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The diversification of lineages is facilitated or constrained by the simultaneous

evolution of multiple components of the phenotype that interact with each other

during the course of speciation. When evolutionary radiations are adaptive, lineages

proliferate via the emergence of multiple phenotypic optima that underlie

diversification of species across multiple ecological niches. When radiations are

non-adaptive, lineage proliferation unfolds constrained by similar (or nearly

identical) correlations among traits that keep phenotypic and ecological diversity

across newly emerging species within a single optimum. Nature offers very few

opportunities where both types of diversification occur between closely related and

highly diverse lineages. The Liolaemidae family of South American lizards offers unique

such opportunities given two speciose lineages that have rapidly proliferated via

adaptive (Liolaemus) and non-adaptive (Phymaturus) radiations. We analyze body

shape in lizards in association with type of diet (herbivory, omnivory or carnivory). In

these lizards, diet types have been suggested to be linked to body size. Our results

confirm this hypothesis, with three body size optima tightly linked to all three diet

types when radiation is both adaptive and non-adaptive. Diet reconstruction along

their evolutionary history showed that the commonancestor of Liolaemidaewas likely

omnivorous, which is matched by ancestral reconstruction of body size. Phylogenetic

PCA revealed that herbivorous species generally havemore differentiated body shape

than insectivores and omnivores. Herbivorous species have evolved larger heads,

shorter hindlimbs and a small difference between forelimb and hindlimb length. In

contrast, omnivores and insectivores have smaller heads and longer hindlimbs.

Collectively, trophic niche plays an important role in defining body shape and size

across species within lineages, and the patterns of trait–ecology correlations remain

consistent when lineages have diversified via adaptive and non-adaptive radiation.
KEYWORDS

Liolaemidae, evolutionary optimum, diet diversification, ancestral reconstruction,
Ornstein–Uhlenbeck models
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1 Introduction

The adaptive radiation of lineages is triggered when ecological

opportunity – abundance in available niche space – emerges as a

consequence of the formation of new environments, large-scale

extinctions or the evolution of a key adaptive innovation that

facilitates exploitation of niches that were previous inaccessible

(Schluter, 2000). During adaptive radiation species diverge into

ecologically distinct lineages that driven by natural selection, exploit

their habitat in different ways (Pincheira-Donoso et al., 2018;

Matsubayashi and Yamaguchi, 2020). In contrast, non-adaptive

radiation is characterized by a species diversification with minimal

ecological difference occupying similar niche space, and may be

associated with variation in sexual selection across populations

(Czekanski-Moir and Rundell, 2019). Although there are fewer

studies on non-adaptive radiation, it seems to be more common

than expected (Rundell and Price, 2009; Reaney et al., 2018;

Czekanski-Moir and Rundell , 2019; Matsubayashi and

Yamaguchi, 2020).

Adaptation to food is a major source of natural selection.

Therefore, the availability and diversity of trophic resources can

play a central role during adaptive divergence (Price et al., 2012;

Burin et al., 2016; Ocampo et al., 2022), which is often associated

with co-adaptation in morphological traits (Grant and Grant, 2003;

Stokstad, 2004; Eloy de Amorim et al., 2017). Adaptive

morphological changes linked to diet may have, in some cases, a

greater effect than interspecific competition or predation (Jones

et al., 2013). This functional association between the evolution of

diet and morphological traits is expected to, therefore, influence

patterns of morphological diversity within lineages, with convergent

evolution in body plans (body size and shape) among species with

similar diets, and divergent adaptations among species that exploit

different resources. Many examples of convergence have been found

across different animal groups, such as cichlid fish, anolid lizards

and mammal species, mainly attributed to the link between niche

availability and resource use (Muschick et al., 2012; Mahler et al.,

2013; Mazel et al., 2017; Gearty et al., 2018).

The shape of the head, body, and limbs is strongly influenced by

the type of diet, playing a significant role in feeding habits and food

processing (Grant and Grant, 2002; Stokstad, 2004; O’Grady et al.,

2005; Miles et al., 2007; Eloy de Amorim et al., 2017; Pincheira-

Donoso, 2021). For example, cranial morphology and size in

vertebrates mirror specific diet types given that head and skull are

key for obtaining, processing and ingesting certain food items and

thus, are subject to certain mechanical constraints depending on

food type (Dollion et al., 2017). In the tropidurid lizardMicrolophus

thoracicus, ontogenetic changes in diet are coupled with changes in

head shape. In this species adults are herbivores and exhibit

proportionally wider and more robust heads, whereas

insectivorous juveniles have narrower and slender heads (Toyama

et al., 2018). Body size is also an important factor for diet since

herbivores tend to be bigger in size than their non-herbivore sister

taxa (Price et al., 2012), given that nutritional value of plant material

is lower than animal-based material that high in protein.

Consequently, herbivorous species compensate for a low

nutritional value with greater body volume for digestion (Pough,
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1973). On the other hand, insectivorous species tend to have small

bodies and thin heads because they require more agility to capture

insects for food (Szarski, 1962; Pough, 1973). In a similar

environment, these traits tend to converge around an

evolutionary optima value (O’Meara and Beaulieu, 2014).

