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Introduction: Soil salinity–alkalinity has emerged as a global problem affecting

many ecosystems, including grassland. Plants evolve into different ecotypes to

adapt to various environments. Leymus chinensis widely distributed in the

eastern Eurasian steppe, has evolved into two main ecotypes: yellow–green

(YG) and gray–green (GG). Studies on the adaption mechanisms of both

ecotypes in response to saline–alkaline stress are limited.

Methods: In this study, the growth and physiological traits of ecotypes YG and

GG in soils with different salinity–alkalinity levels—severe saline–alkaline soil (SS),

moderate saline–alkaline soil (MS), and light saline–alkaline soil (LS)—were

studied. After exposure to saline–alkaline stress for 15 months, the L. chinensis

ecotypes exhibited significant differences in the growth characteristics.

Results: The specific leaf area, individual tiller biomass, net photosynthetic rate,

and potassium content of the two ecotypes under MS conditions were significantly

higher than or similar to those under LS conditions. This indicates that L. chinensis

showed a certain degree of tolerance to saline–alkaline environments under MS

conditions. Saline–alkaline stress increased the tillers by 56% in GG and reduced

them by 26% in YG, and did not alter the SLA and the number of individual tiller

leaves of GG but reduced that of YG. Moreover, with increasing levels of saline–

alkaline stress, ecotype GG exhibited an increase in net photosynthetic rate (Pn),

while ecotype YG showed insignificant changes. Under SS, GG exhibited higher Pn

and chlorophyll content than YG. Additionally, with the increase in the saline–

alkaline stress level, the Na+ content increased, but GG exhibited a significantly

lower Na+ content than YG. Conversely, the K+ and Ca2+ contents and the K+/Na+

and Ca2+/Na+ ratios decreased, but GG exhibited higher values than YG.

Discussion: GG reduced Na+ by absorption by increasing tillers. Additionally, GG

absorbed more K+ and Ca2+ ions, thereby maintaining higher K+/Na+ and Ca2+/

Na+ ratios than YG under saline–alkaline stress. These adaptive strategies enable

ecotype GG to grow and maintain normal physiological functions under high

saline–alkaline stress. The findings of this study hold practical significance for

enhancing the economic and ecological value of saline–alkaline grasslands.
KEYWORDS
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1 Introduction

Soil salinity–alkalinity is an important factor influencing the

degradation of grassland ecosystems and has become a global

environmental problem (Kemp et al., 2013; Shabala, 2013; Sun

et al., 2017; Wang et al., 2020a). The diminishing soil protection

capacity and excessive soil moisture evaporation relative to

precipitation in degraded grasslands result in the continuous

accumulation of neutral and alkaline salts in the soil (Yang et al.,

2016; Gang et al., 2018; Chen et al., 2019). Soil salinity–alkalinity

constrains the absorption of water and nutrients by plants,

threatening their survival (Kitajima and Fenner, 2000; El-Keblawy

and Al-Rawai, 2005). Grassland degradation and soil salinity–

alkalinity form a detrimental cycle, severely limiting agricultural

and pastoral production and development. Bioremediation

measures such as the cultivation of plants tolerant to saline–alkaline

conditions are commonly employed to treat saline–alkaline soil

(Maggio et al., 2000; Tipirdamaz et al., 2006). Hence, understanding

the adaptation of plant growth to saline–alkaline soil is crucial.

Saline–alkaline stress exerts a strong inhibitory effect on plant

growth (Zhang et al., 2017). Saline–alkaline soil contains high

concentrations of neutral salts and alkaline salts i.e., Na2CO3 and

NaHCO3 (Doula et al., 2016). Compared with plants subjected to

neutral salt stress, plants under saline–alkaline stress absorb a large

number of ions through root tip contact, resulting in ion toxicity and

osmotic stress; moreover, they are affected by high pH and its

combination with other stressors (Wang et al., 2017). Saline–alkaline

stress can significantly reduce plant height, leaf number, stem length,

and aboveground biomass (AB) (Liu et al., 2015a) and increase

tillering and stem biomass in plants. Moreover, different species

exhibit different responses to saline–alkaline stress. Light saline–

alkaline stress can promote the growth of plants tolerant to salinity–

alkalinity conditions, such as Phragmites australis, Chloris virgata, and

Setaria viridis; however, high saline–alkaline stress inhibits the growth

of such plants (Munns et al., 1999). Additionally, some plants may

evolve into different ecotypes through several strategies, including the

adjustment of growth, morphology, and reproduction patterns, to

thrive under diverse stresses (Hoffmann and Sgrò, 2011; Anderson

et al., 2012; Sun et al., 2022a). Previous studies have focused on the

effects of salt stress on grassland plants, and the research objects of

saline–alkaline stress are mainly crops and cultivated land (Hu and

Schmidhalter, 2023; Rao et al., 2023; Zhou et al., 2023).

