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Out of the ocean: the timescale
of molluscan evolution based on
phylogenomics revealed the
ages of mollusks’ evolutionary
transitions into the
novel environment
Xiaolu Han, Shaolei Sun, Yiting Wang, Mengyuan Liu,
Bonian Shui* and Zhiqiang Han*

Fishery College, Zhejiang Ocean University, Zhoushan, Zhejiang, China
Being the phylum with the second largest biodiversity, mollusks are widely

distributed in marine, freshwater, and land, conquered almost all habitats on

the earth. Throughout geological time, several molluscan lineages independently

colonized freshwater and land, evolving independently in new habitats. Resolving

the timing of their colonization for novel environments is the basis of

understanding the complex evolution of Mollusca. Herein, we obtained an

elaborate single–copy orthologs set including 107 genes with a total length of

3,447,675 amino acid sites across 134 mollusks to reconstruct the phylogeny of

Mollusca. The phylogenetic analysis recovered the “Aculifera+ Conchifera”

topology with well–supported. By the divergence times estimation with fossil

calibration, we revealed Cambrian rapid diversification of all molluscan classes.

What’s more, our results provided the times of three major independent

colonization of novel environments and consistent with previous studies. The

freshwater mussels (Bivalvia: Unionida) colonized freshwater about 233 Mya,

ancient origin and late diversification make this order to become the main

represent of the freshwater bivalves. The orders Stylommatophora and

Basommatophora (Gastropoda: Pulmonata) respectively colonized land and

freshwater about 201 Mya, the Triassic–Jurassic mass extinction may have

provided the opportunities for their colonization. Ampullariidae (Gastropoda)

colonized freshwater about 156 Mya, their lungs may have contributed to the

adaption of tropical freshwater environment and make them survive. Our results

probably offer the most comprehensive time–scale of molluscan evolution,

could provide some insights into the habitat transition and evolution of Mollusca.
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Introduction

The ocean is the cradle of life, but organisms have been

expanding their habitat in the course of evolution. Evolutionary

transitions to new habitats are a type of ecological specialization

that can lead to speciation (Goulding et al., 2022). Although the

evolutionary transitions to new habitats occurred only in a few

animal groups, there is no denying that expansion into new

habitats does promote biological diversity. Mollusca is a phyla

including many species with successful evolutionary transitions,

which containing more than one hundred thousand described

species is the phylum with the second highest biodiversity

(Haszprunar and Wanninger, 2012). Due to the high biodiversity,

mollusks have always been an important group in biological studies,

especially in their origin and phylogeny. Numerous fossil records, like

small shelly fossils (SSF) (Parkhaev, 2008) have confirmed that

mollusks originated in the Precambrian oceans. But currently,

mollusks have expanded in almost all habitats all over the world,

particularly being abundant in marine and freshwater (Ponder and

Lindberg, 2008). Most classes of Mollusca remained in the ancestral

marine niche, but at present, about 5,000 species in 34 gastropod

families and 9 bivalve families invaded and colonized freshwater

ecosystems at different times (Cummings and Lydeard, 2019), and

become very crucial members of freshwater ecosystems for their

contributions to the material cycle (Böhm et al., 2021). Moreover,

some gastropods have truly become terrestrial, like a portion of

Stylommatophora slugs, this order containing more than 112 families

with a total of about 3,000 species, is a main group of Gastropoda

(Saadi et al., 2021). In those several groups, their large different

morphological characteristics and classifications suggest that they

colonized novel environments independently (Yang et al., 2018;

Hopper et al., 2021). However, the times of their colonization and

the stimulative factors of colonization are quite uncertain. Solving

these problems will be the basis for further revealing the complex

evolutionary process of mollusks.

Throughout the course of biological evolution, many species

colonized novel environment and survived. For example, several

ecdysozoan lineages independently colonized land during the

evolution, and have been important components of ecosystems

(Kenrick et al., 2012), a comprehensive molecular study further

revealed the relation to the ecdysozoan land colonization with the

evolution of vascular plants and forests (Rota-Stabelli et al., 2013).