Changes towards new evolutionary optima in functional

morphology are driven by natural selection for a more efficient

exploitation of new food resources, optimal foraging and efficient

consumption time (Price et al., 2012). These evolutionary optima

can be estimated using different Ornstein–Uhlenbeck (OU) models,

which have the ability to better fit empirical data, as well as draw

biological conclusions based on their parameter estimates (O’Meara

and Beaulieu, 2014). The use of these models has increased the

understanding of the ecological and evolutionary processes

underlying species diversification as shown by various studies on

different vertebrate groups (Lapiedra et al., 2013; Astudillo-Clavijo

et al., 2015; Pincheira-Donoso et al., 2015; Gearty et al., 2018;

Lapiedra et al., 2021). These methods are a good fit for highly

diverse and broadly distributed groups. Here, we use this approach

to explore how evolutionary changes in diet have driven distinct

evolutionary optima of ecomorphological traits related to resource

use in the lizard family Liolaemidae.

The Liolaemidae family is a group of South American lizards

with great diversity (340 species into 3 genera) (Uetz et al., 2023),

inhabiting a wide variety of environments across its range in the

southern half of the continent (Pincheira-Donoso et al., 2008a;

Pincheira-Donoso et al., 2008b; Pincheira-Donoso et al., 2009;

Abdala and Quinteros, 2014; Roll et al., 2017; Esquerré et al.,

2019). Species of the family are distributed from sea level to

extreme high elevations ranging from 5000 to 5400 m (Aparicio

and Ocampo, 2010; Pincheira-Donoso et al., 2013; Cerdeña et al.,

2021). This family has two reproductive modes (oviparous,

viviparous), and three diet types (insectivore, omnivore,

herbivore) (Pincheira-Donoso et al., 2008b; Pincheira-Donoso

and Tregenza, 2011; Pincheira-Donoso et al., 2013; Pincheira-

Donoso et al., 2017; Zimin et al., 2022). All of these traits have

been shown to contribute to the diversification of the family and

promote the occupancy of novel niche space (Espinoza et al., 2004;

Esquerré et al., 2019). Recent findings have unveiled the pivotal role

of dietary evolution in the evolutionary radiation of the group,

where evolutionary transitions from insectivory to herbivory,

bridged by omnivory, have provided ecological opportunities for

the rapid and successful diversification across a variety of climates

(Ocampo et al., 2022). Just as in mammals (Price et al., 2012),

herbivorous Liolaemus have evolved greater body sizes associated

with other morphological changes (Pough, 1973; Cooper Jr. and

Vitt, 2002). For example, O’Grady et al. (2005) compared body and

gut size among 22 species of Liolaemus with different diets

(herbivory, omnivory and insectivory) showing that herbivorous

species have evolved bigger and longer digestive tract. We are yet to

unravel, however, how changes in diet (source of ecological

opportunity) influence changes and variation in functional

ecomorphological traits and body size as a result of ecological

release that triggered radiation of the group.

In Liolaemidae, the genus Phymaturus that is almost entirely

composed of herbivorous species, it is believed to have diversified
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through non-adaptive radiation. Quite the reverse, the genus

Liolaemus, which is species rich and harbors herbivorous,

insectivorous and omnivorous species that commonly evolved

through convergence, is believed to have diversified through

adaptive radiation (Reaney et al., 2018). Therefore, in this study

we hypothesize that in Liolaemidae evolutionary changes in diet

type, imposed by novel selective pressures, have influenced

changes in ecomorphology and body size adaptations across

species in accord with the diversification of the family. We

expect, traits related to the head, body, and limbs to show

different evolutionary optima values across its evolutionary

history under an OU process and in accordance with diet

evolution. Lineages that transitioned to an herbivorous diet

should have evolved a larger body, which supports longer

intestines that facilitate the digestion of plant material (Clauss

et al., 2013; Pincheira-Donoso, 2021). They should have also

evolved optima for robust limbs as compared to omnivorous

lineages. In addition, a thick skull optimum indicative of a

stronger bite force should be prevalent (Herrel et al., 1999,

Herrel et al., 2004). On the contrary, insectivorous lineages

should have evolved towards small body and head sizes and

long limb optima, to be more agile for hunting insects (Losos,

1990; Sanger et al., 2012). Lineages that share a diet type, but have

evolved independently across evolutionary history, are expected to

also show convergence of ecomorphological traits and body size.
2 Materials and methods

2.1 Taxon sampling and phylogenetic tree

To conduct the analyses using the phylogenetic comparative

method, we employed the calibrated tree outlined in Esquerré et al.

