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Most small rodent populations worldwide exhibit fascinating population

dynamics, capturing the attention of numerous scholars due to their

multiyear cyclic fluctuations in population size and the astonishing amplitude

of these fluctuations. Hulunbuir steppe stands as a crucial global hub for

livestock production, yet in recent decades, the area has faced recurring

challenges from steppes rodent invasions, with Brandt’s vole (Lasiopodomys

brandtii, BV) being particularly rampant among them. They not only exhibit

seasonal reproduction but also strong social behavior, and are generally

considered pests, especially during population outbreak years. Prior studies

suggest that BV population outbreaks tend to occur across a wider geographic

area, and a strong indicator for identifying rodent outbreaks is recognizing their

burrow clusters (burrow systems). Hence, this paper conducts target object

detection of BV burrow clusters in the typical steppes of Hulunbuir using two

GF-2 satellite images from 2021 (the year of the BV outbreak). This task is

accomplished by incorporating the Faster R-CNN model in combination with

three detection approaches: object-based image classification (OBIC), based

on vegetation index classification (BVIC), and based on texture classification

(BTC). The results indicate that OBIC demonstrated the highest robustness in

BV burrow cluster detection, achieving an average AP of 63.80% and an F1

score of 0.722 across the two images. BTC exhibited the second-highest level

of accuracy, achieving an average AP of 55.95% and an F1 score of 0.6660.

Moreover, this approach displayed a strong performance in BV burrow clusters

localization. In contrast, BVIC achieved the lowest level of accuracy among the

three methods, with an average AP of only 29.45% and an F1 score of 0.4370.
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Overall, this study demonstrates the crucial role of utilizing high-resolution

satellite imagery combined with DL-based object detection techniques in

effectively monitoring and managing the potential outbreaks of steppe

rodent pests across larger spatial extents.
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1 Introduction

Steppes cover approximately 50 million km² or 37% of the

Earth’s total land area, making them a vital component of the global

ecosystem (O'mara, 2012; Cao et al., 2019). They serve not only as a

crucial repository of global biodiversity but also as a vital provider

of both tangible and intangible resources essential to humanity

(Rojas-Briales, 2015). These resources encompass a wide range of

ecosystem services and cultural services, for instance, food

production, climate regulation, water and carbon cycles, and the

preservation of ethnic cultural heritage (Zhao et al., 2020; Bardgett

et al., 2021). Moreover, steppes represent the largest terrestrial

ecosystem in China and are the most common ecosystem type in

arid and semiarid regions (Han et al., 2018). The steppes of Inner

Mongolia in northern China, as an indispensable and integral part

of the Eurasian Steppe, play a crucial role in sustaining local

agriculture, livestock farming, and ecosystem functionality (Wang

et al., 2020; Zhang et al., 2020). However, due to the interference of

climate change and human activities, almost all of Inner Mongolia’s

natural steppes have undergone varying degrees of degradation, a

fact that has been well documented in previous studies (Hua and

Squires, 2015; Hu et al., 2015; Shang and Wu, 2022; Xu et al., 2022).

The Hulunbuir steppe, in the northeastern part of Inner Mongolia,

is one of the world’s four major steppes (Liu et al., 2021), but its

ecosystem faces numerous challenges, case few point like

desertification (Na et al., 2019), water pollution (Chen et al.,

2021), and heavy metal pollution (Ma et al., 2022) etc.

Surprisingly, until the current juncture, there has been a paucity

of studies delving into the repercussions of steppe rodent

disturbances on the ecological landscape and public health

security in this specific region. This is especially pronounced

regarding broader-scale detection and management of

rodent damage.

While developing countries have established relatively

comprehensive theoretical knowledge regarding rodent

agricultural pest management, rodents still pose a significant

problem for global food security (Meerburg et al., 2009).From an

economic standpoint, when we contrast the damage caused by

rodents worldwide prior to harvest and following harvest, the

annual toll stands at 10-15% (Meerburg et al., 2009; Belmain

et al., 2015). Rodent population’s outbreaks and spread not only
02
threaten the lives and property of local populations (Addink et al.,

2010; Sage et al., 2017; Ocampo-Chavira et al., 2020) but also cause

certain degrees of damage to steppe ecosystems (Du et al., 2022).