In mammals, studies revealed that cetaceans are a typical group of

secondary aquatic animals whose ancestors returned to the sea from

land about 55 Mya (Thewissen et al., 2009). For mollusks, a part of

molecular phylogeography studies of major freshwater groups have

provided some insights into the evolution and habitats transitions,

like the Gondwanan origin of Ampullariidae (Gastropoda) (Hayes

et al., 2009) and the expansion of radicine pond snails (Gastropoda:

Lymnaeidae) (Aksenova et al., 2018). Except for those entirely

freshwater or terrestrial species, the study of intertidal onchidiid

slugs (Gastropoda, Pulmonata) revealed the connection of habitat

and microhabitat evolutionary transitions, suggesting that the

freshwater and marginal environments may be the path of

gastropod to land (Goulding et al., 2022). Those studies suggested
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that the evolutionary transitions for novel environment of mollusks

may be more complex.

For the same selection pressure, the similar morphological

convergence may occur among different taxa, this could lead the

morphological approaches to the study the diversity processes of

marine invertebrates may be limited (Vidal-Garcıá and Keogh, 2015).

Thus, reconstruct a reliable molecular phylogenetic tree of Mollusca

is the base of understanding the colonization of freshwater habitats by

freshwater mollusks. The large differences in morphological and

molecular results have been an important cause of controversy in

the phylogenetic relationships of mollusks. In recent years,

phylogenomic studies recovered much class–level phylogenetic

relationships of mollusks with strong support, and made great

progress. However, previous studies mainly focused on the internal

phylogeny and the times estimation of mollusk’s major classes,

even in some studies that included marine and freshwater species,

the timing of colonization of new environments had not been

discussed (Erwin et al., 2011; Zapata et al., 2014; Parkhaev, 2017;

Kocot et al., 2020). But those studies proved that the phylogenomic is

effective to resolve the deep phylogenetic relationships. Although

phylogenetic genomics is very effective, however, it needs to rely on

complex analytical methods and huge amounts of data. In any group

of organisms, identifying the single–copy orthologs is a vital step in

phylogenetic studies (Creevey et al., 2011). There are many databases

of single–copy orthologs could be used to identify the homologous

genes accurately and conveniently. Benchmarking Universal Single–

Copy Orthologs (BUSCO) is a database covering the identified

single–copy homologous genes of different species (Seppey et al.,

2019). It is effective in deep and large–scale phylogenetic studies

(Manni et al., 2021a), and it have been widely used in reconstructing

the phylogeny (Manni et al., 2021b). Therefore, the phylogenomic

approach is still the first choice to address the concerns about the

mollusks’ novel environment transitions.

In this study, we collected all available genomic data of

mollusks, which could represent all major classes of Mollusca.

Our data set included the freshwater species like freshwater

mussels (Unionida), apple snails (Ampullariidae) and so on, and

terrestrial species from Pulmonata. BUSCO was used to reconstruct

the phylogeny and we performed divergence time estimation with

rigorous fossil calibration. Our comprehensive timescale of

molluscan evolution could reveal the ages of mollusks’

colonization of novel environments. Moreover, we combined our

results with historical ecological events to try to find the connection

factors. This has significance in understanding the adaptive

evolution of mollusks and the terrestrialization of animals.
Materials and methods

Data collection and transcriptomes
de novo assembly

We collected all available published genomes and

transcriptomes of Mollusca and one outgroup species Lingula

anatina (Brachiopoda) from National Center for Biotechnology
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Information (NCBI) databases (https://www.ncbi.nlm.nih.gov) and

MolluscDB (http://mgbase.qnlm.ac/) (before July 30, 2023). The

transcriptomes were dismissed if the genome of this species has

been already available. For the collected transcriptomes, after

removing the reads with sequencing adapters, unknown

nucleotides (N ratio > 10%) and low–quality reads (quality scores

< 20) by Trimmomatic software (used Paired end mode [PE] and

default parameters for others) (Bolger et al., 2014), we used Trinity

v2.8.5 (Grabherr et al., 2011) to perform the transcriptome de novo

assembly with 10,000 max introns (–seqType fq –max_memory

300G –SS_lib_type RF and used default parameters for others).