(2019). This tree is constructed based on six nuclear (B1D, EXPH5,

KIF24, MXRA5, PLRL, PNN) and four mitochondrial loci (cytb,

12S, ND2, ND4) as molecular markers. The gene partitioning

scheme and substitution model were determined to be GTR+G

for optimal accuracy. To establish temporal parameters, a fossil

representing the earliest occurrence of the Eulaemus clade in the

Early Miocene was incorporated, providing a mean prior for the

tree height of this subgenus. Notably, this tree encompasses

approximately 66% of the presently identified species within

Liolaemidae (Uetz et al., 2023), constituting 1 Ctenoblepharys,

188 Liolaemus, and 35 Phymaturus, totaling 224 species. We

utilized data from 187 of these species for which we could find

morphometric information.
2.2 Morphological and diet
data compilation

Morphological traits used in the analyses included snout–vent

length (SVL, 187 species), head length, and head width (HeLe,

HeWi, respectively from 178 species), forelimbs, hindlimbs length,

length difference between limbs, axilla–groin length (FoLi, HiLi,

DiLi, AxGr, respectively from 141 species) (Supplementary
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Figure 1). Traits were analyzed independently as SVL, head and

body measurements, as not all species have information for all the

traits analyzed in this study. We mainly used morphological data

gathered by one of us (DPD), for which we averaged trait size for

males and females independently, and then averaged these two

values to obtain a single value for each species. For those species

that we did not have measurements, we used published data, i.e.,

description of the holotype, assuming that this individual is

representative of the species. For some species we also used

measures reported by Meiri (Meiri, 2018) (Supplementary

Table 1). We used diet data reported by Ocampo et al. (2022),

but updated with information for Liolaemus polystictus (Olivera-

Jara and Aguilar, 2020). For species present in the Esquerré’s et al.

(2019) tree, we analyzed the diet of 187 species, which represent

55% of the Liolaemidae family. All data on diet and body

measurements can be found in Supplementary Table 2.
2.3 Diet reconstruction

To infer ancestral diet states, we employed Stochastic

Character Mapping (SCM) (Bollback, 2006) on the Maximum

Clade Credibility (MCC) Phylogenetic Tree. This was achieved

using the make.simmap function from the phytools package

(Revell, 2012) within the R statistical environment (R Core

Team, 2022). SCM, a Bayesian method, utilizes Markov Chain

Monte Carlo (MCMC) to produce a posterior probability

distribution, grounded in Maximum Likelihood (ML), of

ancestral diet states and their transition times across branches

on the MCC tree (Huelsenbeck et al., 2003). Before running SCM,

we first extracted the 187 species from the Esquerré et al. (2019)

tree. With the dietary information for each of these species, we

searched for the best model among three possibilities that best fits

our data. These models are: 1) an equal-rates model “ER”, where a

single parameter governs all transition rates, 2) a symmetric

model “SYM”, where forward and reverse transitions share the

same parameter, and 3) an all-rates-are-different model “ARD”,

where each rate is a unique parameter. These models were

assessed using the fitDiscrete function from geiger package, and

based on the Akaike Information Criterion (AIC), we selected the

best model. The parameters used to run the make.simmap

function were: Q=“mcmc” ; nsim=500; message=TRUE;

model=“SYM”; the rest of the parameters were set to their

default values. Model were constructed using 500 simulated

trees. We plot the phylogenetic morphospace with the

phylomorphospace command from the values obtained with the

make.simmap function.
2.4 Morphological evolution

All morphological variables were standardized via log-

transformation. To obtain the simmap values and calculate the

evolutionary optima from them, a diet reconstruction was

performed for each of the three trait trees (explained above),

which are: SVL (187 species), head (HeLe, HeWi, 178 species), and
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body (FoLi, HiLi, DiLi, AxGr, 141 species). To assess if different

morphological traits evolved toward different phenotypic optima

according to the three diet types, we fitted Ornstein–Uhlenbeck

models (OU) of character evolution using the R package OUwie

(Beaulieu et al., 2012). We estimated evolutionary optima for all

traits for the entire family first, and then separately for the genera

Liolaemus and Phymaturus. Initially, we ran the different models

with nsim=10 using the make.simmap function and compared

their AICc values to identify the set of models with the best fit.

Tested models were: a single-rate Brownian motion (BM1), a

Brownian motion model with different rate parameters for each

state on a tree (BMS), an Ornstein–Uhlenbeck model with a single

optimum “q” for all species (OU1), an Ornstein–Uhlenbeck model

with different q, a single strength of pull “a” and average

evolutionary rate “s2” acting in all selective regimes (OUM),

and Ornstein–Uhlenbeck models that assume different state

means q as well as either multiple s2 (OUMV), multiple a
(OUMA), or multiple a and s2 per selective regime (OUMVA).

Once the model with the best fit for each tree was identified, we

ran it with all simulations generated by the make.simmap

function. For each trait, we also calculated Blomberg’s k

phylogenetic signal to assess the independence of the data from

their phylogenetic relationships (Blomberg et al., 2003).

For all traits, we performed ancestral reconstruction across

lineages (Evans et al., 2009), we employed the phenogram

function from the phytools package (Revell, 2012; Revell, 2013)

within the statistical environment R (R Core Team, 2022). The

position of nodes and branches are computed via ancestral

character estimation using likelihood, where each trait evolves

according to a Brownian motion process governed by a rate

parameter b. Under this model the expected squared difference

(variance) between any two species is bmultiplied by the time since

the species last shared a common ancestor (Schluter et al., 1997). In

the case of the remaining body measurements, we corrected for size

effects by using the ratio of each trait’s value to snout–vent length.
2.5 Phylogenetic PCA

To compare ecomorphological changes across diets, we

conducted a phylogenetic PCA for head and body data separately,

considering the difference in tree size. We used logarithmically

transformed standardized morphological variables, and corrected

for size effects by using the ratio of each trait’s value to snout–vent

length, the phylogenetic PCA was performed with the phyl.pca

function in the R phytools package (Revell, 2012).

