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Habitat loss is a primary driver of global biodiversity decline, negatively impacting

many species, including native bees. One approach to counteract the

consequences of habitat loss is through restoration, which includes the

transformation of degraded or damaged habitats to increase biodiversity. In

this review, we survey bee habitat restoration literature over the last 14 years to

provide insights into how best to promote bee diversity and abundance through

the restoration of natural landscapes in North America. We highlight relevant

questions and concepts to consider throughout the various stages of habitat

restoration projects, categorizing them into pre-, during-, and post-restoration

stages. We emphasize the importance of planning species- and site-specific

strategies to support bees, including providing floral and non-floral resources

and increasing nest site availability. Lastly, we underscore the significance of

conducting evaluations and long-term monitoring following restoration efforts.

By identifying effective restoration methods, success indicators, and areas for

future research, our review presents a comprehensive framework that can guide

land managers during this urgent time for bee habitat restoration.
KEYWORDS

bee habitat restoration, pollination services, ground-nesting bees, floral resource
availability, native bee monitoring
1 Introduction

Ecological restoration, or habitat restoration, is the process of aiding the recovery of an

ecosystem that has suffered degradation, damage, or destruction (Society for Ecological

Restoration, 2004) to re-establish native plants and animals. In restoration, it is a common

practice to focus on planting native plants, with the assumption that this is sufficient to
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restore the community and ecosystem (Kimball et al., 2015; Miller

et al., 2017; Hamilton et al., 2022), as well as to provide habitat for

targeted species in conservation (Hamilton et al., 2022). Generally,

it has been shown that there is a positive effect of habitat restoration

on bee population abundance and diversity, even if bees are not

specifically included in the restoration plan (Heneberg, 2012;

Tonietto and Larkin, 2018; Esque et al., 2021). However, by

directly targeting the needs of local native bee species, we can

ensure that the habitat requirements and floral resources are

available for the highest bee diversity possible, including local at-

risk species such as specialist bees (bees that forage pollen from one

family, genera, or species of plant) (Griffin et al., 2017; Tonietto and

Larkin, 2018; Griffin et al., 2021; Bullock et al., 2022). We propose

that bee-centric restoration can further enhance bee abundance and

diversity, thus increasing plant-pollinator interactions, and

supporting the long-term sustainability of both diverse plant and

bee species within an ecosystem (Griffin et al., 2017; Tonietto et al.,

2017; de Araújo et al., 2018; Fantinato et al., 2018; Tonietto and

Larkin, 2018; Cariveau et al., 2020; Griffin et al., 2021; Purvis et al.,

2021; Meldrum et al., 2023).

To assemble the literature on bee habitat restoration, we

conducted a topical search on Web of Science using the following

three keywords: bee, habitat, and restoration. This search captured

publications that included all three words in the title, abstract, or list

of keywords. We followed this with two additional combinatorial

searches, the first using the terms “bee” + “nesting” + “restoration”

and the second using the terms “bee” + “floral resource” +

“restoration.” We then restricted our literature search to the years

from 2010-2024, following the publication of “The Conservation

and Restoration of Wild Bees” by Winfree (2010), which addressed

the restoration of bee communities. Together, these searches yielded

391 distinct articles. We restricted our review to 125 articles by

focusing on North America, as well as by excluding most studies

related to agricultural and urban environments, and non-native

bees (i.e., honey bees). A few studies were included outside of these

criteria (i.e., neonicotinoid exposure to bees) if they were critical to

our recommendations for effective restoration practices. Our review

does not attempt to prescribe universal solutions for habitat

restoration because factors such as the size of the site being

restored, the geographical location, and the type of habitat

present can significantly influence the execution and objectives of

a restoration project. Habitat restoration can range in size from

thousands of acres to small-scale projects of less than one acre.

While recommendations from this review can be integrated into

restoration efforts at any scale, we aim to provide insights that are

especially applicable to smaller-scale restoration projects.

The articles we reviewed revealed a number of biases. Out of the

125 articles reviewed, only 22% (28 articles) targeted specific

taxonomic or functional groups of bees (e.g., eusocial, solitary).

Of these 28 articles, 75% (21) were focused on bumble bees. While

the risk of population decline faced by bumble bees is high (Colla

et al., 2006, Colla et al., 2012; Mola et al., 2021b), it is important to

note that solitary bee species represent 85% of bee diversity globally

(Batra, 1984). There was a notable lack of research targeting solitary

bees, which was the focus of only 9 of the 28 articles (32%). The

remaining articles focused solely on enhancing overall bee diversity
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and discussed general conservation or restoration strategies

applicable to bees and other pollinators. Furthermore, only three

of the 125 articles examined were focused on specialist bees. While

some studies on specialists have been conducted in Europe (Exeler

et al., 2010; Sydenham et al., 2014; Heneberg et al., 2019), there is a

distinct lack of research focusing on North American specialists.

Finally, the majority of the 125 studies that focused on a particular

habitat or region were conducted in grasslands, prairies, and forests,

w i th f ew s tud i e s conduc ted in dese r t , a lp ine , and

scrubland environments.

Nearly 90% of angiosperm species rely on insects, especially

bees, for pollination (Ollerton et al., 2011; Koh et al., 2016; Almeida

et al., 2023). However, continued development, expansion of

agricultural monocultures, the spread of invasive plant species,

and pollution all pose risks to bee species diversity and

abundance (Winfree, 2010; Lázaro and Tur, 2018; LeBuhn and

Vargas Luna, 2021; Mola et al., 2021b). Native bee species and their

associated host plants are experiencing local extinction and

population decline due to human activities (Winfree, 2010;

Goulson et al., 2015; Koh et al., 2016; Sánchez-Bayo and

Wyckhuys, 2019; Raiol et al., 2021; Lima et al., 2022).

Anthropogenic threats (summarized in Table 1) can reduce the

quantity and quality offloral resources and suitable nesting habitats,

exacerbating the stressors faced by native bees (Goulson et al., 2015;

Goulson and Nicholls, 2016; Kline and Joshi, 2020; Olynyk et al.,

2021) and highlighting the need for conservation and habitat

restoration efforts to protect these species (Winfree, 2010;

Drossart and Gérard, 2020; Hanberry et al., 2021).

The majority of bee species in North America are solitary bees,

which are non-eusocial and typically build their nests in the ground

(Danforth et al., 2019; Antoine and Forrest, 2020). The life history

traits of solitary bees differentiate them from eusocial bees; solitary

bees are usually smaller and produce fewer offspring per female

than eusocial bees (Danforth et al., 2019; Antoine and Forrest, 2020;

Lima et al., 2022). Focusing conservation and restoration efforts

specifically on solitary bees is especially important as their needs

may differ from the needs of eusocial species (Danforth et al., 2019).

Currently, conservation initiatives focusing on solitary bees are

limited due to a lack of data on their abundance, diversity, and

extinction rates (Danforth et al., 2019; Kline and Joshi, 2020;

Lehmann and Camp, 2021). Despite a recent increase of studies

on solitary bees in restoration (Sydenham et al., 2014; Sexton et al.,

2021), continued research is needed to determine the best practices

to support these bees in a variety of habitats. Due to the preferential

number of studies on bumble bees and limited information for the

majority of bee species, implementing and consolidating precise,

targeted restoration protocols for most bee species can pose

significant challenges.

Our goal is to identify important steps for successful bee habitat

restoration (Figure 1) and to demonstrate how the needs of bees can

be considered and integrated at every stage. Our recommendations

were developed by reviewing the literature using a rubric to identify

effective restoration strategies, taking into account the specific habitat

type and the focal bee species, including their unique biological traits

such as nesting and social behaviors. We aim to promote interest in

bee habitat restoration by targeting an interdisciplinary audience. Bee
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habitat restoration is a relatively new field and there is currently

limited research on how to apply what is known about bee biology to

ecological restoration efforts. In addition, we hope to offer insights

that may be useful to land managers and to highlight future research

directions in bee biology and ecology that can be integrated into

ecological restoration practices.
2 Pre-restoration: planning and
initial assessment

2.1 Establishing a baseline

Establishing ecological benchmarks using baseline data can be

useful for assessing the impacts of habitat restoration by providing a

reference point from which to measure change over time and setting

realistic project goals (Hawkins et al., 2010; Downs et al., 2011).

Baseline measures of pollinator diversity can be obtained through

field sampling as well as by examining historical data from natural

history collections (Lister, 2011; Breeze et al., 2021). Land managers

can use this information to establish species-specific needs,
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prioritize the creation of habitat for targeted bee species by

planting associated host-plant species, and provide suitable

nesting habitat (Winfree, 2010; Danforth et al., 2019; Antoine and

Forrest, 2020; Requier and Leonhardt, 2020).