Then, we used a custom Perl script (could be found in

Supplementary File 2) to extract the unigenes whose length more

than 200 bp for the next phylogenetic inference. In order to improve

the accuracy of phylogeny inference, the transcriptomes whose

contig N50 were below 1,000 were discarded. Moreover, we used

SOAPdenovo 2.0 software with 147 k–mer (max_rd_len=100,

avg_ins=400, reverse_seq=0, asm_flags=3, rank=1 and used

default parameters for others) (Luo et al., 2012) to assembly a

published raw data and got the draft genome of Laevipilina

antarctica (Kocot et al., 2020) as a supplement in our study. In

this way, a total of 138 genomes and transcriptomes across 134

mollusks and one outgroup species were retained. The information

of genomes and transcriptomes used in this study can be found in

Supplementary Table 1. The habitat information was retrieved from

the primary literature and WoRMS database (https://

www.marinespecies.org/).
Single–copy orthologous amino acid
dataset processing

We used the metazoan_odb10 database BUSCO v5.0 (Manni

et al., 2021a) to identify the single–copy orthologous genes of all

collected genomes and transcriptomes. Due to the large number of

samples and different assembly quality, we retained the orthologous

genes that existed in at least 90% samples. Through this process, we

obtained 107 orthologous genes. After alignment by MAFFT (–auto

and used default parameters for others) (Katoh et al., 2009) and

concatenation by SCaFos (Roure et al., 2007), these orthologous

genes were complemented the deletion of amino acid sites by the

gaps. Finally, we obtained a dataset including 107 orthologous genes

with a total length of 3,447,675 amino acid sites across 135 species,

covering one outgroup species and 134 mollusks (this dataset could

be found in Supplementary File 1). This data set could represent all

seven major Mollusca classes.
Phylogenetic analysis and molecular
clock analysis

After the estimate of best–fit model for the amino acid data set

by ProtTest 3 (Darriba et al., 2011), RAxML software v8.2.12

(Stamatakis, 2014) was used for maximum likelihood (ML)

analysis, a total of 1,000 bootstrap replicates based on

PROTGAMMAIJTT substitution model on all concatenated
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amino acid were performed. To evaluate the potential effects of

substitution models of phylogeny inference, we performed the best–

fit model test by ModelFinder (Kalyaanamoorthy et al., 2017) of

each amino acid sequence and used IQ–TREE v2.2.0 (Nguyen et al.,

2015) with the best–fit partition model (the best–fit model of each

amino acid sequence can be founded in Supplementary Table 2) for

ML analysis (–bb 100). Moreover, the Bayesian analysis (BA) was

also carried out by MrBayes v3.2.7 (Huelsenbeck and Ronquist,

2001) with 200,000 metropolis–coupled Markov chain Monte Carlo

(MCMCMC) generations with sampling every 100 generations and

then the first 25% of the sampled generations were discarded as

burn–in. After the running of 200,000 generations, the average

standard deviation of split frequencies was less than 0.01. To

estimate the diversification times of major molluscan classes and

the mollusk colonization of novel environments, we employed

PAML mcmctree v.4.9 (Yang, 2007) to perform molecular clock

analysis. The best topology of RAxML analysis was used in

mcmctree molecular clock analysis with the correlated–rates

evolutionary clock model and HKY85 substitution model (this

model is the most similar to the best substitution model

PROTGAMMAIJTT and available in PAML). A total of 400,000

generations were performed, sampling every 100 generations, with a

burn–in of 50,000 generations. The other parameters followed the

PAML instruction. The software Tracer v1.7.1 (Rambaut et al.,

2018) was used for the count of ESS value to estimate

the convergence.
Divergence time calibration

To get the accurate divergence time of mollusks and the ages of

colonization of novel environments, we used a set of calibrations

from a recent study (Song et al., 2023), this set was obtained by the

comprehensive reviews of all important molluscan fossils, which is

well suited for the divergence time estimation of large–scale

phylogenetic analysis. By referring to the minimum and

maximum ages of the fossils given in the Supplementary

Documents in the above study, we calibrated the divergence times

of the major molluscan nodes. Moreover, we reviewed studies on

the three groups that underwent habitat transitions in this study, in

every major colonization event, we adopted one well–accepted

fossils in the estimation. Similarly, we used the minimum– and

maximum–age bounds of fossils as the prior on times to restrict the

habitat transition nodes. The information of fossil constraints used

in PAML mcmctree divergence time estimation could be found in

Supplementary Table 3.
Results

The phylogeny of Mollusca

A data set including 107 orthologous genes with a total length

of 3,447,675 amino acid sites, covering 135 mollusks, three species

of Aplacophora, six species of Polyplacophora, one species of

Monoplacophora, nine species of Cephalopoda, one species of
frontiersin.org
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Scaphopoda, 63 species of Bivalvia and 53 species of Gastropoda,

which could represent seven major Mollusca classes, was used for

phylogenetic analysis. Two ML trees that were reconstructed by

RAxML based on PROTGAMMAIJTT model (Figure 1) and IQ–

TREE based on best–fit partition model (Supplementary Figure 1)