The growth morphology of plants serves as a visible indicator of

their response to stress. Sun et al. (2022a) divided these indicators

into horizontal and vertical aspects. The horizontal aspects include

plant height, while the vertical aspects include leaf density, leaves, and

tillers (Zeng et al., 2013; Wang et al., 2022). El-Hendawy et al. (2005)

demonstrated that different wheat and rice genotypes exhibited

various responses to salinity according to three agronomic

variables: tiller number, leaf number, and leaf area per plant. Salt-

tolerant wheat exhibited more tillers than salt-sensitive wheat (El-

Hendawy et al., 2005). In addition, Poorter et al. (2012) and Dolezal

et al. (2021) revealed that plants were more likely to adjust biomass

allocation than to change the morphology of tissues and organs. This

adaptation serves as a survival strategy for coping with stress (Dolezal

et al., 2021; Sun et al., 2022b). Cortois et al. (2016) reported that
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photosynthesis is a functional feature that affects plant growth and

reproductive adaptability. Other studies have reported that

photosynthesis reflects the characterization of plants in different

environments (Lawlor, 2009; Zhou et al., 2014). Zhou et al. (2014)

reported that different ecotypes exhibited different photosynthesis

intensities. In another study, photosynthetic area and solar utilization

efficiency were mainly affected by leaf morphology, and they

exhibited high sensitivity and adaptability to changes in the

external environment (Xu et al., 2009). In addition, Zhou et al.

(2014) reported that leaf water use efficiency, chlorophyll content,

and inorganic ions were key factors for evaluating the environmental

suitability and production performance of plants. Therefore, the

observation and measurement of the growth characteristics and

functional characteristics of plants enable a more direct exploration

of the tolerance mechanism of plants to saline–alkaline

stress conditions.

Leymus chinensis is one of the main forage grasses and dominant

plant species in the grasslands of eastern Eurasia (Liu et al., 2011;

Zhou et al., 2014; Liu et al., 2019b). This perennial gramineous plant

exhibits resistance to cold, drought, and salinity, with a broad

ecological niche (Ma et al., 2015, Ma et al., 2019). L. chinensis

primarily relies on root reproduction, with seeds serving as

supplementary reproduction under stress conditions (Ma et al.,

2021b; Sun et al., 2022a). The long-term growth of L. chinensis in

various environmental conditions leads to the formation of

individuals or populations of the same species with ecological

differences due to adaptive divergence. Moreover, two ecotypes of

this species exist: gray–green (GG) and yellow–green (YG) (Bai et al.,

2012; Zhou et al., 2014; Sun et al., 2022a), which differ in morphology

and physiology (Chen and Wang, 2009). The GG ecotype is

distributed mainly in the soda saline–alkaline grassland of the

Songnen Plain in Northeast China, while the of YG ecotype is

distributed mainly in the natural grasslands of Inner Mongolia (Liu

et al., 2019b; Ma et al., 2019). Some studies have focused on the

differences in ecotypes, such as leaf color (Liu et al., 2019b), leaf

photosynthesis (Zhou et al., 2014), and seed germination (Ma et al.,

2021a); however, research on the differences and mechanisms of

stress tolerance between ecotypes GG and YG is limited.

In this study, two ecotypes of L. chinensis ramets were

transplanted from natural Songnen Plain grasslands to pots

containing different ratios of saline–alkaline soil in 2021 and

cultured for 15 months. In June 2022, L. chinensis individuals

from both GG and YG ecotypes were examined. The aim of this

study was to investigate (1) the growth characteristics, functional

traits, and physiological traits of the GG and YG ecotypes in

response to different levels of soil salinity–alkalinity and (2) the

mechanisms of saline–alkaline tolerance from the aspects of the ion

and photosynthesis characteristics.
2 Materials and methods

2.1 Plant and saline–alkaline soil samples

The experiment was conducted in the canopy of the Northeast

Institute of Geography and Agroecology, Chinese Academy of
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Sciences, Changchun City, Jilin Province (125.38°E, 43.98°N,

altitude 190 m). The experimental site is situated in a temperate

continental monsoon climate. From 2010 to 2016, the average daily

temperature ranged from 2°C to 6°C, with the highest daily

temperature reaching 35°C and the lowest dropping to −20°C.

The annual precipitation ranged from 350 mm to 650 mm, with

75% of the precipitation concentrated from June to August (Zhao

et al., 2019; Wang et al., 2020b). The soil type was black soil, with a

soil layer thickness of 0.30 m. L. chinensis individuals from both GG

and YG ecotypes in the experimental nursery were selected. Light

saline–alkaline (LS, pH: 7.1–8.5), moderate saline–alkaline (MS,

pH: 8.5–9.5), and severe saline–alkaline (SS, pH: > 9.5) soils were

mixtures of pure alkaline and non-alkaline soils at ratios of 1:4, 3:2,

and 4:1, respectively, and the salinity–alkalinity intensity of the

experimental soil was determined according to the pH of the mixed

soil. The alkaline soil with a soil pH range of 8.5–11 and the non-

alkaline soil were collected from the Songnen Plain.
2.2 Pot culture test

The experiment was conducted from May 2021 to August 2022.