During times of the year when bees are flying and plants are

flowering, land managers can directly sample sites to determine

species presence. Sampling relatively undisturbed areas nearby can

aid in establishing realistic and site-specific goals for restoration

projects (Curran et al., 2022), especially if these projects target

habitat restoration towards species that are already occurring or

nesting at nearby, undisturbed sites. Surveying sites before

restoration is necessary to assess current bee diversity, identify

existing nests for targeted conservation, evaluate available floral and

non-floral resources, and devise strategies for managing invasive

species (Ritchie and Berrill, 2020).

Historical specimen data from natural history collections,

including those obtained from sources such as the Global

Biodiversity Information Facility (GBIF, https://www.gbif.org/), are

valuable for estimating local bee diversity, species distributions,

species occurrence dates, and the floral resources visited by given bee

species. When utilizing natural history collections, expanding searches
TABLE 1 The effects of different anthropogenic factors on individual bee performance, bee diversity and abundance, and the plants on which
bees rely.

Anthropogenic
factor

Individual bee
species’ performance

Native bee diversity
and abundance

Native plants on which
bees rely

Invasive Bees In the Mid-Atlantic US, when exotic species
Osmia taurus and Osmia cornifrons were
introduced, all native species showed

substantial declines, resulting in a decrease of
76-91% catch rate when sampling (LeCroy

et al., 2020).

Honey bee (Apis mellifera) presence was
negatively associated with wild bee diversity

in apple orchards regardless of local
management strategies (Weekers et al., 2022).

Andean orchids Brachystele unilateralis and
Chloraea virescens rely on non-native

pollinators for reproductive success due to
the disappearance of their primary native
pollinator Bombus dahlbomii (Sanguinetti

and Singer, 2014).

Pesticide/
Herbicide Exposure

Glyphosate exposure to wooden trap nests
lowered the number of brood cells per nest
for Megachile sp. in an agroecosystem in

Panama (Graffigna et al., 2021).

In tropical agricultural landscapes, pesticide
exposure was found to negatively influence
bee diversity at the patch scale (100m) while

a combination of factors (including
pesticides) influenced bee diversity at the
landscape scale (500m) (Basu et al., 2016).

A greenhouse study on the effects of a
monocot-specific herbicide on non-target
native plants in grasslands in northwestern
North America found that native dicot
species decreased seed production in
response to the herbicide (Wagner and

Nelson, 2014).

Climate Change In a manipulation experiment in which
heatwave conditions were mimicked, Bombus
impatiens survival and health (antibacterial
immunity) were reduced (Tobin et al., 2024).

The growing number of extreme heat days in
North America and Europe are causing local

extinction rates to increase and altering
species richness for 66 bumble bee species

(Soroye et al., 2020).

In a manipulation experiment, wildflowers
under experimental warming scenarios
decreased floral abundance by 40% and
nectar availability by 60% in a Cereal

Agroecosystem (Moss and Evans, 2022).

Pests, and Pathogens In Ontario, Canada pathogen spillover from
managed honey bees (Apis mellifera) caused
increased disease in neighboring bumble bee

populations (Colla et al., 2006).

The main cause of death and reduction in
population for managed honey bee (Apis
mellifera) colonies in Ontario, Canada was
the pest Varroa destructor (Guzmán-Novoa

et al., 2010).

Fungal pathogens such as Ustilago violacea
affect flowering phenology in Viscaria

vulgaris. The pathogen is transported by
pollinators such as bumble bees

(Jennersten, 1988).

Habitat Loss Habitat loss, combined with increased
pathogen exposure and climate change, is
leading to Bombus terricola and Bombus
pensylvanicus decline in North America

(Liczner and Colla, 2020).

Loss of natural habitat reduced long-term
population growth rates of Bombus sp. and
rapid habitat change can have lasting effects

on long-term population density (Iles
et al., 2018).

In Texas savannahs, habitat loss is the
leading factor impacting plant species
richness over short periods (Alofs

et al., 2014).

Invasive Plants Generalist species Bombus terrestris was able
to meet its nutritional needs by foraging off
invasive plants, yet invasives likely disrupt

plant-pollinator networks (Drossart
et al., 2017).

Removal of invasive Frangula alnus led to a
rapid shift in pollinator communities, and

increased generalist bee diversity and
abundance (Fiedler et al., 2012).

In North American grasslands, forb diversity
was negatively associated with increased

exotic grasses (Pei et al., 2023).
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to include specimen occurrences from adjacent sites can aid in

identifying species that may be recruited from nearby regions,

subsequently enabling their inclusion in targeted restoration efforts.

In addition, natural history collections can be a critical tool for assessing

species-specific flowering phenology and bee flight times (Ogilvie and

Forrest, 2017), which may be used to select species of plants that are

likely to form mutualistic relationships with bees in a given region or

locality. For most species of plants and bees, specimens have not been

collected equally across their ranges (Chesshire et al., 2023); in places

where historical records do not exist, species distribution models may

help to predict whether a location is suitable for a given plant or bee

species. Researchers have used ecological niche modeling based on bee

specimen records to estimate current and future species distributions

(Carvalho and Del Lama, 2015; Beckham and Atkinson, 2017).

Determining targeted bee species nesting requirements is

important when assessing the nesting conditions available at a given

site. This can enable practitioners to find and protect bee nests before
Frontiers in Ecology and Evolution 04
restoration or preserve nesting features (such as bare ground or woody

debris; see Section 2.3.2 Nest Site Availability) that are already

available on the landscape. However, for many bee species, these

nesting requirements are unknown (Antoine and Forrest, 2020).

Documentation of the nest site preferences (such as soil type or soil

moisture) of different bee species in distinct environments is valuable

so land managers can provide species and site-specific resources for

nesting (Harmon-Threatt, 2020; Orr et al., 2022).

Recent community science efforts have been established to

document the nesting habits of ground-nesting bees, such as

when and where they nest (Liczner and Colla, 2019; Maher et al.,

2019; Ground Nesting Bees, 2023). In the absence of species-specific

nesting information, the nesting preferences of closely related

congeners may be useful (Danforth et al., 2019). Contributions to

shared databases can help correlate specific nesting conditions with

bee observations, providing information for future bee conservation

(Chesshire et al., 2023) and targeted bee habitat restoration.
FIGURE 1

This paper provides a framework for integrating considerations of bees into each step of ecological restoration. While we chose this framework for
clarity, it is important to note that the process is often non-linear. For example, results from post-restoration evaluations can prompt practitioners to
revisit earlier stages of the restoration process such as planning, establishing new baselines, or continuing site maintenance.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1358621
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Payne et al. 10.3389/fevo.2024.1358621
2.2 Habitat selection and planning

Once ecological baseline data has been established, habitat

restoration should create a detailed plan (Nilsson et al., 2016)

which can include considerations of the needs of native bees. One

approach is to begin by establishing baseline estimates that assess bee

diversity, as well as the availability of floral and non-floral resources

(such as materials for foraging and nest building) at or around the

site. Based on information gathered from baseline surveys, specific

plans can be developed for the bee species present or nearby.

Consideration of floral and non-floral resources and nesting

conditions for native bees can be included in these habitat

restoration plans (Figure 2). Localized restoration initiatives,

including small-scale habitat restoration projects, can provide floral

resources and nesting habitats that support bee diversity and

abundance (de Araújo et al., 2018; Phillips et al., 2019; Monasterolo

et al., 2020; Phillips et al., 2020; Donkersley et al., 2023).

Unlike plant-centric restoration, where plants are introduced

and established through seeds, cuttings, or outplanting entire

individuals, the establishment of bee communities depends

heavily on the natural recruitment of bee species from

surrounding regions (M’Gonigle et al., 2015; Öckinger et al.,

2018). The creation of suitable habitats and connectivity between

habitats (corridors) can facilitate the movement and persistence of

bee populations (Hanula et al., 2016; Keilsohn et al., 2018; Mola

et al., 2021a), alter pollination services provided by bees (Mitchell

et al., 2013), and affect the genetic diversity of founding populations

(Bruns et al., 2024). For a review from 2013 on the relationship

between landscape connectivity and ecosystem services, see

Mitchell et al. (2013).