both revealed the same topology. In our study, the results of

phylogenetic analysis using a single model for the concatenated

alignmnet are consistent with the partition results of IQ–TREE,

which has indicated that the different evolution rate of BUSCO

genes has no effect on the topological results of the phylogenetic

tree. Since the use of a single model and a partition model had no

effect on the results of the phylogenetic analysis. Moreover, the BA

tree also shown this same topology (Supplementary Figure 2) with

ML trees. As a whole, our phylogenetic analysis recovered the

Aculifera+Conchifera phylogenetic relationship. In the clade

Conchifera, Bivalvia cluster with Gastropoda+Scaphopoda, and

this clade cluster with the clade Monoplacophora+Cephalopoda.
The divergence time estimation and ages
of mollusks’ transitions

Through rigorous fossils calibration, we obtained a

comprehensive molluscan evolution time–scale (Figure 2).

Aculifera and Conchifera split 526 Mya, and the diversification of

tow subphyla occurred 475 and 516 Mya. The split times of other

classes are shown in Figure 2. What’s more, we have listed three

major groups that have undergone habitat transitions separately

(see Roman numerals in Figure 2). In the Bivalvia, the freshwater

mussels (Unionida) colonized freshwater about 233.21 Mya (95%

HPD: 223.81, 239.61). The other species of freshwater bivalves,

Corbicula fluminea and Limnoperna fortunei colonized freshwater

about 99.84 Mya and 130.50 Mya. In the class Gastropoda, there are

two main groups expanding to novel environments, one is the

family Ampullariidae, this colonization occurred 156.21 Mya (95%
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HPD: 145.41, 164.10). The second group contains freshwater and

terrestrial snails from Pulmonata, the evolutionary transition of the

Pulmonata ancestors occurred 201.62 Mya (95% HPD:

175.03, 230.16).
Discussion

When more species were included, our phylogenetic analysis

still recovered the same phylogeny of Aculifera+Conchifera with

well support, conforming to the most of phylogenetic studies of

mollusks based on molecular data (Smith et al., 2013; Kocot et al.,

2020; Song et al., 2023), thereby illustrating this phylogenetic

relationship is reliable. The clade Aculifera contains the sister

lineages Aplacophora and Polyplacophora. In the clade

Conchifera, our results support the view that Monoplacophora

was the sister to Cephalopoda (Smith et al., 2013), but some

phylogenetic studies recovered Monoplacophora as the basal

clade of all other shelled mollusks (Smith et al., 2013; Zapata

et al., 2014; Kocot et al., 2017). In the other three classes Bivalvia,

Scaphopoda and Gastropoda, the phylogenetic relationships were

long–term controversy for various hypothesis (Kocot et al., 2017;

Kocot et al., 2020). In our results, we recovered the clade Scaphoda

+Gastropoda being sister group to Bivalvia with well supported,

which was supported by some molecular studies (Smith et al., 2013;

Kocot et al., 2020). The morphological studies revealed the clade

Diasoma (Scaphoda+Bivalvia) (Runnegar and Pojeta, 1974), and a

recent molecular study recovered this clade with well supported

genomics data (Song et al., 2023), however, this result was not

supported by our phylogenetic trees. The same results based on IQ–

tree analysis revealed that model potential influence was avoided in

our analysis, and BA tree suggested that the different methods have

no influence on the results. In the past molecular studies of

molluscan phylogeny, recovering well–accepted phylogenetic

relationship is difficult, this could be due to a number of reasons
A B

FIGURE 1

The ML phylognetic tree reconstructed by RAxML based on concatenated 107 orthologous genes with a total length of 3,447,675 amino acid sites.
(A) The circle tree of all species in this study, bootstrap value at every node are shown through different colored dots. (B) The phylognetic tree of
seven major molluscan classes, different colors represent different classes and correspond to Panel A.
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(Kocot et al., 2011). Fortunately, dividing mollusks into two major

clades, Aculifera and Conchifera had become the consensus (Kocot

et al., 2020). However, the major controversial remained in the

internal phylogenetic relationships of Conchifera, especially in

Gastropoda, Bivalvia and Scaphopoda (Smith et al., 2013;

Sumner-Rooney et al., 2015; Kocot et al., 2017; Kocot et al.,

2020). Our result recovered the clade Aculifera+Conchifera and

consistent with some past studies (Smith et al., 2013; Kocot et al.,

2020), therefore, although the controversial still remained in the
Frontiers in Ecology and Evolution 05
phylogeny of Mollusca, our ML topology could fit the current

molluscan phylogenetic consensus.