The two ecotypes of L. chinensis used in the experiment were all

collected from the Da’an Sodic Land Experiment Station (45° 35′
58″ – 45° 36′ 28″ N, 123° 50′ 27″ – 123° 51′ 31″ E), in the western

part of the Songnen Plain, Northeast China. The GG and YG

ecotypes utilized in the experiment were sourced from the same

experimental field, ensuring uniform growth environments. In May

2021, 36 tillers of L. chinensis with similar growth potential (2

leaves, average plant height of 10 cm) were obtained from GG and

YG, respectively. Each group consisted of four tillers of L. chinensis,

and GG and YG were each divided into nine groups. Three groups

of L. chinensis were transplanted into three pots (H:D =

20 cm:15 cm) containing the same type of saline–alkaline soil,

resulting in a total of 18 pots. GG and YG ecotypes of L. chinensis in

pots were cultivated under a canopy. The same amount of water was

applied every 3 days to maintain soil moisture. To eliminate the

impact of litter on the regreening of L. chinensis in the second year,

AB was cleared in September 2021, leaving a stubble height of

approximately 5 cm. By the end of July 2022, the photosynthetic

efficiency and growth indices (plant height, tillers, and leaf

morphology) of L. chinensis were assessed. In August 2022, the

aboveground parts of L. chinensis were collected for the

determination of leaf cation content, biomass, and biomass

allocation. During the culture experiment, the L. chinensis ecotype

and the soil used were the only two variables.
2.3 Plant growth, photosynthetic
characteristics, and leaf cations

The growth characteristic indices of this experiment mainly

included height, tiller number (T), leaf biomass of individual plants

(LBI), stem biomass of individual plants (SB) and leaf sheath biomass

of individual plants (LSB). During the vigorous growth period, tiller (T)

counts were conducted in the pots, and the height of six vegetative
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plants was measured in each treatment. Additionally, two plant

samples were collected from each pot, with each treatment

comprising six tillers. From each treatment, six healthy and non-

destructive vegetative stems were selected, and two plant samples were

collected from each pot. These samples were immediately transported

back to the laboratory, with the stems, leaves, and sheaths placed

separately into envelopes. Subsequently, the six vegetative stems were

dried at 75°C for 48 hours and weighed (Zhou et al., 2014).

The leaf morphological traits were measured, including leaf

thickness (LT), leaf biomass (LM), and specific leaf area (SLA).

Secondary leaves from six healthy and non-destructive vegetative

strains at vigorous growth stage were selected to measure LT, and

leaf area was determined using a leaf area meter. The leaves were

placed in an envelope and dried to determine LM. The SLA was

calculated as the ratio of leaf area to leaf biomass.

SLA = LA=LM

The photosynthetic indices included net photosynthetic rate

(Pn), transpiration rate (Tr), stomatal conductance (Gs), and

instantaneous water use efficiency (WUE). The physiological and

biochemical indices included chlorophyll (Chl, chlorophyll a,

chlorophyll b), sodium ion (Na+), potassium ion (K+), calcium ion

(Ca2+), and magnesium ion (Mg2+) content. Photosynthesis

measurements were conducted from 9:00 to 11:00. Six fully

expanded healthy secondary leaves were selected for each treatment

(Liu et al., 2019a). Pn, Tr, and Gs were measured using an open gas

exchange system photosynthesis system (LI-6400, LI-COR, Lincoln,

USA). WUE was calculated using the formula: WUE = Pn=Tr

(Dewar, 1997). Chlorophyll a and chlorophyll b were measured

through the Arnon method (Esteban et al., 2018), with each pot

containing two plant samples (Fargasǒvá, 1996), and each treatment

comprising six tillers. The contents of Na+, K+, Ca2+, and Mg2+ in

leaves were determined through inductively coupled plasma-atomic

emission spectrometry (ICP-AES; inductively coupled plasma optical

emission spectrometry, Japan) (Cuin and Shabala, 2005). After the

experiment, the aboveground parts of L. chinensis were collected,

then dried at 75°C for 48 hours (Zhou et al., 2014). The AB was

measured. The individual tiller biomass (IB) was determined as

follows:

IB = AB=T
2.4 Soil physical and chemical properties

Highly alkaline soil and natural non-alkaline soil were mixed at

ratios of 0:1, 1:1, and 4:1 (weight/weight) to obtain LS, MS, and SSs,

respectively. Samples of experimental soils were collected to analyze

their physical and chemical properties, with each soil type replicated

three times. Soil and water were mixed at a ratio of 1:5 (weight/

volume), and then pH and electrical conductivity (EC) were

determined by potentiometry. Soil organic carbon (SOC) content

was determined through thermal oxidation using H2SO4-K2Cr2O7

(Zhou et al., 2014). CH3COONH4 solution was added to dry soil

samples, and then available potassium (AK) was determined

through ICP-AES (Li et al., 1995). After the dry soil sample was
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digested with a catalyst and concentrated H2SO4, total nitrogen