3 Results

3.1 Diet reconstruction

The best evolutionary model for the distribution of characters on

the tree according to the three models was “SYM” (ER=341.00,

SYM=309.00, ARD=312.13). Diet reconstruction in Liolaemidae

shows that the common ancestor is likely to have been

omnivorous, (highest probability, p=0.37, compared to an
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herbivore with p=0.25, or an insectivore with p=0.34; Figure 1A).

Similarly, the common ancestor between Phymaturus and Liolaemus

is likely to have been omnivorous (highest probability, p=0.38,

compared to an herbivore with p=0.27, insectivore p=0.35). From

there, Phymaturus transitioned to herbivory and remained as such

throughout most of its evolution, with some recent transitions to

omnivory (3 species out of 28 analyzed in this study). In Liolaemus,

ancestors were primarily insectivores, and omnivory began to

reappear convergently across the five main lineages between 9 and

10 Mya. Herbivory in Liolaemus has evolved more recently in the last

4 Mya and has converged ten times within the genus. On mean,

205.17 transitions between diets occurred during the evolution of the

family, with insectivory having a higher number of transitions

towards omnivory (mean 94.63), followed by omnivory towards

insectivory (mean 91.11). Transitions from omnivory to herbivory

and vice versa are much lower (11.04 and 6.29 respectively) and the

transitions from insectivory to herbivory and vice versa were the

lowest of all (1.4 and 0.71 respectively) (Figure 1B). Proportionally,

the insectivorous diet has been present for more than half of the

evolutionary time (0.51), while the herbivorous diet is a more recent

development (0.12). On the other hand, omnivory has been present

for a considerable amount of time (0.38).
3.2 Morphological evolution

The evolutionary models that best fit the character distribution in

the three analyzed trees by genus and by family are presented in

Table 1. It can be observed that in the Phymaturus genus, traits are

better fitted to a model where all rates are different, whereas in

Liolaemus, head traits already exhibit a more symmetric model. This

pattern is consistent across all traits analyzed at the family level.

Phylogenetic signal and the best-fitted OU models for the traits

analyzed by genus and family are presented in Table 2. The values of

the OU models are the mean of the 10 runs conducted per trait, in

which some instances resulted in an outlier value. This outlier was not

considered in the calculation of the mean, and the model that was most

frequently repeated was weighted as the best fit. In Phymaturus, the

model that best fits all traits is OU1, which means that the different

traits evolved towards a single optimum value q, at a constant rate s2

and with a similar selective pull a regardless of diet type (Table 3). The

phylogenetic signal was low for all traits; however, it was only

significant for the SVL and HeWi traits contrary to the rest of the

traits (Table 2). For Liolaemus, the model that best fit most traits was

also an OU1. However, for HeWi and AxGr, the models that best fit

were OUMV and OUMVA, respectively, which exhibited different

evolutionary q, s2 and a for each diet, indicating that herbivorous

species evolved towards wider heads, while insectivorous species

evolved towards narrower heads. The highest s2was for herbivores,
and the lowest for omnivores. Similarly, for AxGr the best fit was an

OUMVA model with different q, s2, and a for each diet (Table 3). In

this genus, a low phylogenetic signal was found for all traits (Table 2).

In the analysis of the Liolaemidae family, most of the traits exhibit a

q for each diet type, except FoLi that showed a single q for all diet types

(Table 3). The SVL has a well-defined q for each diet type, the

herbivorous species reached an evolutionary optimum at 87 mm of
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SVL, while the omnivores reach their evolutionary optimum at 70 mm,

and the insectivores at 57 mm (Figure 2). A trait that showed different

q´s and s2s for each diet was HeLe, where herbivores have longer head

and insectivores have shorter head, while s2 was highest for herbivores,
and the lowest for omnivores (Figure 3A). Only HeWi exhibited

significantly different qs and as, where herbivores have wider heads

and insectivores have narrower ones; the highest a was for herbivores,

and the lowest for omnivores (Figure 3B), DiLi where omnivores and

insectivores have the greatest q´s difference between their fore and hind

limbs, while herbivores have the smallest difference. The highest s2 was
for herbivores, and the lowest for insectivores (Figure 3C), AxGr where

herbivores have the greatest axial growth, and insectivores have the

lowest. The highest s2 was for omnivores, and the lowest for insectivores

(Figure 3D). HiLi only exhibits differences in q´s where insectivores have
longer Hind limbs and herbivores have shorter Hind limbs (Figure 3E),

In most traits, the phylogenetic signal was significantly low (p < 0.001),

indicating a general tendency for less phylogenetic signal than expected

under Brownian motion. Only in the genus Phymaturus, the traits HeLe,

FoLi, HiLi, DiLi, AxGr were not significant (Table 2).

The Liolaemidae family currently encompasses a wide range of

body sizes across lineages, from the large (112.1 mm) to the small (44.7
TABLE 1 Results of the model comparison, indicating the best fit based
on the obtained AIC values, were conducted for the SVL, head (HeLe,
HeWi), and body (FoLi, HiLi, DiLi, AxGr) trees, both for the Phymaturus
and Liolaemus genera, as well as an analysis of the entire
Liolaemidae family.