By identifying corridors between habitats in heterogeneous

landscapes, restoration practitioners can better design projects

that recruit diverse bee species to restored sites (Öckinger et al.,

2018). Winsa et al. (2017) determined that trait composition (a

trait-based approach for assessing bee diversity based on

morphological, phenological, and behavioral traits) was positively

correlated with connectivity to intact grassland habitat in restored

pastures. Cusser and Goodell (2013) found as the distance to

remnant habitat patches (areas from which bees would populate a

restoration site) increased, bee diversity declined. However, they

also observed that increasing floral richness promoted pollinator

network stability, even at the sites furthest from remnant patches.

Thus, Cusser and Goodell (2013) recommended prioritizing

providing bee habitats that are diverse in floral resources far from

remnant patches to increase pollinator network stability in

new locations.

Proximity of restored landscapes to ecological threats can also

impact bee communities. For example, numerous restoration

projects are situated near roadways, raising the likelihood of bee

fatalities resulting from traffic collisions (Keilsohn et al., 2018) and

hurting more individual bees than they help (Keilsohn et al., 2018).

Determining the optimal distance from roadways for bee habitat

restoration sites (Keilsohn et al., 2018) and identifying the threshold

of roadway activity that negatively affects bees are important goals

for future research.
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2.3 Selecting supplemental floral and non-
floral resources

Consideration offloral and non-floral resources is important for

bee habitat restoration (Requier and Leonhardt, 2020). Planting

species representing a variety of growth forms (annual and

perennial forbs and grasses, as well as shrubs and trees) can

provide both floral and non-floral resources for native bees

(Requier and Leonhardt, 2020), while also providing ecosystem

functions such as shade and erosion control during restoration

(Mitchell et al., 2022).

2.3.1 Supplemental floral resources
Enhancing flowering plant species richness at restoration sites

can increase bee diversity and abundance (Fischer et al., 2016; Hanula

et al., 2016; Purvis et al., 2020; Lane et al., 2022; Rubio et al., 2022;

Beneduci et al., 2023) and bee visitation rates (Denning and Foster,

2018). A meta-analysis of observational studies by Kral-O’Brien et al.

(2021) found that plant species richness was the strongest predictor of

bee species richness. Other studies have reported comparable

findings, indicating that vegetation type may significantly influence

bee community assembly (Brooks, 2020; Novotny and Goodell,

2020). In addition, including high densities of flowering species

through the implementation of seed mixes has also been found to

increase the chances of pollination and reproductive success for some

outcrossing plants (Cane et al., 2012), creating positive feedback loops

between associated plant and bee species.

Nevertheless, the reintroduction or supplementation of

appropriate combinations of native plant species at restoration

sites may be difficult for several reasons. Seed mixes that

represent local combinations of sympatric species are often

unavailable, due either to their high cost in creating them, the

difficulty of sourcing locally adapted genotypes, or challenges in

producing seed mixes quickly enough (Nevill et al., 2018; Erickson

and Halford, 2020). Nevertheless, carefully designed seed mixes that

include seeds sourced from established “seed zones” (seeds from

regions with similar environments; these seeds are considered the

same in the context of locally adapted seed mixes; Erickson and

Halford, 2020) can enhance bee diversity (Harmon-Threatt and

Hendrix, 2015; Galea et al., 2016; Lybbert et al., 2022). Despite many

benefits, seed zones are not defined for numerous important species

in restoration (Johnson et al., 2023). Some research indicates that

admixture seed sourcing (sourcing seeds from many different

locations) can alter plant-arthropod interactions when flowering

species richness is low (Hulting et al., 2024). However, there have

been no studies examining the impact of admixture seed sourcing

on pollination success or bee diversity.

Empirical tools can be beneficial for selecting plant species for bee

habitat restoration (M’Gonigle et al., 2017; Esque et al., 2021; Purvis

et al., 2021). M’Gonigle’s genetic algorithm, which uses phylogenetic

relatedness, bee visitation rates, and bee diversity, is an effective tool

for designing seed mixes (M’Gonigle et al., 2017) and has been

empirically tested and used in multiple restoration efforts (Williams

and Lonsdorf, 2018; Campbell et al., 2019; Bruninga-Socolar et al.,

2023). Continued testing of empirical tools designed to facilitate the
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selection of plants that support generalist and specialist bee

communities in different environments is needed.

2.3.1.1 Bee nutrition

The central focus of most bee-centric restoration efforts is to

provide bees with ample floral resources to meet their nutritional

needs (Winfree, 2010; Scheper et al., 2013; Image et al., 2022). The

quality of these resources may be as important as their abundance

(Vaudo et al., 2014). When foraging choices are insufficient, bee

health and survival decline (Filipiak et al., 2022). High plant species

diversity does not always guarantee nutritionally adequate pollen

and nectar (Filipiak et al., 2022), which should be considered when

designing bee conservation and restoration efforts (Vaudo et al.,

2015, Vaudo et al., 2020; Crone et al., 2022; Filipiak et al., 2022).

Moreover, bee microbiota is affected by the plants that bees forage,

which can directly impact bee health (Nguyen and Rehan, 2023).

Crone et al. (2022) recently published an extensive review of bee

nutritional ecology, emphasizing the need to evaluate the diet

preferences of all focal bee species. They also highlight the

potential of emerging technologies (i.e., automated monitoring

systems, DNA metabarcoding) to enhance bee habitat restoration

for species of special concern in the future (see Section 4.2 Long-
Frontiers in Ecology and Evolution 06
Term Monitoring & Research). Existing knowledge gaps include

understanding the significance of macro and micronutrients for

various bee species and discerning the nutritional requirements of

specialist bees.

2.3.1.2 Plant and bee phenology

Phenology, or the biological timing of life events such as bee

emergence or flowering time, is important for pollination success

and bee survival. Plant reproduction and the availability of food for

bee larvae largely depend on synchrony between plants and their

associated pollinators (Kudo, 2014; Ogilvie and Forrest, 2017;

Slominski and Burkle, 2021). A mismatch of just a few days can

decrease bee fitness through increased mortality and decreased

fecundity (Buckley and Nabhan, 2016; CaraDonna et al., 2018;

Schenk et al., 2018). When selecting plant species for habitat

restoration, seed mixes and propagules composed of species with

overlapping and long bloom periods can benefit pollinator

populations by decreasing the risk of a phenological mismatch

and providing a long foraging season (Tilley et al., 2013; Havens and

Vitt, 2016; Gross, 2017; Simanonok et al., 2022).

In restoration planning, practitioners should evaluate the

distribution and diversity of floral resources throughout the
FIGURE 2

Key considerations for native bee habitat restoration planning in natural environments. (1) Plant native species that are nutritionally and
phenologically diverse; (2) Implement restoration clearing and planting techniques that are bee-friendly, including the provision or protection of
viable nesting sites; (3) Use empirical tools for optimizing pollinator species richness, including providing necessary host-plant species; (4) Provide
non-floral resources for bee foraging and nesting; (5) Remove invasive plant species and replace with natives; (6) Increase bare ground and woody
debris to enhance the availability of nesting habitat.
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flowering season, and ensure that both early and late-season floral

resources are available (Curran et al., 2023). Gonzalez et al. (2013)

found that bumble bee foraging areas shifted to different habitats

throughout spring and summer based on the availability of floral

resources in bunchgrass prairie habitats in the Pacific Northwest.

Bees were supported by grasslands early in the flowering season and

aspen stands in late summer. Providing variation in the flowering

time of floral resources can establish alternate food sources for

generalist bees during periods of scarce floral resources (Ogilvie and

Forrest, 2017; Dibble et al., 2020).

2.3.1.3 Floral resources for specialist bees

Numerous studies have documented the advantages of providing

supplemental floral resources for generalist bee species (Russo et al.,

2013; Woodcock et al., 2014; Kremen and M’Gonigle, 2015; Eeraerts

et al., 2019; Frankie et al., 2019; McCormick et al., 2019; Fuccillo

Battle et al., 2021; Walston et al., 2023). However, there is a lack of

research on specialist bees (Kremen and M’Gonigle, 2015; Fowler,

2016). Success in promoting specialized bee abundance and diversity

in restoration efforts requires the inclusion of host plant species on

which the local specialists rely (Frankie et al., 2009; Fowler, 2016;

Brooks and Poulos, 2023). Additionally, many host plant species may

depend on specialized pollinators for reproductive success (Page

et al., 2019). Fowler (2016) emphasize the importance of host

plants in habitat conservation for specialist bees in the

Northeastern U.S., noting that approximately 15% of native bee

species in this region specialize in pollen collection from a

particular plant family or genus.