(TN) was determined using a continuous flow analytical system

(SKALAR SAN++). The dry soil samples were digested using 4 mL

H2SO4-1 mL HClO4, and total phosphorus (TP) was determined

using the continuous flow analytical system. The NO3
−-N content

of fresh soil samples extracted with KCl was determined using the

continuous flow analytical system. The HCO3
− content of soil

samples was determined through the neutralization titration

method. The SO4
2− content of soil samples was determined

through spectrophotometry. The Cl− content soil samples was

determined via ion chromatography. The Na+ and Mg2+ contents

of soil samples were determined through (ICP-AES, ICPS-7500).
2.5 Statistical analysis

The differences in experimental soil physical and chemical

properties were calculated through one-way analysis of variance

(ANOVA). The effects of ecotypes (E), saline–alkaline stress (S),

and their interaction (S×E) on the traits of L. chinensis were analyzed

through two-way (ANOVA). Tukey’s post-hoc tests were employed

to determine the differences among the ecotypes of L. chinensis and

among treatments. The “ggpair” function was utilized to generate the

correlation matrix of growth characteristics, photosynthesis of YG

and GG ecotype L. chinensis and leaf cation contents, soil pH and EC.

All statistical analyses were conducted using R version 4.1.3.
3 Results

3.1 Soil physical and chemical properties

The physical and chemical properties of the soils are presented

in Tables 1, 2. With the increase in the percentage of alkaline soil,

the pH increased from 8.02 to 9.50, and EC increased from 120.9 to

612.02 mS/cm. LS exhibited higher SOC, TN, TP, and AN contents

than SS and MS, while no significant difference in these parameters

existed between MS and SS. SS exhibited higher Na+, Mg2+, HCO3
−,

SO4
2−, and NO3

−-N contents than MS and LS, while the contents in

MS were higher or not significantly different from those in LS (p >

0.05). No significant differences in Ca2+, K+, Cl−, TK, AP, AK, and

NH4
+-N contents existed between the different saline–alkaline soils

(p > 0.05). Among the soil anions, the HCO3
− content was the

highest, reaching 1628.7 mg/kg in SS. The three experimental soils
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significantly differed in nutrient composition and soil physical and

chemical properties.
3.2 Growth characteristics of Leymus
chinensis with different ecotypes under
saline–alkaline stress

The different ecotypes of L. chinensis exhibited significant

differences in height, tillers, LT, SLA, and IB under various saline–

alkaline stress conditions (p< 0.05, Figure 1). Height was significantly

affected by ecotypes (F1, 30 = 6.86, p< 0.05). Tillers were affected by the

interaction between ecotypes and saline–alkaline stress (F2, 3 = 8.61,

p< 0.01). LT was affected by ecotypes (F1, 30 = 8.12, p< 0.001), saline–

alkaline stress (F2, 30 = 25.46, p< 0.01) and their interaction (F2, 30 =

7.59, p< 0.01). SLA was affected by ecotypes (F1, 30 = 5.03, p< 0.05) and

saline–alkaline stress (F2, 30 = 4.41, p< 0.05). The two ecotypes

exhibited no significant difference in AB, but the IB was affected by

saline–alkaline stress (F2, 30 = 8.60, p< 0.05). Saline–alkaline stress

increased the tillers by 56% in GG and reduced them by 26% in YG.

The saline–alkaline stress did not alter the SLA of GG but reduced that

of YG by 20.1% (Figure 1). Under SS conditions, GG exhibited larger

tillers numbers, LT, and SLA than YG. Ecotypes GG and YG exhibited

lower IB under SS compared with the other stress conditions, but GG

showed higher IB than YG (although the difference was

significant).The average individual tiller biomass of YG decreased

from 3.1896 g under LS to 2.1226 g under SS. In contrast, GG

exhibited 25.72% under SS compared with LS. Saline–alkaline stress

reduced the leaf biomass allocation of L. chinensis. GG exhibited a

higher leaf biomass allocation than YG (Figure 2). Under the different

saline–alkali stress levels, GG exhibited no significant difference in the

number of tiller leaves produced by a individual tiller, while YG

exhibited a significant decrease in the number of individual tiller leaves

with increasing stress levels (F2,30 = 5.24, p< 0.05, Figure 2).
3.3 Photosynthetic capability of different
ecotypes of Leymus chinensis under
saline–alkaline stress

Saline–alkaline stress exhibited different negative impacts on the

photosynthetic characteristics of ecotypes GG and YG (Figure 2).

The Pn and chlorophyll content of L. chinensis were affected by

ecotypes (F1,46 = 3.50, p = 0.064; F1,30 = 62.63, p< 0.001), saline–
TABLE 1 Soil physical and chemical properties of LS, MS and SS soils before planting Leymus chinensis.