Group Traits ER SYM ARD

Phymaturus SVL 26.75 26.75 23.55

Phymaturus Head 26.75 26.75 23.55

Phymaturus Body 14.96 14.96 12.46

Liolaemus SVL 289.09 253.55 251.94

Liolaemus Head 281.11 245.49 245.67

Liolaemus Body 233.22 208.95 205.12

Family SVL 341.19 309 312.28

Family Head 315.24 278.43 279.77

Family Body 254.61 227.64 230.61
The values of the best-fitting models are shown in bold.
A

B

FIGURE 1

Ancestral reconstruction of dietary diversification throughout the evolutionary history of Liolaemidae (pie charts at nodes represent posterior
probabilities of each diet class), averaged across 500 trees. (A) (1) Phymaturus palluma group; (2) Phymaturus patagonicus group; (3) Liolaemus
walkeri group; (4) Liolaemus subgenus; (5) Liolaemus nigromaculatus section; (6) Liolaemus chiliensis section; (7) Eulaemus subgenus; (8) Liolaemus
lineomaculatus series; (9) Liolaemus montanus series. The probability of the common ancestor being omnivorous is slightly higher than the
probabilities of the other two diets. While ancestors of the Liolaemus genus were primarily insectivorous or omnivorous, herbivorous species have
independently evolved in different groups within this genus. (B) Mean transitions from one diet type to another, where insectivory had more
transitions towards omnivory, followed by a reversal between these two diets. The transitions to and from herbivory are very unlikely, especially the
one from herbivory to insectivory, which is represented by only one line with a value of 0.71.
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TABLE 2 Mean of the AIC values obtained for each OU models for the traits analyzed by genus (PHYMA, Phymaturus; LIOLA, Liolaemus) and by family.

Group Trait BM1 BMS OU1 OUM OUMV OUMA OUMVA K p

Phyma SVL −113.86 −111.35 −121.18 −119.79 −119.07 −117.72 −117.38 0.2 < 0.05

Phyma HeLe −118.49 −117.88 −139.84 −137.79 −138.03 −133.93 −134.12 0.12 0.08

Phyma HeWi −141.51 −140.73 −147.11 −145.05 −143.73 −143.38 −142.63 0.34 < 0.001

Phyma FoLi −87.2 −85.14 −94.49 −91.51 −92.4 −90.16 −86.35 0.14 0.24

Phyma HiLi −87.05 −84.97 −95.96 −93.64 −94.74 −94.16 −88.71 0.08 0.72

Phyma DiLi −47.94 −45.83 −53.79 −51.15 −51.03 −53.04 −44.11 0.16 0.11

Phyma AxGr −83.27 −81.77 −99.36 −97.01 −99.02 −97 −94.4 0.13 0.36

Liola SVL −346.4 −344.1 −359.44 −358.44 −356.85 −356.75 −354.58 0.41 < 0.001

Liola HeLe −691.58 −697.57 −723.97 −721.07 −723.34 −721.39 723.84 0.39 < 0.001

Liola HeWi −681.88 −685.24 −691.11 −690.74 −692.4 −691.89 −690.48 0.42 < 0.001

Liola FoLi −611.82 −611.81 −633.84 −631.89 −631.08 −630.88 −631.46 0.49 < 0.001

Liola HiLi −687.65 −688.2 −704.41 −702.99 −702.29 −702.52 −702.87 0.52 < 0.001

Liola DiLi −556.4 −555.94 −562.35 −560.87 −559.46 −560.15 −558.91 0.52 < 0.001

Liola AxGr −626.18 −630.79 −638.25 −636.71 −646.75 −645.39 −651.75 0.44 < 0.001

Family SVL −464.35 −460.93 −476.4 −481.12 −478.37 −477.06 −476.55 0.32 < 0.001

Family HeLe −786.33 −831.86 −853.82 −851.25 −865.23 −858.7 −860.64 0.23 < 0.001

Family HeWi −824.83 −829.47 −839.4 −842.67 −841.79 −844.1 −842.34 0.36 < 0.001

Family FoLi −703.01 −703.08 −731.83 −731.65 −729.89 −727.07 −725.42 0.31 < 0.001

Family HiLi −769.37 −780.03 −792.36 −794.14 −793.18 −791.26 −792.88 0.31 < 0.001

Family DiLi −546.89 −605.01 −576.83 −584.6 −611.74 −593.17 611.46 0.23 < 0.001

Family AxGr −709.55 −715.14 −723.95 −731.03 −737.07 −726.7 −736.75 0.38 < 0.001
F
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The traits are: SVL Snout-vent length, HeLe Head length, HeWi Head width, FoLi Front limbs, HiLi Hind limbs, DiLi Differences in limbs, AxGr Axial growth. AIC values in bold are the best-
fitting values. Phylogenetic signal (k) and its probability (p).
TABLE 3 Optimal values, sigma, and alpha obtained in the OUwie analysis by genus (PHYMA, Phymaturus; LIOLA, Liolaemus) and by family.
Phymaturus exhibits a single optimum for all its traits, while Liolaemus begins to show some traits that have more than one evolutionary optimum.
However, at the family level, almost all traits present optima for each type of diet.