Similar research on specialist bees in other regions is needed,

and focused restoration efforts could promote their conservation

(Fowler, 2016). Sampling pollen loads carried by specialist bees can

aid in identifying the plant species on which these bees rely (Kelly

and Elle, 2021). Additionally, bee specimen data can provide insight

into the floral resources historically associated with specialist bee

species (Fowler, 2016). Recently available databases (Seltmann and

Community, 2022; Wood et al., 2023) provide lists of plant-bee

species interactions that may be used to improve bee-centric

restoration efforts, while also facilitating data sharing and

continued monitoring for a better understanding of the dietary

requirements of these important pollinators.

2.3.2 Nest site availability
Although most bee-centric conservation plans focus on floral

resources, the availability of nesting habitats should not be

overlooked (Öckinger et al., 2018; Requier and Leonhardt, 2020).

Bee nesting biology has been recently reviewed by Orr et al. (2022),

and anthropogenic threats to bee nesting in wild bee communities

have been reviewed by Harmon-Threatt (2020).

The majority of bee species, including both eusocial and solitary

species, nest underground (Danforth et al., 2019; Liczner and Colla,

2019); for a review of ground-nesting bee biology, see Antoine and

Forrest (2020). Different species create distinct nest architectures

and prefer different microhabitat conditions (Danforth et al., 2019;

Antoine and Forrest, 2020). In a study by Buckles and Harmon-

Threatt (2019) in tall grass prairies, bee nesting was positively
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influenced by increasing floral resource abundance as well as

increasing the availability of bare ground, low soil moisture, and

warmer soil temperature (Purvis et al., 2020). However, some bee

species (e.g., bumble bees) prefer increased litter over bare ground

(Williams et al., 2019; Smith DiCarlo et al., 2020).

Studies of ground-nesting bees have assessed the effect of

ground cover, temperature, texture, space, slope, soil compaction,

and soil moisture on nest site selection (Cane, 1991; Xie et al., 2013;

Sardiñas et al., 2016; Tsiolis et al., 2022). A multitude of studies have

revealed that landscapes undergoing early successional stages, such

as habitat restoration efforts, often provide nesting habitats that

support diverse and specialized bee species (Rutgers-Kelly and

Richards, 2013; Řehounková et al., 2016; Banaszak and Twerd,

2018; Seitz et al., 2019; Mola et al., 2020; Simanonok and Burkle,

2020; van der Heyde et al., 2022). Biotic factors, including plants,

pathogens, parasites, predators, and conspecifics, can also influence

the nesting density and nesting location at which bees choose their

nesting sites (Potts andWillmer, 1997; Michener, 2000; Requier and

Leonhardt, 2020). For example, in Hawaii, the nesting sites of

Hylaeus anthracinus Smith, 1853 experience lower reproductive

success due to invasive ants (Plentovich et al., 2021). Limited

research has explored the biotic factors influencing bee nesting,

such as soil microbial diversity.

Another group of bees is comprised of native cavity-nesting

bee species, which require live or dead biotic material in which to

nest. Studies have shown that areas with simplified vegetative

structures have low cavity-nesting rates (Flores et al., 2018; de

Araújo et al., 2019, de Araújo et al., 2021; Felderhoff et al., 2022).

Many bee species are opportunistic nesters, choosing to nest in

existing holes, stems, or downed woody debris (Galbraith et al.,

2019; Davis et al., 2020; Foote et al., 2020; Glenny et al., 2023;

Rappa et al., 2023). In addition, specific habitat types may be

preferred as overwintering sites, such as forest habitats for many

Bombus sp (Mola et al., 2021a). In sum, whether or not there is

sufficient availability of nesting sites for the bees at a given locality

will depend on the type of biotic material available, the complexity

of the vegetation structure, the presence of existing holes and

debris, and the prevailing habitat type, depending on the bee

species’ preferences.
2.3.2.1 Nest building materials

Including supplemental non-floral resources at a restoration site

is important for providing bees with the materials they need to

construct their nests (Requier and Leonhardt, 2020). Both eusocial

and solitary bee species use leaves, bark, trichomes, or resin for nest

building and to protect their brood cells (Shanahan and Spivak,

2021). Some native bees (Apidae, Meliponini, Centridini,

Euglossini, Apini, some Xylocopinae, and some Bombini) use

herbaceous material or coarse woody debris to build their nests

(Michener, 2000; Danforth et al., 2019; Requier and Leonhardt,

2020). An example is the genus Ceratina, which creates nests in the

stems of dried herbaceous material or woody branches (Danforth

et al., 2019). Furthermore, the plant species that bees rely upon for

nest building may not be their floral host plant species. For example,

many Anthidium spp. depend on the trichomes of hairy plant
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species for lining their brood cells, while they collect pollen most

frequently from other, glabrous, species (e.g., Larrea spp.; Vitale

et al., 2017). Thus, providing floral resources alone would not be

sufficient to support the genus Anthidium. Resin, another non-

floral resource foraged from plants that some bee species rely on,

can function like concrete, solidifying nesting structures and

preventing bacteria from contaminating brood cells (Chui

et al., 2022).

2.3.2.2 Non-floral resources for food

The importance of non-floral resources for solitary bees has

only recently been recognized (Chui et al., 2022). Non-floral sugars,

such as honeydew produced by scale insects, provide additional

carbohydrates for some bee species. Meiners et al. (2017) observed

42 wild bee species, including many solitary and native species,

visiting Adenostoma fasciculatum Hook. & Arn. to obtain

honeydew, which may serve as a supplemental food source

outside the flowering season. Preserving scale insects, which

produce honeydew, could help to extend the seasonal duration of

bee foraging, mitigating the negative effects of potential

phenological mismatches (Gérard et al., 2020). Additionally, other

symbionts can be important for bees. A study of the generalist

solitary species Osmia lignaria found that bacterial and fungal

symbionts increased larval developmental success (Westreich

et al., 2023). Documenting and sharing these interactions can be

useful for restoration managers. Continued research identifying

symbionts associated with native bee species and their impact on

bee health and determining the most effective strategies for

incorporating these non-floral resources into bee habitat

restoration efforts is needed.
2.3.3 Non-native plants
The role of non-native plants in bee conservation is highly

debated. Parra-Tabla and Arceo-Gómez (2021) provide an

extensive review of the influence of invasive plants on plant-

pollinator networks, although bees were not a focus. While native

plants are recognized for supporting a wide array of bee species

(Discua and Longing, 2022), several studies have found that non-

native plants can also promote bee abundance and bolster

pollination networks (Severns and Moldenke, 2010; Gaiarsa and

Bascompte, 2022; Kovács-Hostyánszki et al., 2022). However, most

studies of non-native plants and bees focus on the floral resources

that non-natives provide (typically in urban environments) and do

not account for competition in bee visitation rates between non-

native and native plant species (Aizen and Morales, 2020) or

disruptions in ecosystem function (Parra-Tabla and Arceo-

Gómez, 2021; Tallamy et al., 2021). Hanula et al. (2016) note that

when non-native plants outcompete native plant species, this

typically negatively impacts pollinator communities, including

bees. Additionally, Mathiasson and Rehan (2020) observed that

the decline of native bees (particularly specialists) was associated

with the proliferation of non-native plant taxa in northern New

England due to the loss of their associated host plants. Moreover,

non-native plants may affect other aspects of bee biology and

ecology, including reproductive success (Hanula et al., 2016), the
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availability of ground-nesting sites, the abundance of native plant

species (Barron and Beston, 2022), as well as floral visitor

communities (Denning and Foster, 2017). In some habitats, the

removal of non-native plants during restoration increased bee

abundance and species richness (Fiedler et al., 2012; Tonietto and

Larkin, 2018; Ulyshen et al., 2020). Forb diversity is often negatively

associated with non-native grass abundance (Drobney et al., 2020;

Molinari and D’Antonio, 2020), high levels of which may cause

declines in bee abundance, the simplification of bee communities

(Pei et al., 2023), and the alteration of entire insect communities

(Luong et al., 2019). Furthermore, non-native grasses create dense

litter layers that may block nesting sites for ground-nesting bees

(Pei et al., 2023). For example, Pei et al. (2023) observed a decrease

in ground-nesting bee abundance at sites occupied by increased leaf

litter and high densities of non-native grass Poa pratensis L. in the

Northern Great Plains. Other studies have hypothesized that non-

native grasses are responsible for a decline in both forb and

pollinator diversity and abundance (Lybbert et al., 2022).