Treatments pH
EC
(mS/cm) SOC

Na+
(mg/kg)

Ca2
+(mg/kg)

Mg2
+(mg/kg)

HCO3-
(mg/kg)

Cl-
(mg/kg)

SO42-
(mg/kg)

LS
8.02
± 0.12c

120.87
± 1.63c

2.88
± 0.04a

20.17 ± 0.49c 103.49 ± 2.55a 13.85 ± 0.22c 300.12 ± 4.23b
101.77
± 3.13a

49.95 ± 1.66b

MS
9.15
± 0.06b

496.00
± 7.55b

1.66
± 0.01b

627.55
± 16.14b

96.29 ± 8.08a 21.06 ± 1.39b 985.76 ± 44.39a
107.68
± 3.13a

446.56 ± 21.86a

SS
9.50
± 0.06a

599.67
± 12.35a

1.48
± 0.09b

776.61
± 31.69a

141.43
± 28.45a

37.30 ± 7.35a
1248.06
± 190.43a

127.8
± 28.69a

583.50 ± 68.99a
LS, MS and SS soils represent light saline–alkaline, moderate saline–alkaline, and severe saline–alkaline soils. Lowercase letters represent intra-group differences.
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alkaline stress (F2,46 = 2.91, p = 0.068; F2,3 = 6.10, p< 0.01), and their

interaction (F2,46 = 2.90, p = 0.065; F2,30 = 3.63, p< 0.05), and Tr and

Gs were affected by saline–alkaline stress (F2,46 = 10.95, p = 0.001;

F2,46 = 18.99, p< 0.001). Saline–alkaline stress increased the Pn of GG

by 50% but did not alter that of YG; reduced the Gs of GG and YG by

26% and 51%, respectively; and reduced the Tr of GG and YG by 11%
Frontiers in Ecology and Evolution 05
and 46%, respectively. Moreover, saline–alkaline stress increased the

WUE of GG and YG by 27% and 11%, respectively. Under SS

conditions, GG exhibited a higher Pn than YG. Moreover, under SS

conditions, GG exhibited a significantly higher leaf chlorophyll

content than YG, despite YG showing a higher chlorophyll content

under moderate saline–alkaline stress (p< 0.01, Figure 3).
A B

C D

E F

FIGURE 1

Different ecotypes of L. chinensis show significant differences in growth characteristics under saline–alkaline stress. The growth characteristics
include the Height (A), Tillers per pot (B), Leaf thickness (C), Specific lesf area (D), Aboveground biomass (E), and the individual tiller biomass (F). The
values represent mean ± se. The F value represents the ratio of between-group variability to within-group variability, and the p value indicates the
significance level of this F value. Significant effects (p < 0.05) are in bold and marginally significant effects (0.05 < (p < 0.1) are in italics. Capital letters
indicate the significance of differences between ecotypes. Lowercase letters indicate the significance of differences under different saline-
alkaline stresses.
TABLE 2 Soil nutrient content of the soils before planting Leymus chinensis.

Treatments
TN
(mg/kg)

TP
(mg/kg)

TK
(g/kg)

AN
(mg/kg)

AP
(mg/kg)

AK
(mg/kg)

K+(mg/
kg)

NH4
+-N

(mg/kg)
NO3

–N
(mg/kg)

LS
1251.98
± 14.47a

447.32
± 13.61a

21.12
± 0.17a

77.84
± 1.48a 4.54 ± 0.35a

61.55
± 0.22a

16.56
± 4.48a 4.62 ± 0.13a 9.12 ± 0.34b

MS
765.44
± 8.39b

308.30
± 12.13b

22.85
± 0.18a

54.04
± 11.21ab 5.21 ± 0.31a

56.67
± 1.68a

12.46
± 0.64a 3.98 ± 0.29a 15.67 ± 1.94a

SS
738.39
± 54.96b

282.36
± 15.75b

22.70
± 0.28a

43.68
± 7.94b 4.65 ± 0.10a

56.88
± 4.64a

11.93
± 0.27a 3.98 ± 0.41a 14.82 ± 1.05a
LS, MS and SS soils represent light saline–alkaline, moderate saline–alkaline, and severe saline–alkaline soils. Lowercase letters represent intra-group differences.
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3.4 Response of leaf ions of Leymus
chinensis to saline–alkaline stress

The Na+ and K+ contents of L. chinensis were significantly

correlated with ecotypes (F1, 30 = 30.73, p< 0.001; F1, 30 = 11.07, p<

0.01) and saline–alkaline stress (F2, 30 = 133.04, p< 0.001; F2, 30 =

3.46, p< 0.05), and the Ca2+ content of L. chinensis was significantly

correlated with saline–alkaline stress (F2, 30 = 23.05, p< 0.001,

Figure 3). The ratios of K+/Na+ and Ca2+/Na+ in L. chinensis

leaves were significantly influenced by ecotype (F1, 30 = 6.83,

p< 0.05; F1, 30 = 7.62, p = 0.01), saline–alkaline stress (F2, 30 =

7.46, p< 0.001; F2, 30 = 8.17, p< 0.01), and their interaction (F2, 30 =

6.364, p< 0.01; F2, 30 = 7.04, p< 0.01). No significant difference in

Mg2+ content existed among the treatments. Saline–alkaline stress

increased the Na+ contents of GG and YG by 4352% and 472%,

respectively, while the K+ content remained unchanged in GG and

decreased by 15% in YG (Figure 4). Moreover, saline–alkaline stress

reduced the Ca2+ content by 33% and 34% in GG and YG,

respectively. The ratios of K+/Na+ and Ca2+/Na+ in GG decreased

by 99% and 85%, respectively, while those in YG decreased by 99%

and 88%, respectively. YG exhibited a lower leaf K+ content than

GG. Moreover, GG exhibited significantly higher K+/Na+ and Ca2+/

Na+ ratios than YG.
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3.5 Correlation between soil pH, EC, leaf
cation contents, and growth
characteristics, and photosynthesis of
Leymus chinensis