Our divergence time estimation based on PAML mcmctree of

ML tree obtained the basically consistent results of the major

molluscan diversification nodes with previous molecular studies

(Kocot et al., 2020; Song et al., 2023). The molecular clock analysis

indicated that mollusks split from Brachiopoda about Precambrian

526.54Mya (95%HPD: 519.61, 531.44), this time is a little bit earlier

than some molecular studies (Kocot et al., 2020; Song et al., 2023).
FIGURE 2

The divergence time estimation of 135 mollusks by mcmctree function in PAML v.4.9. Gray bars show the 95% highest probability density (HPD).
The number marked at the node represents the average divergence times (Mya). Red six–pointed stars represent nodes calibrated using
fossils. The different genetic data from the same species are indicated in different Roman numerals.
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Our analysis suggests that this may be due to the data set we used,

the orthologous of both outgroup species and mollusks are all

derived from metazoan_odb10 database. But our results still

conformed to the Precambrian origin of Mollusca (Parkhaev,

2008). The split of Aplacophora and Polyplacophora time was

consistent with the fossil studies (Nielsen et al., 2007; Parkhaev

and Demidenko, 2010). Cephalopods split from Monoplacophora

491.62 Mya (95% HPD: 472.58, 510.49), this roughly coincides with

the emergence times of the earliest fossil cephalopods (Nishiguchi

and Mapes, 2008). Our molecular analysis revealed Bivalves

originated about 505.46 Mya (95% HPD: 497.01, 513.72) which

was confirmed with the first Bivalves fossil record (Parkhaev, 2008).

In addition, there was the diversification of Bivalves occurred 490.68

Mya (95% HPD: 482.77, 499.07), the fossil study also suggested

Bivalves had a noticeable diversification in the Ordovician (Babin,

2000). The origin of gastropods is still a matter of debate (Parkhaev,

2017), our results reveal that gastropods is sister to Scaphopoda, and

originate in the Cambrian period, which coincides with the date of

the oldest gastropods fossil (Parkhaev, 2002; Parkhaev, 2017).

With credible fossils to calibrate our time–tree of our molecular

clock analysis, we reveal the time–scale of the major mollusks’

habitat transitions events (Figure 2). I. Unionida (Bivalvia): this

habitat transition event occurred Triassic about 233.21 Mya.

Unionida are widely distributed in freshwater lakes, rivers and

ponds on all continents except Antarctica (Huang et al., 2019),

containing over 900 species (Lopes-Lima et al., 2017). This order

could represent the major radiation of Bivalvia in freshwater

ecosystems (Froufe et al., 2020). It is generally accepted that the

family Silesunionidae (Early Triassic) should be considered the

MRCA of this order (Skawina and Dzik, 2011), and recent

phylogenetic reconstructions also supported the Triassic origin of

the order Unionida (Crouch et al., 2020; Froufe et al., 2020).

According to the geological and paleontological literature, the

earliest freshwater ecosystems on Earth may have formed during

the Ordovician period for the warm climate (Robin and Cocks,

2020). The Ordovician oldest freshwater jawless fish ostracoderms

(Gregory, 1935) also illustrated that the stable freshwater ecosystem

had emerged before the expansion of Unionida. The fossil record of

the earliest freshwater plants (before 480 Mya) proved the presence

of the producers in contemporaneous freshwater ecosystems

(Strother and Foster, 2021). All this suggests that Earth had a

freshwater environment capable of supporting these mollusks

before Triassic, allowing this order to colonize and survive in

freshwater environment, but the reason for its later appearance

relative to other freshwater organisms remains unexplained. For the

distribution of Unionida, our results revealed the same late

diversification of a super family Unionidae+Margaritiferidae

(Froufe et al., 2020), and Huang et al., (Huang et al., 2019) also

revealed the close relationship of the Unionidae distributed in

different regions, like in China and North America, based on

ancestral range estimation. Although the genomic data and

ancestral habitat tests for some Unionida are lacking in our study,

our molecular clock analysis revealed that the expansion to

freshwater of the Unionida occurred about Triassic, which is
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same as some previous molecular studies (Bolotov et al., 2017;

Froufe et al., 2020).

