermal power generation decreases at a higher rate, and

improving the efficiency of end-use electricity on the demand

side, CEPI remains in a growth trend year by year without

peaking by 2035. Whereas, when the growth rate of CO2

emissions promotion factors is low, CEPI under all three CO2

emissions inhibition scenarios in Shanxi Province will be able to

achieve carbon peaking in 2025.

The leading factors affecting CEPI in Shandong province are

coal consumption for power generation, power generation

structure, GDP per capita, and population. Similar to the above

two provinces, GDP per capita is the factor that contributes most to

CEPI. The difference is that the yearly increase in the number of

populations, with considerably stimulating demand for abundant

materials and energy, has become the second major factor in the

increase of CEPI. Despite the fact that the population growth rate in

Shandong Province in recent years is slow and the aging problem is

relatively severe, the population will be stimulated to grow and

continue to play a critical part in CEPI in the future, considering the

supporting measures related to “three children policy” will be

further improved. Concerning the CO2 emissions inhibition

factors, establishing the coal power units clean and efficient to

reduce coal consumption for power generation can significantly

suppress the increase of CEPI, followed by the optimization of the

power generation structure.

In addition, CEPI in Shandong Province is generally higher

under low degree of CO2 emissions inhibition scenarios, followed

by the differences in CEPI caused by economic development and

population growth factors, which indicates that the inhibiting effect

of CO2 emissions inhibition factors on CEPI is stronger than the

driving effect of CO2 emissions promotion factors in the future

period. It is noteworthy that this is not consistent with the

conclusion that the GDP per capita has the most significant

impact on CEPI obtained with the LMDI model above. It may

attribute to the fact that as the economic development of Shandong

Province enters a new normal stage, the government departments

pay much more attention to energy conservation and CO2

emissions reduction, thus promoting the upgrading and

transformation of power generation structure and the continuous

research and development of low-carbon technologies for power.

Hence, the economic growth and CO2 emissions are gradually

decoupled, which represents that economic growth is no longer at

the cost of resource consumption and environmental damage and

the relationship between economic growth and CO2 emissions

increase is no longer close (Li et al., 2022).

In terms of the low degree of CO2 emissions inhibition, if the

power generation structure is adjusted slightly and the use of fossil

energy cannot achieve clean and efficient enough resulting in the

CO2 emissions reduction is less, it is hard to achieve the peak target

by 2035 even by controlling the population and economic growth

rate. Under the medium degree of CO2 emissions inhibition

scenarios, the proportion of thermal power generation in the total

power generation decreases at a faster rate and the effective
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improvement of fossil fuel power generation can remarkably

suppress CEPI when the population and economy in the low and

medium-speed growth rate, with the peak of CEPI reaching at 2030.

In addition, it is observed that CEPI under the high degree of CO2

emissions inhibition scenarios can peak at 2030 regardless of the

growth rate of the economy and population, which means that

although economic growth has the greatest impact on CEPI, it will

be able to peak earlier if CO2 emissions reduction technologies

achieve breakthroughs on the existing basis.

In general, the earliest peak time of CEPI in Shandong Province

and Shanxi Province is 2025, but the peak of CEPI in Shanxi is

smaller than that of Shandong. The peak time of CEPI in Inner

Mongolia is relatively late, in 2030, and the peak is larger than that

of the other two provinces. Shandong has a strong economy, and its

per capita GDP is much higher than Shanxi’s. Therefore, as the

main factor for the increase in CO2 emissions, even under the same

peak time, the CEPI in Shandong is much higher than that of

Shanxi. Inner Mongolia is extensive and sparsely populated, which

makes its per capita GDP rank among the top in China. In addition,

Inner Mongolia’s coal-based power generation structure and high

power generation also contribute to its late CO2 peak time and large

CO2 peak.
5 Conclusions and policy implications

5.1 Conclusions

This paper selected Inner Mongolia Autonomous Region,

Shandong Province, and Shanxi Province as representative

provinces of Yellow River Basin, respectively, and measured CEPI

of three provinces separately using relevant data on energy

consumption of power industry from 2005 to 2019. Then an

extended LMDI model was utilized to decompose different effects

to understand the contribution value of each factor to CEPI in three

provinces. Additionally, this study selected BP neural network with

higher accuracy to make muti-scenario forecasts for CEPI peaking

of three provinces from 2021 to 2035 after comparing with SVR

model. Finally, we draw the following conclusions.

Firstly, according to the extended LMDI model results in all

three provinces, GDP per capita is the most positive driving factor

that contributes to CEPI. Furthermore, the main factor that leads to

CEPI growth in Inner Mongolia Autonomous Region is power

consumption intensity, and fossil energy structure has a more

negligible positive effect. The factors that inhibit CEPI are, in

order of magnitude, the power generation structure, the inter-

regional transfer of power, coal consumption for power

generation, and population. For Shanxi Province, apart from

GDP per capita, the key factors that result in the increment of

CEPI are inter-regional transfer of power and population. Besides,

power consumption intensity and power generation structure have

a negative effect on the increase of CEPI. In contrast, coal

consumption for power generation and fossil energy structure

play a less inhibiting role. In Shandong province’s power
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industry, the population is second only to GDP per capita in

promoting CO2 emissions, and fossil energy structure also

positively influenced it. On the other hand, the coal consumption

for power generation is the primary factor inhibiting the increase of

CEPI, followed by the power generation structure effect. And the

effects of power consumption intensity and inter-regional transfer

of power on suppressing CEPI are dramatically weaker than

other factors.