With the increase in saline–alkaline stress, both ecotypes

exhibited similar patterns in the leaf cation content, although the

extent of increase or decrease varied. To explore the mechanisms

underlying the influence of saline–alkaline stress on the growth and

photosynthesis of L. chinensis, we conducted Pearson correlation

analysis on the original data of soil pH, EC, leaf cation, growth

characteristics, and photosynthesis. Soil pH and EC were positively

correlated with Na+ content and negatively correlated with the K+

and Ca2+ contents. Soil pH, EC, and leaf cations exhibited

significant effects on the growth characteristics of L. chinensis

under saline–alkaline stress (Figure 5). SB exhibited a significant

negative correlation with Ca2+ (p< 0.001) and K+ (p< 0.01) and a

significant positively correlated with pH (p< 0.05), EC (p< 0.01),

Na+ (p< 0.001). Leaf biomass (LB) showed the opposite trend

compared with SB. SLA was negatively correlated with Na+ (p<

0.05) but positively correlated with K+ (p< 0.05) and Ca2+ (p< 0.05).

IB was positively correlated with Ca2+ (p< 0.05). A correlation

existed between plant growth characteristic indexes. Leaf biomass
A

B

C

D

FIGURE 2

The changes in biomass allocation of GG and YG under saline–alkaline stress. The number and percentage on each columns represent the average
biomass individual tiller and the proportion of the average biomass in the total biomass individual tiller. (A, B) represent the aboveground parts of 6
GG and YG tillers under LS, MS and SS (from lift to right). (C, D) represent biomass allocation percentage and leaf number of one tiller in Leymus
chinensis under treatment.
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(LB) exhibited a significant negative correlation SB (p< 0.001), and

LB and LT were positively correlated with SLA (p< 0.01). LB

exhibited the opposite trend compared with SB. IB was negatively

correlated with SB (p< 0.05).

Under saline–alkaline stress, soil pH, EC, and leaf cations

exhibited significant effects on the photosynthesis of L. chinensis

(Figure 5). Stomatal conductivity and transpiration rate were

negatively correlated with pH, EC, and Na+ (p< 0.05) but

positively correlated with K+. Photosynthesis rate was positively

correlated with SLA, LT, and chlorophyll content. Chlorophyll

content was positively correlated with K+. Additionally,

chlorophyll content was positively correlated with SLA and LT.

Na+ was negatively correlated with K+ and Ca2+, and K+/Na+ was

positively correlated with Ca2+/Na+.
4 Discussion

Consistent with previous research results, different ecotypes of

L. chinensis exhibited different responses under saline–alkaline
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stress (Zhou et al., 2014; Ma et al., 2015; Ma et al., 2021a; Sun

et al., 2022b). Saline–alkaline stress increased the tillers in GG and

reduced them in YG, and did not alter the SLA, the number of

individual tiller leaves, and K+ content of GG but reduced that of

YG. The decrease in leaf biomass proportion, individual tiller

biomass, Gs, and Tr of GG caused by saline–alkaline stress was

lower than that of YG. The increase in water use efficiency caused by

saline–alkaline stress was higher in GG compared to YG. Ecotype

GG exhibited more tillers; larger IB, LT, and SLA; enhanced

photosynthesis, higher chlorophyll, K+, and Ca2+ contents; and

higher K+/Na+ and Ca2+/Na+ ratios. Variations in sensitivity to

saline–alkaline stress were associated with ecotype identity and the

saline–alkaline concentration, consistent with findings from

previous studies (Megdiche et al., 2007). The growth morphology,

biomass, and photosynthetic advantages of ecotype GG indicate

that it was more tolerant to saline–alkaline conditions than YG,

owing to the accumulation of K+ and Ca+ in the former.

Ecotype GG demonstrated greater resilience to saline–alkaline

stress than YG, as evidenced by the growth morphology.

The saline–alkaline stress severely disrupted the normal growth,
A B

C D

E

FIGURE 3

Effects of saline–alkaline stress on the photosynthetic characteristics of Leymus chinensis. The photosynthetic characteristics include Photosynthetic
rate (A), Stomatal conductance (B), Transpiation rate (C), water use efficiency (WUE, D), and Chlorophyll (the sum of chlorophyll a and chlorophyll b,
E). The values represent mean ± se. The F value represents the ratio of between-group variability to within-group variability, and the p value
indicates the significance level of this F value. Significant effects (p < 0.05) are in bold and marginally significant effects (0.05 < p < 0.1) are in italics.
Capital letters indicate the significance of differences between ecotypes. Lowercase letters indicate the significance of differences under different
saline–alkaline stresses.
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development, and physiological and biochemical metabolism of L.

chinensis (Fang et al., 2021; Rao et al., 2023). First, sodium ions

enter the cell directly through channel and carrier proteins, causing

ion toxicity (Neverisky and Abbott, 2015; Fang et al., 2021).