It is important to recognize that not all non-native plants are

invasive, and some non-native species can provide floral resources to

support bee abundance (Carson et al., 2016; Frankie et al., 2019;

Gibson et al., 2019; Niemuth et al., 2021; Ulyshen et al., 2022). This is

especially the case at the beginning and end of the flowering season,

when non-natives may be less likely to disrupt native plant-pollinator

networks (Staab et al., 2020). During restoration efforts, non-native

plants may serve as temporary food sources for bees while native

plants become established (Lybbert et al., 2022; Thapa-Magar et al.,

2023). While non-native plant species may support generalist bee

abundance in some habitats, prioritizing native plants is

recommended as they provide habitat for a broader range of native

insects and contribute to ecosystem function (Tallamy et al., 2021).
3 During-restoration: implementation

3.1 Preparing the site

Before undertaking habitat restoration, land managers are

frequently required to remove debris, infrastructure, pollutants, or

invasive species (Elmqvist et al., 2013). Different methods of

vegetation removal have advantages and disadvantages for native

bees (Table 2). For the effective execution of these strategies, they

frequently require multiple iterations during and following the

restoration process (Kimball et al., 2015; Oliveira et al., 2021;

Keeley et al., 2023).

3.1.1 Mechanical and hand thinning
Heavy machinery used to move soil, water, or vegetation during

restoration can affect soil structure (Schäffer et al., 2007; Nawaz

et al., 2013). Many species of ground-nesting bees require specific

soil characteristics to build their nests (Antoine and Forrest, 2020).

Christmann et al. (2022) suggest that heavy machinery could

threaten existing nesting sites for ground-nesting bees; however,

no studies to date have looked directly at the effect of soil movement

or compaction from heavy machinery on bee nesting success.
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Mechanical thinning has been found to have several effects on bee

communities. When Ealy et al. (2023) compared pollinator

communities in old-growth forests with logged early seral forests,

they detected negative long-term effects on the bee communities in

clear-cut sites, including a decrease in specialist bees. However, when

comparing clear-cut vs. young forests with dense understories, clear-

cut forests have higher bee diversity, likely due to decreased canopy

cover (Ealy et al., 2023). Odanaka et al. (2020) conducted an

experiment measuring the effects of mechanical thinning on bee

diversity and abundance in longleaf pine savannas compared to

untouched remnant plots. They found that bee diversity and

abundance were positively correlated with thinning and negatively

correlated with canopy cover. Lettow et al. (2018) found thinning

coupled with controlled burns significantly increased pollinator

richness and abundance in oak savannas relative to unmanaged

controls. Other studies observed similar results (Hanula et al., 2015,

Hanula et al., 2016; Abella et al., 2017; Milam et al., 2018; Rivers et al.,

2018; Glenny et al., 2022; Davies et al., 2023). These findings highlight

that mechanical thinning can increase bee abundance and diversity in

certain vegetation types such as forests.

Hand thinning offers the advantage of leaving woody debris on

the landscape which can support cavity, stem, and opportunistic
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nesting bees (Rappa et al., 2023). The maintenance of structural

heterogeneity to provide nesting sites for diverse bee species should

be supported during and following bee habitat restoration (Antoine

and Forrest, 2020; Image et al., 2022).

3.1.2 Prescribed fire
Some plant and animal communities in North America have

adaptations that enable them to thrive when exposed to periodic

wildfires (Simmons and Bossart, 2020). Prescribed fire (designed to

mimic conditions of periodic low-intensity wildfires) can result in

bare ground which provides nesting habitat for ground-nesting bees

(Hanula et al., 2016; Sitters et al., 2016; Decker and Harmon-

Threatt, 2019; Bruninga-Socolar et al., 2022; Brokaw et al., 2023).

Ulyshen et al. (2021) examined the effects of frequent prescribed

fires on bee abundance and species richness in southeastern U.S.

forests. They found that bee abundances significantly increased in

burned plots compared to unburned plots, although bee species

differed in their tolerance to burn frequencies. Similar results were

obtained following controlled burns of tallgrass prairies (Harmon-

Threatt and Chin, 2016) and mixed conifer forests.

However, not all species benefit from controlled burns, particularly

cavity and stem nesters such as Bombus, Ceratina, and Osmia
TABLE 2 Advantages and disadvantages of different methods used to clear restoration sites and to introduce plants during bee-centric habitat
restoration. Continuous implementation of these methods may be necessary to maintain resources and achieve restoration objectives.

Protocol Method Advantages Disadvantages

Clearing Hand pulling Preserves soil for ground-nesting bees; ability to leave native
plants or snags on the landscape for bee nesting

Labor intensive and time-consuming; may not be as effective
for some invasive species

Clearing Weed whacking Faster than hand pulling; preserves soil for ground-nesting
bees; ability to leave native plants or snags on the landscape for

bee habitat

Time intensive; may temporarily negatively affect bee
abundance and diversity through loss of floral resources

Clearing Controlled
burning

Quick; can have positive impacts on bee diversity in
some habitats

Narrow burn windows; negative public perception

Clearing Mechanical
clearing

Quick and effective; especially when working with large
vegetative biomass

Compression of soil; may not be as effective for some invasive
species; some equipment spreads invasive seeds

Clearing Herbicide Quick and effective; most effective for killing invasive plants;
can specifically target either monocots or dicots with

specific herbicides

Chemicals may affect the plants and wildlife present at the site;
may temporarily negatively affect bee abundance and diversity;

exposure to humans applying the chemicals

Clearing Grazing Positive impacts on bee diversity in some habitats; highly
dependent on the habitat, site, and grazer

Negative impacts on bee diversity in some habitats, especially
when floral resources are consumed

Clearing Mowing Quick and effective May cause declines in bee abundance due to the removal of
floral resources

Planting Broadcast
seeding

Time-efficient; fills the seed bank; great for annual wildflowers Seeds may wash away; time delay before bees can visit

Planting Hand planting Deliberate placement of plants in areas where they will be most
successful and beneficial to bees

Slow and labor-intensive

Planting Hydroseeding Quick; seeds stay in place and don’t get washed away Could disrupt ground-nesting bee species

Planting Propagation Deliberate placement of plants; can be fast depending on
the method

Less genetic diversity; time delay before bees can visit

Planting Transplanting Able to provide bees with immediate floral and non-
floral resources

Labor intensive; Risk introducing plants that are not
locally adapted

Planting Mulching Seeds stay in place and don’t get washed away; conservation of
water; helps prevent weeds

Could disrupt ground-nesting bee species
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(Galbraith et al., 2019). Bruninga-Socolar et al. (2022) determined that

ground-nesting bee abundance and diversity responded positively to

fire, while cavity-nesting bee abundance and diversity increased in the

absence of fire, highlighting the importance of heterogeneity in fire

regimes. Moreover, plant-pollinator interactions can be disrupted in

certain habitats after fire due to the elimination of floral host plants

(Love and Cane, 2019). Despite this, Cole et al. (2019) found that burn

scars, which contribute to environmental heterogeneity in riparian

environments, were positively correlated with bee diversity. Other

studies have observed similar results in different habitats (Gelles

et al., 2022). In addition, controlled burns have been found to reduce

non-native grasses (Ditomaso et al., 2006; Weidlich et al., 2020) and to

increase annual wildflower diversity (Peterson and Reich, 2008; Davies

and Sheley, 2011; Decker and Harmon-Threatt, 2019; Lybbert et al.,

2022; Gelles et al., 2023), which may lead to increases in bee abundance

and diversity (Smith DiCarlo et al., 2019). In general, pyrodiversity (the

variability in burn size, frequency, duration, and severity across a

landscape), including some exposure to high-severity wildfires, has

been found to increase bee species richness in fire-adapted regions

(Galbraith et al., 2019). Creating a mosaic containing different burn

histories will likely provide habitat and resources for the greatest

diversity of bee species (Ponisio et al., 2016; Rodrıǵuez and Kouki,

2017; Galbraith et al., 2019).