II: Pulmonata (Gastropoda), in this group, we used the earliest

records of lymnaeids Lymnaea morrisonensis (Gray, 1988;

Aksenova et al., 2018) to calibrate the divergence times. From our

results, the second habitat transition event occurred the late Triassic

about 201.62 Mya. This period is after the Triassic–Jurassic mass

extinction event (about 199 Mya) (Cohen et al., 2013). Volcanic

eruptions in the Central Atlantic Magmatic Province, along with

global warming, ocean acidification and oxygen deprivation, are

widely believed to have caused the mass extinction (Preto et al.,

2010; Whiteside et al., 2010; Bond and Grasby, 2017). The mass

extinction event caused great damage to both marine and terrestrial

ecosystems and a sharp decline in biodiversity (Lucas and Tanner,

2015). Therefore, we speculate that the emergence of a large number

of niche vacancies in terrestrial and freshwater environments after

this extinction event provided the opportunity to expand new

environments, the same conclusion was also revealed in a study

of the expansion of bivalve families (Crouch et al., 2020). Moreover,

in the order Stylommatophora, one molecular study have revealed

that intertidal Onchidiidae are a transitional species of snails from

the sea to land (Goulding et al., 2022), and our phylogenetic analysis

also suggested this family is the basal family of Stylommatophora,

which support above conclusion. Three families freshwater snails

are the intermediate hosts of Schistosoma, showing a high degree of

relatedness, the family Physidae is native to the North America,

Planorbidae is from the South America and Lymnaeidae comes

from the Africa (Bakry et al., 2015; Aksenova et al., 2017; Pila et al.,

2017; Zeng et al., 2017; Review et al., 2019; Kivistik et al., 2022).

According to our molecular clock analysis, they diversified 173.34

Mya. This period is in the breakup of the first stage of Gondwana

(about 180 Mya) (Burrett et al., 2014). And late, these freshwater

snails split in the next about 20 million years, in this time, Africa has

split off from America. Therefore, we speculate that the ancestors of

these freshwater snails colonized the freshwater ecosystem before

the breakup of Gondwana. Later, with the breakup of Gondwana,

they each stayed on a different continent.

III: Ampullariidae (Gastropoda), this habitat transition event

occurred about 156.21 Mya, containing African Lanistes nyassanus,

South American Marisa cornuarietis, Pomacea maculata and P.

canaliculata (Hayes et al., 2015). From our revealed divergence

times, we support the Gondwanan origin for Ampullariidae

(Berthold, 1991), and three South American apple snails diversified

about 30 Mya, which conforms with the hypothesis that the

diversification of New World ampullariids probably occurred after

the separation of America and Africa (Jokat et al., 2003). The

anatomic studies revealed the fact that Ampullariidae have both

gills and lungs, this allows them to live temporarily out of water

(Mueck et al., 2020), which we think this may have been an important

condition for the colonization of freshwater during this period.

Because since the Carboniferous, the Earth’s climate was warm and

wet, and forests and swamps began to appear on a large scale

(Thomas and Cleal, 2015). During this period, amphibians began

to diversify rapidly, like Labyrinthodontia (Witzmann et al., 2017)
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and Eryops (Konietzko-Meier et al., 2015). Research shows that the

Carboniferous amphibian explosion had a lot to do with their ability

to breathe with their lungs and adapt to the heat and oxygen

deprivation of the time (Long and Gordon, 2004). So do

Ampullariidae, the emergence of lungs would allow them to adapt

to this high temperature and low oxygen environment. Their native

habitat was mainly in the rainforests of South America, suggesting

that they had similar environmental adaptations to their ancestors.

This also explains why they have established populations in modern

times as invasive species only in other tropical regions besides South

America (Hayes et al., 2008; Lv et al., 2009).
Conclusion

In this study, we present a phylogenetic tree of Mollusca based on

amount of genomic data and, through rigorous fossil calibration,

present what may be the most comprehensive time–scale of

molluscan evolution. It provides phylogenomic support for

recovering the phylogeny of mollusks with “Aculifera+ Conchifera”

topology. Our study elucidates the timing of several independent

habitat transition events during the evolution of mollusks and

explains possible inducers through historical ecological events.

Revealed three major habitat transition events could represent the

main expansion of Mollusca into freshwater and land ecosystems. It

is of great significance to study the complex evolutionary process of

mollusks and the terrestrialization of animals.
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