Subsequently, the high ion concentration outside the cell reduces

the osmotic potential, which drives water molecules out of the cell,

leading to physiological drought. Both of these aspects can cause

plant metabolic disorders (Fang et al., 2021). Under saline–alkaline

stress, the accumulation of oxidative metabolites in L. chinensis can

inhibit normal growth and seed germination (Ma et al., 2021b; Yan

et al., 2023). Moreover, saline–alkaline stress can alter apoplastic pH

and intracellular pH environment (Geilfus, 2017; Rao et al., 2023),

thereby affecting photosynthetic efficiency (Ye et al., 2019). Fitness

of clonal plants can be determined by tiller production (Pilson,

2000). In terms of gene expression, Jin et al. (2006) identified a

higher number of putative abiotic stress-related genes from the leaf

cDNA library of Leymus chinensis grown in alkaline soil compared

to the root cDNA library. Sun et al. (2022b) studied the correlation

between gene expression flexibility and physiological performance

of L. chinensis under salt–alkaline stress. The DEGs and activated or

silenced genes identified from each of the pairwise transcriptomic
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comparisons were found to enrich in highly condition-specific

functional KEGG pathways of secondary metabolites and GO

terms that are known to be involved in responses to the

respective environmental stresses (Fang et al., 2021; Sun et al.,

2022b). The KEGG pathways in L. chinensis under salt–alkaline

stress showed enrichment of upregulated and downregulated DEGs

in the leaves. These KEGG pathways are mainly involved in the

biosynthesis and/or metabolism of secondary metabolites related to

plant growth and stress response. For example, pyruvate

metabolism, which produces soluble sugars in plants grown in

saline–alkaline soil, showed the highest and most concentrated

soluble sugar content. Additionally, the findings of (Sun et al.

2022b) indicate that although roots are directly in contact with

the soil, gene expression in both above-ground and root tissues is

greatly influenced by soil type, including the DEGs and their

functional relevance. Soluble sugars, such as glucose, sucrose, and

fructose, are closely associated with plant tolerance to abiotic stress

(Rathinasabapathi, 2000). These metabolites are essential for the

normal growth and photosynthesis of L. chinensis (Liu et al., 2015b;

Ma et al., 2021a). Under salt–alkaline stress, leaf ions directly or

indirectly participate in the process of photosynthesis, thereby
A B

C D

E

FIGURE 4

Effects of saline–alkaline stress on cation content in leaves of two ecotypes of Leymus chinensis. the leaf cation content including K+ cation (A),
Na+ cation (B), Ca2+ cation (C), the ratio of K+/Na+ (D) and the ratio of Ca2+/Na+ (E) of leaves. The values represent mean ± se. The F value
represents the ratio of between-group variability to within-group variability, and the p value indicates the significance level of this F value.
Significant effects (p < 0.05) are in bold and marginally significant effects (0.05 < p < 0.1) are in italics. Capital letters indicate the significance of
differences between ecotypes. Lowercase letters indicate the significance of differences under different saline–alkaline stresses.
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affecting the production of soluble sugars and the normal growth of

L. chinensis (Fang et al., 2021; Sun et al., 2022b). In our study, the T,

LT, SLA and IB values of L. chinensis increased or decreased with

increasing saline–alkaline stress. Ecotype GG exhibited different

patterns from YG. YG exhibited lower T, LT, and SLA in SS

compared with the other soils. GG exhibited higher T and LT in

MS and SS than LS, with no significant difference in SLA among the

soils. Ecotype GG demonstrated a more robust resistance breeding

strategy compared with YG. The larger LT indicates that ecotype

GG leaves could preserve more water. SLA is an important indicator

of plant stress tolerance (Kumar et al., 2012; Zhou et al., 2023).

These findings demonstrate that ecotype GG exhibited greater

resistance to saline–alkaline stress than ecotype YG. The results

are attributable to the reduced generation and accumulation of

reactive oxygen species and the increased production of antioxidant

enzymes and antioxidants in ecotype GG, which mitigated the

impact of saline–alkaline stress on the morphology of GG.

Moreover, the increased tillers of ecotype GG possibly alleviated

the adverse effects of saline–alkaline stress on its aboveground parts.

Soil pH and EC elucidate the physiological regulatory strategies of

ecotype GG in adapting to highly saline–alkaline environments
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through the leaf ions content. To mitigate the stress imposed by

saline–alkaline soils on individual plant organs (root), the roots

gradually transmit stress information to the aboveground parts

(Anil et al., 2005; Krishnamurthy et al., 2009). Leaf ion content

reflects the ability of plants to regulate the absorption of soil ions

(Fang et al., 2021; Wang et al., 2022). The leaf Na+ content can serve

as an indicator of the plant’s capacity to mitigate ion stress in saline–

alkaline stress environments (An et al., 2017; Zhang et al., 2017).