3.1.3 Mowing and grazing
Mowing is often used to manage weed and grass growth in

restored habitats, especially during spring. Mowing has been found to

promote forb diversity (Lybbert et al., 2022) but can have the opposite

effect if done too frequently (Smith et al., 2018). Additionally,

increased mowing frequency has been found to be negatively

associated with bee species richness and abundance (Audet et al.,

2021; Serret et al., 2022). The “NoMow May’’movement has spread,

in which residents are urged to reduce mowing during peak

pollinator flight time (Andrews, 2023). This practice has been

found to promote bee abundance on the US East Coast and

elsewhere (Lerman et al., 2018), but it may require alterations when

applied to other major geographic regions such as the western US,

where peak pollinator foraging and flight times occur later in the

season. Another method, such as the reintroduction of grazing

animals such as wild horses, has been found to enhance forb

diversity and boost bee abundance in habitats that historically

evolved under herbivory from large ungulates (Garrido et al.,

2019). Similarly, Bruninga-Socolar et al. (2022) found that the

heterogeneity in vegetation cover caused by cattle grazing and

controlled burns benefited ground-nesting bees by providing more

bare ground, but implementation of specific grazing regimes is

necessary to minimize soil compaction as well as providing habitat

for stem and hole-nesting bees. In contrast, Stein et al. (2020) detected

that grazing in grassland communities in the upper Midwestern

United States led to a reduction in native flowering plant species

abundance. In this study, body mass and lipid stores were also

measured to assess nutritional health indicators in three sweat bees

(Agapostemon spp.). It was found that in ungrazed sites,

Agapostemon virescens (Fabricius, 1775) showed greater body mass

compared to individuals sampled in grazed areas. Beckett et al

(Beckett et al., 2022). determined that deer presence in British
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Columbia negatively affected bumble bee abundance indirectly by

depleting floral resources, indicating a potential decline in colony

success. For a review of the known roles of mowing and grazing in

restoration as of 2016, see Tälle et al. (2016).

3.1.4 Herbicides and insecticides
The impacts of pesticide use on native bee health are poorly

understood. Experimental studies on honey bees are frequently used

to infer the effects of pesticides on all bee species (Franklin and

Raine, 2019; Lehmann and Camp, 2021). The U.S. Environmental

Protection Agency’s Policy Mitigating Acute Risk to Bees from

Pesticide Products states that protecting managed bees will “also

protect native solitary and eusocial bees that are also in and around

treatment areas” (EPA, 2015). However, honey bee sensitivity to

pesticides may differ from the responses of native bees (Chan et al.,

2019; Franklin and Raine, 2019). Because some solitary bee species

are more vulnerable than honey bees to pesticide exposure, it is

crucial to avoid relying solely on honey bees as the risk assessment

model when observing the toxic effects of pesticides (Franklin and

Raine, 2019). This increased susceptibility can be attributed to

solitary bee consumption of fresher pollen and nectar, as well as

increased exposure to pesticides through their nesting sites

(Goulson, 2013; Chan et al., 2019; Franklin and Raine, 2019;

Lehmann and Camp, 2021). In addition, solitary bees have a

smaller body size than honey bees (Chole et al., 2019); thus, a

dosage calibrated to honey bees could pose a significant risk to most

wild bee species. This is particularly concerning as body size is one

of the primary predictors of bee species’ vulnerability to pesticides

(Schmolke et al., 2021). Furthermore, honey bees are eusocial and

thrive in large colonies, whereas native bees are typically solitary

and relatively scarce across the landscape. This trait makes them

particularly vulnerable to population declines if negatively impacted

by pesticides (Straub et al., 2015; Sgolastra et al., 2019).

Herbicides can be useful for removing invasive plants during

restoration, but their costs and benefits should be considered before

implementation (Bennion et al., 2020). Whenever feasible,

employing biological controls can be highly effective and bypass

the hazards associated with herbicides (Auld, 1998; Peterson et al.,

2020). However, biological control agents are not available for all

plant species (Singh et al., 2020). In a review of 372 published

articles, Weidlich et al. (2020) reported that 42.3% of the restoration

projects used chemicals to eradicate invasive plants. Of these, 40%

used glyphosate, an active ingredient in most herbicides (Weidlich

et al., 2020). Glyphosate, marketed as Roundup™, can be harmful

and sometimes lethal to non-target pollinators including honey

bees, bumble bees, and solitary bee species (Abraham et al., 2018;

Battisti et al., 2021; Straw et al., 2021). When cavity nests were

sprayed with glyphosate, solitary bee reproductive success declined

due to reduced brood cell production (Graffigna et al., 2021). In an

acute exposure experiment conducted under realistic field

conditions, glyphosate exposure impaired fine-scale color

recognition and long-term memory in bumble bees, which may

disrupt their foraging behavior and lead to overall declines in colony

success (Helander et al., 2023). Glyphosate use is restricted or

banned in several European countries due to human and

environmental concerns, including its negative effect on bee
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development, behavior, and survival (Kudsk and Mathiassen, 2020;

Battisti et al., 2021). Further research is required to investigate the

sublethal effects of glyphosate on native bee species observed in field

settings, as noted by Battisti et al. (2021). While the effects of

herbicides on bee health are considered in agricultural practices,

these impacts have not been evaluated in habitat restoration efforts.

Although not commonly used in restoration, insecticides can

occasionally be used to protect rare plants that are vulnerable to

insect herbivores (Bevill et al., 1999; Flower et al., 2018). However,

more commonly insecticides leach into native landscapes from

neighboring agricultural fields or watersheds. Neonicotinoids, a

class of widely used systemic neuro-acting insecticides absorbed

by plants and spread throughout their tissues, are extremely

harmful to bees (Alkassab and Kirchner, 2017). Transferred

through pollen and nectar consumption, neonicotinoids cause bee

mortality or have sub-lethal effects by altering bee communication,

foraging behavior, or navigation (Fischer et al., 2014; Alkassab and

Kirchner, 2017). Only two studies have investigated neonicotinoid

exposure through soil contamination for ground-nesting bees,

employing differing experimental designs and yielding conflicting

results (Willis Chan et al., 2019; Tetlie and Harmon-Threatt, 2024).

While research on the effects of insecticides on native bee

species has increased in recent years, more research is needed,

especially on the sub-lethal effects of these chemicals (Dirilgen et al.,

2023; Tetlie and Harmon-Threatt, 2024). Further research is needed

to assess the impacts of pesticides on bee-centric restoration and to

identify or discover practices that minimize negative outcomes. For

instance, it has been shown that nighttime spraying is effective in

reducing exposure to honey bees (Decourtye et al., 2023). Such

studies will provide insights for practitioners to develop more

informed, bee-friendly conservation and restoration strategies.
3.2 Planting the site

Various planting methods have been devised for bee habitat

restoration (Leverkus et al., 2021), the pros and cons of which in

relation to bee habitat restoration are summarized in Table 2. One

planting technique that promotes annual plant species over time is

continuous reseeding (Applestein et al., 2018). Ongoing research

indicates that regular reseeding can boost wildflower populations

(Barr et al., 2017; Applestein et al., 2018), and annual wildflowers

may be replaced by a few perennial species over time without

strategic, planned disturbance regimes (i.e. burning, mowing, or

grazing) (Lybbert et al., 2022). Questions remain regarding the

optimal frequency and density of reseeding to support bee species.

Barr et al. (2017) highlighted that if land managers have to choose

between prioritizing reseeding rates and plant species diversity

when sowing seed mixes, prioritizing plant species diversity is

best for improving restoration success in grassland habitats.

In addition to implementing bee-conscious planting techniques,

the density and size of floral patches are important considerations in

bee habitat restoration. Some research suggests that including

corridors or gaps in vegetation for bees to fly through can provide

bee-friendly habitat, especially in areas of dense woods or shrubs
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(Jackson et al., 2014; Hanula et al., 2016). Other research has found

that distributing bee seed mixes at low densities increases nectar

production per plant, providing higher-quality floral resources for

bees (Neece et al., 2023). These results suggest that planting at lower

densities could be strategic for bee habitat restoration.

Floral resources are often unequally distributed across a

landscape, and patch size may influence bee foraging behavior,

especially in fragmented habitats. Harmon-Threatt and Anderson

(2023) found that bees in a naturally patchy Ozark Mountain glade

ecosystem rarely traveled between patches, demonstrating the

importance of nearby floral resources. Bumble bees and solitary

bees respond to both patch size and isolation when foraging for

resources (Fragoso et al., 2021; Fragoso and Brunet, 2023), and

bumble bee foraging is considered particularly sensitive to habitat

fragmentation (Osborne et al., 2008; Goulson et al., 2011). Fragoso

and Brunet (2023) reported that Bombus impatiens Cresson, 1863

preferred larger, more closely spaced patches, while Megachile

rotundata Fabricius, 1787 preferred patches located nearby their

nests regardless of the patch size. Although bumble bees may prefer

closely spaced patches, they can forage over greater distances than

solitary bees. For example, an average-sized eusocial bee

(intertegular distance = 2.5mm for a female foraging bee) has a

foraging range of ~3,300 meters whereas a similarly sized solitary

bee has a foraging distance of ~1,200 meters (Grüter and Hayes,

2022). Fragoso and Brunet (2023) determined that both solitary and

eusocial bees use complex learning to determine which patches to

visit. The composition of flowering patches may be expected to

influence bees’ foraging preferences. To our knowledge, however,

no studies have investigated how a patch’s plant diversity or the

relative abundances of different species influence bee foraging

distance or behavior in restored landscapes.