Group Trait Model
optimum (q) Sigma (s2) Alfa (a)

Herb Inse Omni Herb Inse Omni Herb Inse Omni

Phyma SVL OU1 1.96 7.0e-4 0.42

Phyma HeLe OU1 0.63 3.7e-3 6.01

Phyma HeWi OU1 0.63 2.5e-4 0.34

Phyma FoLi OU1 0.78 2.8e-4 0.91

Phyma HiLi OU1 0.85 3.3e-4 1.19

Phyma DiLi OU1 0.57 2.7e-3 0.78

Phyma AxGr OU1 0.86 4.4e-3 20.69

Liola SVL OU1 1.80 1.5e-3 8.7e-2

Liola HeLe OU1 0.63 1.7e-4 0.14

Liola HeWi OUMV 0.68 0.58 0.59 4.2e-4 1.7e-4 9.3e-5 8.0e-2

Liola FoLi OU1 0.76 1.1e-4 0.12

(Continued)
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mm) species, representing a 2.7-fold increase in size. The SVL

reconstruction shows that the ancestor of the family may have had

around 71 mm of SVL (Figure 2), very close to the optimal size for

omnivores. This result supports the likelihood that the common

ancestor could have been omnivorous. Additionally, the rest of the
Frontiers in Ecology and Evolution 07
traits tend to show the same outcome, except for hind limb length

(Supplementary Figure 2). Phymaturus evolved to the largest sizes,

Ctenoblepharys to a lower medium size, and Liolaemus evolved a wide

range of sizes showing the greatest variation in SVL of the three genera.
3.3 Phylogenetic PCA

Phylogenetic PCA shows that herbivory has a particular body

and head shape that differentiates it from omnivory and insectivory

(Figure 4). In the head analysis, the principal component 1 explains

87% of the variation, and both head width and length are good traits

to separate groups. In the results of the body the principal

component 1 explains 58% of the variation, and difference

between limbs is a good trait to separate groups (Table 4).
4 Discussion

Our findings elucidate that the evolution of distinct dietary regimes

steered the Liolaemidae family towards optimal head and body

morphologies, underscoring the presence of both adaptive and non-

adaptive evolutionary processes in size and body form within its two

most abundant genera. These evolutionary optima manifest with

greater clarity when considering the entire family. Herbivorous

species emerge as the lizard subgroup exhibiting the most

pronounced morphological variations attributable to dietary

adaptation. Head width emerges as a pivotal trait, notably

distinguished by its differential response to interacting selective forces.

Our results support the hypothesis that diet evolution has driven

the evolution of three optimal body sizes in the family. Pincheira-

Donoso et al. (2015) previously examined body size in the genus

Liolaemus in search of an adaptive radiation pattern. They found that

this trait was best explained by an OU stabilizing selection model with

three distinct evolutionary optima (e.g., OUM). These three optimal

body sizes closely align with our results, differing only in the central
FIGURE 2

Snout–vent length (SVL) evolution in Liolaemidae, phenogram of the
ancestral reconstruction of SVL where the values on the x-axis are
in logarithm, and the y-axis shows the evolution time of the trait.
Histograms are the values of the optimal sizes q for each diet
estimated with Ornstein–Uhlenbeck models. The ancestral
reconstruction of the (SVL) of the common ancestor of the family,
suggests that it may have had a size very close to the optimal value
for omnivorous species. There is a significant variation in size ranges
between the genera Phymaturus and Liolaemus, indicating that the
latter has acquired a wide variety of sizes beyond the
optimal ranges.
TABLE 3 Continued

Group Trait Model
optimum (q) Sigma (s2) Alfa (a)

Herb Inse Omni Herb Inse Omni Herb Inse Omni

Liola HiLi OU1 0.87 5.5e-5 0.10

Liola DiLi OU1 0.62 1.3e-4 5.9e-2

Liola AxGr OUMVA 0.80 0.81 0.81 7.7e-7 1.4e-4 6.6e-5 1.8e-1 0.10 9.5e-2

Family SVL OUM 1.95 1.79 1.84 1.3e-3 8.7e-2

Family HeLe OUMV 0.64 0.63 0.63 4.1e-4 1.8e-4 1.3e-4 0.15

Family HeWi OUMA 0.63 0.56 0.57 1.8e-4 7.0e-2 5.7e-2 5.3e-2

Family FoLi OU1 0.76 1.1e-4 0.13

Family HiLi OUM 0.85 0.87 0.87 7.27e-5 1.39e-1

Family DiLi OUMV 0.54 0.63 0.64 8.4e-4 1.1e-4 1.7e-4 6.5e-2

Family AxGr OUMV 0.85 0.80 0.82 1.0e-4 6.0e-5 2.1e-4 0.14
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value. In our analysis, it corresponds to the size of omnivorous diets (70

mm in this study compared to 80 mm in Pincheira-Donoso et al.,

2015). It’s worth noting that their study focused solely on the Liolaemus

genus (109 species), yet our analysis encompasses all three genera and a

larger portion of the family (187 species). Therefore, the difference in

SVL optima for omnivores could potentially be attributed to sample

size bias. In this context Cooper and Vitt (2002) examined herbivory

and body size across 450 species from 23 lizard families, although their

primary goal was not to identify evolutionary optima, their results
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indicated that the majority of herbivorous species closely approached

the optimum size value we report here (Cooper Jr. and Vitt, 2002).