Additionally, the K+ concentration is closely related to the regulation

of osmosis, the membrane potential, and enzyme activity in plants

(Falhof et al., 2016; Hasanuzzaman et al., 2018). Appropriate Ca2+

content is beneficial for maintaining K+ homeostasis under saline–

alkaline stress. Moreover, supplementing Ca2+ can counteract plasma

membrane depolarization induced by salt stress, thereby enhancing

K+ absorption (Bacha et al., 2015). High K+/Na+ and Ca2+/Na+ ratios

are necessary for the normal growth and development of plants under

saline–alkaline stress (Fang et al., 2021), consistent with our findings.

In our study, Na+ accumulation increased in L. chinensis, while the

K+/Na+ and Ca2+/Na+ ratios decreased under saline–alkaline stress.

This indicates that L. chinensis was affected by saline–alkaline stress.

The Ca2+ and K+ contents maintained a certain concentration in LS
FIGURE 5

Pearson correlation among traits of Leymus chinensis and soil pH and EC. Morphological traits are including to K+, Na+, Ca2+, K+/Na+, Ca2+/Na+ of
leaf. Growth Indicators are including to Height, Trillers, leaf thickness (LT), leaf biomass individual plant (LB), leaf sheath biomass individual plant
(LSB), stem biomass individual plant (SB), specific leaf area (SLA) and IB (individual plant biomass). Physiological traits are including to photosynthesis
rate (Pn), stomatal conductivity (Gs), transpiration rate (Tr) and water use efficiency (WUE), chlorophyll (Chl, sum of chlorophyll a and chlorophyll b).
Green dots, regions and numbers represent YG, blue dots, regions and numbers represent GG, and black bold numbers represent two factors that
are significantly correlated. The green dots, regions and numbers represent YG ecotype of Leymus chinensis, the blue dots, regions and numbers
represent GG ecotype of Leymus chinensis, and the bold black numbers represent a significant correlation between the two factors. *, **, ***
indicate significant correlation between two factors at 0.05, 0.01, and 0.001 level respectively.
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and MSs, which proves that L. chinensis exhibited a certain degree of

saline–alkaline tolerance. However, ecotypes GG and YG differed in

tolerance ability. GG showed a lower Na+ content than YG, and GG

exhibited higher the K+/Na+ and Ca2+/Na+ ratios than YG. The K+

content of GG under SS conditions was comparable to those under LS

and MS conditions but higher than YG. The stronger saline–alkaline

tolerance of ecotype GG compared with that of YG is attributable to

the ability of GG to maintain stable K+ and Ca2+ contents in cells and

reduce Na+ absorption, thereby maintaining higher K+/Na+ and

Ca2+/Na+ ratios.

Saline–alkaline stress negatively impacts the chloroplast

structure, leading to a decrease in chlorophyll content and affecting

photosynthetic efficiency (Ye et al., 2019; An et al., 2021). Moreover,

studies have reported that salt stress led to stomatal closure, reduced

intercellular carbon dioxide concentration, and thereby reduced

photosynthesis (Zhou et al., 2014; Wang et al., 2017).

Photosynthesis primarily occurs in plant leaves, and thus, leaf

morphology influences plant photosynthesis (Lawlor, 2009; Cortois

et al., 2016). K+ ions play a direct role in the formation and stability of

chloroplasts by influencing leaf expansion and stomatal opening and

closing. They also regulate the activity of photosynthetic enzymes,

ultimately affecting photosynthesis either directly or indirectly

(Falhof et al., 2016; Hasanuzzaman et al., 2018). By regulating the

activity of enzymes in chloroplasts and participating in the synthesis

of photosynthetic pigments, Ca2+ ions affect photosynthesis and the

synthesis of photosynthetic products (Bacha et al., 2015). Therefore,

plants can maintain high potassium and calcium contents under

stress to ensure normal photosynthetic function. Furthermore, SLA

and LT exhibited a positive correlation with photosynthetic rate

under saline–alkaline stress. Moderate and severe saline–alkaline

stress significantly reduced the transpiration rate and stomatal

conductance of L. chinensis, indicating its susceptibility to saline–

alkaline stress. However, this reduction did not impair the

photosynthetic functions of ecotypes GG and YG, substantiating

that L. chinensis possesses a certain tolerance to saline–alkaline

conditions. Moreover, under severe saline–alkaline stress, the

photosynthetic rate of ecotype GG increased, while that of YG

decreased. Therefore, the superior photosynthetic performance of

GG compared with YG under saline–alkaline stress is due to the

ability of GG to regulate the absorption of higher levels of K+ and

Ca2+, thereby mitigating ion toxicity and maintaining elevated

chlorophyll levels. This interpretation is supported by our

correlation analysis findings.

We investigated the adaptation mechanism of the aboveground

parts of different ecotypes of L. chinensis under saline–alkaline

stress. Ecotype GG exhibited lower Na+ absorption, higher K+ and

Ca2+ absorption, and higher K+/Na+ and Ca2+/Na+ ratios than

ecotype YG under saline–alkaline stress. Future research can

explore rhizome characteristics and metabolic processes to further

elucidate the differences in clonal integration strategies among

different ecotypes of L. chinensis under saline–alkaline stress.
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