When establishing patches offloral resources, the provenance of

seeds or plants can influence plant-pollinator interactions (Thomas

et al., 2014; Bucharova et al., 2022; Höfner et al., 2022). For example,

due to local adaptation, wild populations of plants differ with

respect to flowering phenology, which in turn can affect bee

foraging. If seeds or propagules are relocated for restoration, the

flowering window of each plant species’ population at the

restoration site may differ from the window of the flight times of

sympatric bee populations (Buisson et al., 2017). This could lead to

a phenological mismatch between the flowering phenology of a

restored site vs. its neighboring landscapes (Buisson et al., 2017;

MacTavish and Anderson, 2022) increasing the risk of mismatches

between plant species and their associated bees (see Section 2.3.1.2

Plant and Bee Phenology). Utilization of locally sourced seeds could

potentially avoid this problem, but locally sourced seeds may not be

physiologically adapted to changing climatic conditions (Bucharova

et al., 2022). Managers should consider planting floral resources

that are better suited for future climatic conditions (Oliver et al.,

2016). Stephenson et al. (2020) found that in emergent wetlands,

sites that were passively managed (allowing the establishment of

native perennials through natural succession) after active

restoration was completed had similar bee diversity and species

richness compared to actively restored sites. No other studies within

our review compared active and passive restoration methods.
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4 Post-restoration: assessment
& monitoring

Post-restoration refers to the assessment and monitoring that

occurs after the initial steps of a project, but it does not necessarily

signify the project’s completion. Ecological restoration is an

iterative process that requires continuous upkeep and evaluation

to ensure that specific goals are achieved. Assessments and

monitoring are beneficial at any stage of a project; however, they

are particularly important for post-restoration evaluation.
4.1 Evaluating restoration for bees

To gauge the success of a restoration project, land managers

must have specific, measurable outcomes and goals (Hallett et al.,

2013). This may consist of setting targets that include specific

biodiversity metrics, such as species richness, species diversity, or

the presence of endangered species, which may be based on

historical baselines (Michener, 1997). These metrics are possible

to measure for small-scale bee habitat restoration initiatives;

however, for larger projects that may take a rewilding approach

(which involves allowing nature to reclaim a site rather than actively

restoring it), other metrics may be more appropriate. Rewilding-

focused strategies (Perino et al., 2019; Carver et al., 2021) emphasize

the need to evaluate ecological complexity, which can be gauged by

examining pollinator networks and redundancy (Elle et al., 2012;

Bullock et al., 2022; Gawecka and Bascompte, 2023) as well as

through the delivery of ecosystem services (Perino et al., 2019),

which may be estimated by floral visitation rates, pollen transfer by

bees (Plentovich et al., 2021), or the reproductive success of plants.

Assessing the success of restoration efforts should involve

evaluating multiple ecological indicators (Prach et al., 2019);

however, to date, bee diversity has not been commonly included

in such assessments due to the difficulty and expense of monitoring

(Bruninga-Socolar et al., 2023). Animals, particularly pollinators,

can serve as excellent indicators of environmental health because of

their interdependence with native plants (Buisson et al., 2017;

Montoya-Pfeiffer et al. , 2020) and their sensitivity to

environmental toxins. Honey bee colony growth and performance

have served as a useful bio-monitor for contaminants, pesticides,

pathogens, and climate change (Quigley et al., 2019) and therefore

may serve as useful indicators for assessing ecosystem health

(CaraDonna et al., 2018; Herrera et al., 2023; Schenk et al., 2018;

Willis Chan et al., 2019). Solitary bees are considered more sensitive

to climate change and other anthropogenic factors than honey bees

(Cunningham et al., 2022). Thus, solitary bees may be an even

better proxy for ecosystem health, although no studies to date have

tested this.

By utilizing multiple bee-capturing methods, sampling efforts

can encompass bee species with different life histories (Begosh et al.,

2020; Prendergast et al., 2020). For example, Sardiñas and Kremen

(2014) employed emergence traps to estimate ground-nesting bee

diversity, which differed from the composition of bee taxa estimated

using aerial nets and pan trapping. Other, more indirect indicators

of bee population health can be used to assess the long-term success
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of restoration projects. For example, native parasites (particularly

brood parasites, found in bees’ nests) indicate healthy populations

that are able to sustain native parasitic species (Hudson et al., 2006;

Dougherty et al., 2016; Araujo et al., 2018). Additionally, sex ratios

can be used as an indicator of bee population health. In many

species, including Osmia rufa Linnaeus, 1758, Megachile apicalis

Spinola, 1808, and Bombus sp., bee sex ratios can be sensitive to

resource availability and parasitism rates, both of which influence

larvae provisioning (Bourke, 1997; Kim, 1999; Seidelmann et al.,

2010). When larvae receive less food, there is a decrease in female

offspring (Kim, 1999; Seidelmann et al., 2010). Female bees are

primarily responsible for nest building and provisioning brood cells

(Danforth et al., 2019); thus, when populations are female-limited,

nest density and birth rates decrease, negatively affecting

population size.
4.2 Long-term monitoring & research

Long-term bee monitoring at current restoration sites may help

to improve future bee habitat restoration if used to identify practices

that sustain native bee populations (see Section 2.2 Establishing a

Baseline; Woodard et al., 2020; Droege et al., 2023). Sampling native

bee species richness and estimating population abundances are

useful metrics for evaluating restoration success (Williams, 2011;

Tonietto and Larkin, 2018). Long-term monitoring of restored

habitats is necessary to detect habitat and community changes

over time, as short-term assessments (one to five years following

the termination of a project) can provide incomplete or misleading

indicators of a project’s overall success (Herrick et al., 2006; Griffin

et al., 2017; Onuferko et al., 2018; Sexton and Emery, 2020; Tang

et al., 2023). For example, Abella et al. (2020) observed floristic

quality (an index where plants are ranked by the commonality of a

plant at a site) throughout 20 years, rather than just sampling at the

beginning and end of monitoring. They found the difference

observed across years better accounted for temporal fluctuations

in vegetation growth and plant diversity. Thus, it may be

meaningful to continuously assess the accumulation of restoration

benefits considering the impacts of the restored landscape

over time.

Long-term monitoring of bee populations and communities at a

given location is challenging because observations can be sensitive to

sampling methods (Portman et al., 2020; Bruninga-Socolar et al.,

2023) and the costs associated with identifying bees and processing

bee specimens can be high (Bruninga-Socolar et al., 2023).

Surveillance monitoring, or broadly sampling bee communities to

determine species presence, may provide measures of bee diversity.

However, increased bee diversity does not guarantee that local

populations of all bee species are sustainable; some populations

may be thriving while others are not (Kammerer et al., 2021).

Monitoring needs to occur across years; increased bee species

occurrences across a season do not necessarily indicate an increase

in population size (Portman et al., 2020; Woodard et al., 2020).

Alternatively, targeted monitoring is an emerging method for

assessing bee populations. It is based on specifically monitoring

certain bees or ecosystem functions that are the focal points of a
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given restoration project (Portman et al., 2020; Woodard et al.,

2020). Tepedino and Portman (2021) contend that targeted

monitoring is more effective than surveillance monitoring

methods. Moreover, targeted monitoring is hypothesis-driven,

which may facilitate the discovery of species-specific restoration

practices rather than just observing broad trends (Tepedino and

Portman, 2021). For example, targeted monitoring of rare plant

reproductive success can benefit specialist bees because of their

unique association with specialist pollinators (Motta et al., 2022). In

addition, innovative techniques, such as using camera traps with

deep learning technologies are emerging (Barlow and O’Neill, 2020;

Spiesman et al., 2021; Bjerge et al., 2023). These approaches, which

offer cost-effective and non-invasive methods for monitoring bee

diversity, are expected to continue to improve in the near future

(Bjerge et al., 2023).

Community science approaches can also provide cost-effective

long-term monitoring strategies (Huddart et al., 2016; Edwards

et al., 2018; MacPhail et al., 2020). Developing standardized

protocols for community science efforts allows high-quality data

to be obtained while educating the public about local environmental

concerns (MacPhail et al., 2020). To assess bee abundance or

diversity, community efforts could include catching and

photographing specimens for identification, locating and counting

nests, or quantifying floral resources and their phenology (Vilen

et al., 2023). Moreover, new methods such as passive crowdsourcing

can be a valuable screening tool for determining potential plant

candidates for bee habitat restoration (Bahlai and Landis, 2016).