Similarly, Van Damme (1999) analyzed 97 populations representing 52

species within the Lacertidae family and found body size averages very

much in line with our findings for herbivorous and insectivorous diets

(Van Damme, 1999). These results suggest that the Liolaemidae family

can serve as a representative model for lizards in general.

Reconstruction of the evolution of diet in Liolaemidae showed

that the common ancestor of the family is likely to have been

omnivorous, challenging what was found previously by other

authors (Espinoza et al., 2004; Ocampo et al., 2022). This result

might be far from conclusive, because probabilities of the three diet

types at the ancestral node are very similar in value. In addition, the

combination of diet and genetic data of almost half of the Liolaemidae

family has yet to be completed for definitive analysis and conclusion.

However, our reconstruction of the SVL size of the common ancestor

(55% representativeness) support our result that the ancestor could

have been omnivorous, increasing this probability, and this makes a

lot of sense, since there is more likely to be a transition from

omnivore to herbivore or insectivore, allowing the divergence of

the family in three genera with different diets (Ocampo et al., 2022).

The analyses of evolutionary optima in SVL related to diet in

Liolaemus and Phymaturus (analyzed separately) reveal distinct

patterns of radiation within each genus. Phymaturus showed

evidence of widespread evolution toward a single optimum in

morphology and body size in relation to diet, exhibiting lack of clade

variation in resource usage. This finding aligns with previous studies

that indicate minimal ecological differentiation in reproduction

coupled with limited dispersal ability (Scolaro et al., 2013; Pincheira-
FIGURE 4

Phylogenetic morphospace of the traits measured in the head and
body of the different species of the Liolaemidae family. Green points
represent herbivorous species, blue points omnivorous, and red
points insectivorous. In both graphs, herbivorous species tend to
diverge from the other diets, while insectivores and omnivores do
not show significant morphological differences.
A

B

D

E

C

FIGURE 3

Differences in q, s2, and a among three types of diets in Liolaemidae,
where (A) is head length, (B) Head width, (C) differences in limbs,
(D) axial growth length, (E) hindlimbs length. Herbivorous species
exhibit larger heads and bodies, while their limbs are smaller. Her s2

rate was higher in head and limb traits, as well as the selective force a
on head width.
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Donoso et al., 2015; Scolaro et al., 2016; Reaney et al., 2018). Altogether,

these patterns support the evidence of non-adaptive radiation observed

in their range distribution and habitat use (Scolaro and Pincheira-

Donoso, 2010). This genus is nearly invariably viviparous, herbivorous,

and saxicolous, with species often isolated due to their dependence on

these rocky outcrops as their habitat (Ibargüengoytıá et al., 2008; Dıáz,

2009). Conversely, Liolaemus shows multiple optimal sizes associated

to head width in relation to each diet type which accounts for the great

variation in resource use within the genus. The head represents a

remarkably complex part of the body due to its multifunctionality,

encompassing feeding, breathing, vision, chemoreception, defense,

combat, sexual attraction, brain protection, and communication

(Herrel et al., 2001; Lappin and Husak, 2005; Kohlsdorf et al., 2008).

For all these functions, the head is subject to diverse and intricate

selective forces that may sometimes be in conflict (Kohlsdorf et al.,

2008). The optimal head shape observed in herbivores in this study

aligns with the morphological requirements for acquiring and

consuming plant material, which is characterized by large heads

(Herrel, 2007). The pterygoid, the largest jaw muscle in lizards

(Gröning et al., 2013), provides substantial bite force and is highly

developed in herbivorous species, enabling efficient reaping of tough,

fibrous items such as leaves (Herrel, 2007). In contrast, insectivorous

species exhibit smaller heads, offering less bite force but potentially

enhancing agility for capturing mobile prey (Herrel, 2007). On the

other hand, the distinct optima found in axial development for each

dietary type in Liolaemus are accompanied by a clear separation of

herbivorous species from the other diets. This trait developed at a

slower rate but with higher selective pressure. Selective pressures

interacting with body size can be of various types and may be in

opposition, but they can also be related to the type of food consumed

(Tennis et al., 1979; Winne et al., 2010). Liolaemus exhibits greater
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ecological differentiation in its reproduction, diet, habitat use, dispersal

among others (Pincheira-Donoso, 2011; Pincheira-Donoso et al., 2015;

Edwards et al., 2022). Therefore, it is undoubtedly a completely

different type of radiation than Phymaturus. The great ecological

differences related to resource use as basis for divergent selection,

couple with the frequent convergence in morphology and body size

associated with diet evolution, further supports an adaptive radiation-

based diversification of the genus. This opens up a huge possibility for

further evolutionary studies using this family as an example group

given the contrasting evolutionary patterns found across clades.