Secondly, the prediction results under nine different scenarios

reveal that for the power industries in Inner Mongolia Autonomous

Region and Shanxi Province, CO2 emissions are generally higher

under the high degree of CO2 emissions promotion scenarios,

followed by the difference due to the rate change of emission

inhibition factors. Only CEPI under LM and LH scenarios in

Inner Mongolia Autonomous Region can meet the requirement of

peaking in 2030. CEPI in Shanxi Province under the low degree of

CO2 emissions promotion scenarios can peak in 2025, while the rest

of the scenarios do not peak. CEPI in Shandong Province under the

low degree of CO2 emissions inhibition scenarios are generally

higher, followed by differences in CEPI caused by the fast or slow

growth rate of GDP per capita and population. Meanwhile, under

MM, HH, and LM scenarios, CEPI can peak in 2030, while in the

LH and MH scenarios, the power industry can achieve CO2

emissions peak carbon in 2025 early.
5.2 Policy implications

In view of CEPI influencing factors and CEPI prediction results

of three provinces provided in this paper, combined with the

development of three provinces and the Yellow River Basin, this

paper proposes the following policy recommendations.

Firstly, optimize the power generation structure. The decrease

in the proportion of thermal power generation in total power

generation is the main factor inhibiting the growth of CEPI in all

three provinces, so it is indispensable for CO2 emission reduction in

power industry to optimize and adjust the power generation

structure dominated by thermal power generation. Inner

Mongolia Autonomous Region can rely on its rich renewable

energy sources, such as photovoltaic and wind energy, to increase

the installed capacity of new energy sources. At the same time,

enhance the capacity of renewable energy consumption by actively

improving transmission and distribution pricing policies and

boosting market-oriented transactions thus reducing the

occurrence of wind abandonment as much as possible. Shanxi

Province can promote the development of renewable energy

power generation by steadily accomplishing the construction of

ten million kilowatt level wind power base and photovoltaic runner

bases in coal mining subsidence areas. As for Shandong province, it

can give full play to its advantages of the sea and actively accelerate

to build offshore wind power bases. Meanwhile, building land-based

wind power and other renewable energy per local conditions is

equally significant. Besides, the “other provincial electricity into

Shandong Province” strategy should continue implementing to

strengthen power cooperation with energy-rich areas. For
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example, it can actively strive for the “electricity from Gansu

Province into Shandong Province” new channel construction to

increase renewable energy delivery.

Secondly, reduce the intensity of electricity consumption and

enhance the efficiency of electricity consumption. For one thing,

industrial electricity consumption is still the main driving force

behind total electricity consumption. In 2019, the industrial

electricity consumption of each province accounted for more than

70% of the total electricity consumption in the whole society,

respectively. Accordingly, the electricity utilization efficiency of key

electricity-consuming industries needs to be urgently improved.

Given the fact above, government departments should establish

incentive and restraint mechanisms to reflect electricity trading and

CO2 emissions reduction costs in the composition of electricity

prices, with price instruments used comprehensively. Moreover, it

is essential for authorities to strictly forbid the implementation of

electricity price preferences for high energy-consuming and high-

emission industries to promote energy saving and efficiency of

enterprises, thus reducing CO2 emissions. For another thing, with

the improvement of living standards, the proportion of residential

household electricity consumption in total electricity consumption is

also increasing yearly. Consequently, the provinces can take measures

to continue improving the residential tier electricity price policy and

actively increase the publicity of energy saving and electricity saving

so that the awareness of low carbon and energy saving is deeply

rooted in the people.

Last but not least, lower the energy consumption intensity of

coal power and facilitate the clean and efficient utilization of coal.

The empirical results demonstrate that the coal consumption for

power supply is the most important factor that inhibits the increase

of CEPI of Shandong Province, so it should further promote the

“three changes” to unite, including transformation of coal power

energy saving and carbon reduction, flexibility transformation and

heat supply transformation. Furthermore, it deserves more

attention that eliminating and shutting down unprofitable and

backward coal power generation steadily to promote the

cleanliness of coal power, with investment in the development of

CCS technology and its infrastructure construction simultaneously.

The government should also increase financial and monetary policy

support to solve the problem of high costs and lack of effective

return mechanisms for unit transformation and flexibility

investment to enterprises. In the end, it is vital to recognize that

coal power is still the first major support power source of the power

system in a period of time, which means energy-saving

transformation should not be eager for quick success and instant

benefit. We need to promote the clean and efficient use of coal and

advance the energy revolution reasonably under the premise of

safeguarding economic development.

Although this study analyzes the main influencing factors of

CO2 emissions from the power sector in the three provinces of the

Yellow River Basin and simulates CO2 emission scenarios in the

future, it still has some limitations. In this paper, only the main

influencing factors of CO2 emissions in the power industry are

selected for the prediction of CO2 peaking, and other minor

influencing factors are not included, which may cause some
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deviations in the results. Furthermore, the study area of this paper

only includes three typical provinces in the Yellow River basin, and

the CO2 emissions of the power industry in the other six provinces

are also worthy of further study.
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