Utilizing public resources such as iNaturalist and BugGuide for

species identification can contribute to the growth of databases and

more accurate distribution records (Orr et al., 2023). However, it is

important to understand the strengths and limitations of

community science data (Kosmala et al., 2016) and account for

this when designing studies and analyzing data recorded by

members of the public.
5 Discussion

Throughout this review, we provide insights for bee-centric

habitat restoration through our pre-, during-, and post-restoration

framework. We also emphasize promising directions for future

research. Table 3 summarizes the most promising research areas

needed to advance bee-centric restoration. Despite the limited

knowledge of many aspects of bee habitat restoration, prioritizing

the research gaps identified here can guide the application of

restoration practices based on empirical evidence. Ultimately, bee

habitat restoration aims to enhance native bee diversity and

abundance, contributing to the persistence of bee populations, bee

communities, and plant-pollinator interactions (Winfree, 2010;

Tonietto and Larkin, 2018).

The effects of habitat restoration on native bee species diversity

and abundance are currently data-limited but can be expanded

through the open sharing of restoration plans and monitoring

outcomes (Woodard et al., 2020). Throughout this review, we

found the majority of studies reported an increase in bee

abundance and diversity following restoration; however, we found
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only 21 studies that focused on species-specific responses of bees to

restoration. Including species-specific responses in future studies

can provide detailed information that can be used when restoring

habitat for targeted bee species.

In the absence of species-specific data for most wild bee species,

the best approach is to use strategies that will likely benefit a wide

range of bee species. Implementing empirical tools such as

M’Gonigle’s Genetic Algorithm can aid in the selection of plant

species to be used when restoring bee habitat (M’Gonigle et al.,

2017). Despite significant gaps in our understanding of the specific

nutritional requirements of native bees (Crone et al., 2022; Filipiak

et al., 2022), a prudent approach would include planting

phenologically overlapping floral resources (in which multiple

related host plant species flower simultaneously), and augmenting

floral resources both early and late in the flowering season in order

to increase flowering duration at the community level. These

approaches should consider plant nutritional variability when

possible, increasing the chances that the nutritional requirements

of most bee species will be met (Rowe et al., 2018). Additionally,

including native keystone plant species that support a wide array of

generalist bees and other insects should be a priority (James et al.,

2014, 2016; Fantinato et al., 2018).

It is important to recognize that plant species that are important

for bees may not always be bee-pollinated. For example, many bee

species rely on willow (a wind-pollinated species) for pollen in

riparian habitats (Mitchell et al., 2022). Moreover, not all sites may

require the addition of supplemental floral resources. Many

restoration projects can improve the habitat for native bees

through the removal of non-native species and allowing the

natural recruitment of native plants from nearby areas and from

the existing seed bank (Hanula and Horn, 2011).

Nesting habitat can be provided by leaving dead plant debris at

restoration sites and reducing the use of mulch to provide some

bare ground for ground-nesting bees (Vaughan and Black, 2008;

Eckerter et al., 2021; Rappa et al., 2023). If cavity nests are present

during pre-site surveys, restoration efforts should be timed for

spring to minimize net loss (when many cavity nesters are less

likely to be overwintering). When applicable, care should be taken

to reconstitute the original vegetation structure of the site using

native plants. In addition, retaining dead piles of shrubs can

increase nest site availability for bumble bees (Liczner and Colla,

2020). By providing nesting sites that attract bees and lead to high-

quality nests, as well as by protecting existing nests, restoration

efforts can contribute to the preservation of bee populations

(Harmon-Threatt, 2020). Conserving existing nesting sites,

however, is not the only option; occupied nests can be

transplanted (Davison and Field, 2018), although the risks

associated with this practice are unknown. Although no direct

studies compare planting techniques for bee habitat restoration,

implementing a mixture of techniques (e.g., transplanting, seed

spreading, and propagation) to provide heterogeneity in habitat

structure and plant diversity would likely best support bee

habitat restoration.

Habitat loss and degradation are major factors driving insect

declines (Wagner et al., 2021), and refocusing restoration practices

on bees may help conserve native bee diversity and abundance.
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Developing metrics for use as part of a rapid assessment protocol for

bees is necessary to ensure clear quantitative and standardized

outcomes of bee-centric restoration work across projects. If the

establishment of metrics is widely adopted, this can provide specific

information on the causes of successful or unsuccessful bee-centric

restoration projects. Rapid assessment protocols are already employed

in various restoration contexts (Obrist and Duelli, 2010; Collins and

Stein, 2018). Similar protocols are currently being adapted to gauge the

success of bee habitat restoration across ecological scales, from

individual species to ecosystem functionality (Woodard et al., 2020).

These protocols play a crucial role in providing standardized

methodologies for evaluating the effectiveness of restoration efforts,
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facilitating the advancement of research, and promoting the

implementation of bee-centric habitat restoration practices.

The restoration of bee habitats contributes to the overarching

objectives of ecological restoration by increasing plant diversity and

enhancing pollination services (Menz et al., 2011; Wratten et al.,

2012; Wojcik et al., 2018; Cole et al., 2019). For example, restoring

native plant communities to support bee populations can provide

habitat and nutritional resources for a range of other species,

including birds, mammals, and other invertebrates (Tallamy,

2020). Moreover, strategies that target the conservation of

specialist bees can lead to the preservation of rare and endemic

plant species, further contributing to the conservation of unique
TABLE 3 Research priorities that are critical for advancing the fields of bee conservation and habitat restoration.

Topic Current knowledge Research priorities

Bee foraging ranges Bees use complex learning cues to determine where to forage. Evaluate the influence of plant species diversity on bee foraging ranges.

Bee nutrition The quality and quantity of floral resources impact bee health
and survival.

Consider the effects of different micro or macronutrients.
Establish databases for specialist bee nutrition.

Biotic factors and
floral resources

Deer herbivory has caused a decline in bumble bee abundance in
some systems.

Assess how biotic factors (i.e., herbivory) in other systems may
impact bees.

Ground-
nesting bees

Many factors influence ground-nesting bee behavior. Evaluate the role of soil chemistry and soil microbial diversity for
ground-nesting bees.

Characterize nesting site attributes, evaluate nesting success under
variable conditions, and share this information.

Non-
floral Resources

Non-floral resources can be useful for native bee nesting and benefit
bee health.

Assess the role of non-floral resources in bee habitat restoration.
Characterization of non-floral resources, such as nesting material in

shared databases.
Increase inclusion of non-floral resources in bee host plant databases.

Non-native species Non-native species can sometimes provide floral resources. Assess whether non-native plants affect soils and ground litter, and
determine how this impacts ground-nesting bees.

Pesticides
& herbicides

Herbicides can be harmful to bees. Establish sublethal effects of pesticides on native bees.
Determine how herbicide use in restoration impacts native

bee populations.

Plant patches Bees prefer closer patches of floral resources for foraging. Determine the quantity of floral resources necessary to support different
types of native bees.

Assess what patch attributes bees respond to when foraging.

Plant species origin The provenance of seeds or plants can influence plant-
pollinator interactions.

Compare the phenology of local and non-local plant provenance and
determine if associated bees may be at risk for a phenological mismatch.

Determine if non-local plant provenance has differing reproductive
success than local plant genotypes.

Proximity
to roadways

Roadways can cause declines in bee populations, and restoring sites
near roadways can lead to ecological traps for bees.

Determine the optimal distance from roadways for implementing bee
habitat restoration.

Identify the threshold of roadway activity that negatively affects bees.

Seed mixes Increasing plant diversity in seed mixes promotes bee diversity. Determine how to best integrate phenology, taxonomy, and bee
nutrition into affordable seed mixes.

Establish a system to make site-specific seed mixes for a diversity of bee
species and habitat types.

Solitary bees Anthropogenic factors negatively impact the abundance and diversity of
solitary bees.

Assess the extent to which solitary bees are declining and determine the
role of restoration in preventing the local extinction of solitary bees.

Specialist bees Host plants for specialist bees are well-documented for some species but
not others.

Establish what host plants specialist bees rely on.
Determine the quantity of floral resources needed to sustain a

population of specialist native bees.
Examine how we can aid the recruitment of specialist bees to newly

restored sites.

Transplanting
bee nests

Nests can be transported. Assess the benefits and risks of transplanting native bee nests in bee
habitat restoration.
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ecosystems (Motta et al., 2022). Restoring bee habitats within the

framework of general restoration efforts can enhance pollination

networks (Kaiser-Bunbury et al., 2017), promote ecosystem

services, and improve plant and bee reproductive success

(Albrecht et al., 2012; Danforth et al., 2019).
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