In the family, most traits exhibited a higher rate of change (s2) in
herbivores, possibly due to increased selective pressure, as indicated

by our results on head width. This finding is of particular interest as it

supports the hypothesis that head morphology evolves more rapidly

than overall body shape, a pattern observed in the evolutionary

history of various species, including tyrannosaurids, geckos, and

finches (Grant and Grant, 2002; Stokstad, 2004; Eloy de Amorim

et al., 2017). Another example of this pattern can be found in human

evolution, where changes in brain size and reductions in bite force

due to dietary shifts have significantly influenced body shape and size

(Aiello and Wheeler, 1995; Lieberman, 2011). Changes in

evolutionary rate (i.e., s2) with a change in diet can trigger a series

of morphological and physiological adaptations, including an

extended intestinal length (Pincheira-Donoso, 2021); including the

presence of colonic valves in the intestines, which slow down food

passage to facilitate digestion by the necessary intestinal flora for

cellulose degradation (Iverson, 1982), and symbiotic associations with

other organisms (bacteria and protozoa) aiding in the digestion of

plant material (Cooper Jr. and Vitt, 2002; Espinoza et al., 2004).

The relatively high variation observed between front and hind

limbs is indicative of the need to change body morphology to adopt a

novel foraging strategies and habitat utilization with a change in diet

(Miles et al., 2007). Our findings indicate that herbivorous species tend

to adapt towards shorter limbs with minimal variation between them.

An herbivorous diet often involves less active food searching (Cooper

Jr., 1995). Conversely, omnivorous and insectivorous species exhibit

longer hind limbs, which enable them to run faster and capture mobile

prey, sometimes even resorting to bipedal locomotion (Losos, 1990;

Irischick and Jayne, 1999; Aerts et al., 2003; Miles et al., 2007). Notably,

omnivores display longer forelimbs, which could represent an

intermediate stage between insectivores and herbivores. According to

our results, they seem to be in the process of reducing the variation

between forelimbs and hind limbs to achieve the body proportions of

herbivores. The transition from insectivory to herbivory through

omnivory was also reported by Ocampo et al. (2022). Losos et al.

(2000) have proposed that limb length can be influenced by various

factors, including differences in microhabitat utilization, given its

considerable phenotypic plasticity (Losos et al., 2000). It is important

to note, however, that intrapopulation variation of a trait typically does

not surpass the species baseline morphology. Furthermore, this trait in

limb lengthmay be subject to strong exaptation, representing a product

of an original and suitable function (Revell et al., 2007) such as

dietary adaptation.

The phylogenetic PCA highlights significant differences in head

and body morphology from herbivorous species compared to the other
TABLE 4 Summary statistics and phylogenetic PCA factor loadings for
morphological traits.

Head analysis PC1 PC2

Eigenvalues 2.09E-4 3.07E-5

Variation explained (%) 0.87 0.13

Standard deviation 0.01 0.01

HeLe −0.95 0.31

HeWi −0.91 −0.41

Body analysis PC1 PC2 PC3 PC4

Eigenvalues 2.08E-4 8.54E-5 6.21E-5 2.84E-6

Variation explained (%) 0.58 0.24 0.17 0.01

Standard deviation 0.01 0.01 0.01 0.00

FoLi −0.02 0.99 0.08 0.11

HiLi −0.65 0.72 −0.12 −0.22

DiLi −0.99 −0.10 0.03 0.03

AxGr 0.03 −0.02 0.99 −0.03
Abbreviations are listed in methodology. The length and width of the head, the length of the
hind limbs, and the difference in length between limbs are the traits that best explain the
separation between the groups.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1361799
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Ocampo et al. 10.3389/fevo.2024.1361799
two diets, underscoring the implications of physical and physiological

adaptations associated with this dietary type (Iverson, 1982; Espinoza

et al., 2004; Ocampo et al., 2022). The shift to herbivory represented a

pivotal innovation within the family, enabling them to exploit new

ecological niches in their environment (Miller et al., 2022). Notably,

aside from SVL, traits of omnivorous species closely resemble those of

insectivores. This observation may be linked to the rapid and drastic

morphological changes in the head that accompany the transition to

herbivory, while changes in size occur more gradually.
5 Conclusion

Our findings underscore the significant role of diet in shaping the

evolution of body form within the Liolaemidae lizard family, giving rise

to distinct optimal body shapes corresponding to each dietary preference.

While factors such as sexual selection, predation, competition, and others

also exert considerable influence on this process, diet emerges as a

consistent and prevalent driver in this group. The influence of diet

evolution and the evolution of Liolaemidae can be observed when we

compare diet evolution at the clade level (i.e., genus level). When diet

change very little though evolution, such as in Phymaturus, the is low

morphological variation and the high diversification does not reflect

adaptive radiation. Phymaturus has been previously described as a genus

that evolved through non-adaptive radiation (Reaney et al., 2018). On the

contrary, when diet evolution shows great diversity (e.g., the evolution of

three diet types), it is repeatably convergent and has generated great

morphological and size variation across species, high diversification is

linked to adaptive radiation vis a vis the use of food resources.

The rapid evolution of head relative to body length in

herbivores presents a compelling avenue for future research.

Furthermore, the remarkable diversity within the Liolaemidae

family, coupled with its broad spectrum of habitat utilization,

positions it as a valuable representation of the entire lizard group.
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