Brandt’s vole (Lasiopodomys brandtii, BV) is widely distributed in

the Russian Federation, central and eastern regions of Mongolia,

and northeastern areas of China (Avirmed et al., 2016). They are

commonly considered pests (especially in population outbreak

years) as well as the dominant species causing rodent infestations

in the Hulunbuir steppe (Yin et al., 2017). They breed seasonally

and are highly social and gregarious; the population typically

initiates its increase phase in early spring (April) each year,

reaching its peak in early autumn (August). However, by late

autumn, the BV’s population experiences a sharp decline,

entering a period of crash, and stabilizes as it enters the early

winter, marking its low phase (Shi et al., 2002; Andreassen et al.,

2021). Driven by intrinsic and extrinsic factors, the periodicity of

population outbreaks of this species is approximately every 3-14

years, also varying by region (Avirmed et al., 2016). A case in point

is the Hulunbuir area, where there has been an outbreak every 3-5

years (Zhang et al., 2003). Therefore, it is one of several rodents

species that need to be managed on Chinese steppes (Shi et al.,

2002). In population outbreak years, the burrow number can reach

561600/km² (Zhong et al., 1999), which may expose approximately

870 m3/km² of underground soil directly to the surface and cause

wind and water erosion, thereby further degrading and decertifying

the pasture ecosystem (Zhong et al., 1999; Shi et al., 2002). During

that same year, the population of BV was approximately 130,000/

km². Each vole can consume up to 40 g of fresh grass daily, and a

single BV population potentially consumes 15-44% of the total grass

production (Zhong et al., 1999). Moreover, because their diet is

similar to that of livestock, it further reduces agricultural economic

benefits (Guiming et al., 1992). Furthermore, BV plays a crucial role

as a significant repository and means of spreading Yersinia pestis,

the pathogen responsible for the plague (Khan and Young, 2001;

Addink et al., 2010; Tian, 2018). The most renowned plague is the

Black Death, a cataclysmic epidemic that inflicted unparalleled

destruction during the mid-14th century (Addink et al., 2010).

Although certain regions of the world are no longer under threat

from plague, it remains a significant and serious public health

problem in Asia (Addink et al., 2010). In November 2019, in the

typical steppe of Xilingol, Inner Mongolia, four cases of plague
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transmission caused by rodents were discovered (Li et al., 2021),

leading to a certain degree of panic. Prior research has

unequivocally indicated that rodent population outbreaks not

only have significant impacts on the economy, ecology, and

society but may also influence the political landscape (Singleton

et al., 2010), and their population outbreaks tend to occur over

extensive areas (Zhang et al., 2003; Bai et al., 2022). Therefore, it is

necessary to identify efficient and accurate methods for monitoring

the quantity and spatial distribution of BV to better understand its

coupled stressors on the typical steppe ecosystem in Hulunbuir.

Traditional methods for detecting steppe rodent infestations,

such as field surveys and marking techniques, are time-consuming,

labor-intensive, and inefficient (Li et al., 2016; Wang et al., 2019a).

Remote sensing has been considered an effective means to study

potential information sources related to rodent infestations (Beck

et al., 2000; Lu et al., 2022). In recent years, unmanned aerial vehicle

(UAV) remote sensing technology in diverse domains of steppe

ecosystems has advanced remarkably (Shi et al., 2021). The

interpretation of UAV images has evolved from initial manual

visual interpretation to human-computer interaction (including

object-based classification and support vector machines) (Ma

et al., 2017). While these advancements have shown certain

improvements, they still face notable constraints in terms of

efficiency and accuracy when compared to deep convolutional

neural networks (Janiesch et al., 2021). Deep learning (DL), a

subfield of machine learning (ML), has demonstrated impressive

capabilities in identifying and extracting target objects from remote

sensing images due to its automated deep convolutional feature

extraction (Lecun et al., 2015; Jean et al., 2016; Li et al., 2019; Yeh

et al., 2020). When integrated with UAV imagery, DL algorithms

have shown great effectiveness in extracting small rodent burrows.

For example, the detection of Levant vole (Microtus guentheri)

burrows in alfalfa (Medicago sativa) fields was achieved with high

reliability using You Only Look Once (YOLO)v3, showcasing its

accuracy (Ezzy et al., 2021). Another study conducted in the steppe

of Xilingol League, Inner Mongolia, China, utilized UAV imagery

and DL methods to extract BV burrows, and Faster R-CNN and

YOLOv4 yielded the most accurate results (Du et al., 2022). Despite

the advantages of UAV remote sensing, such as its flexibility and

high spatial resolution (Lyu et al., 2022), it still falls short of meeting

the requirements of large-scale pest detection or is too costly for

extensive pest monitoring. With advancements in satellite remote

sensing technology, high-resolution satellite (HRS) imagery, which

provides abundant information about land cover, spectral

characteristics, and textures, has found widespread applications

across various fields (Cheng and Han, 2016; Fu et al., 2017). In

the field of pest detection, the application of two QuickBird imagery

and the object-oriented analysis method enabled the automatic

classification of great gerbil (Rhombomys opimus) burrow systems

(burrow clusters) with user and producer accuracies reaching 60%

and 86%, respectively (Addink et al., 2010). This pioneering

research laid the groundwork for automating the mapping of

rodent burrow clusters using HRS imagery. However, there is a

lack of research that employs HRS imagery alongside advanced DL

object detection techniques to identify burrow clusters of common
Frontiers in Ecology and Evolution 03
steppe diminutive rodents such as BV or similar species. Therefore,

to address the current research gap in the identification of pests and

their burrow clusters on typical steppes, we employ two GF-2

satellite images and the Faster R-CNN model to perform object

detection and comparative analysis of BV burrow clusters in the

typical steppe of Hulunbuir, utilizing three distinct approaches:

object-based image classification (OBIC), based on vegetation index

classification (BVIC), and based on texture classification (BTC).

Furthermore, this research has long-term advantages for promoting

the sustainable development of typical steppe ecosystems and

monitoring plague outbreaks.
2 Materials

2.1 Study area

The Hulunbuir steppe is situated in the northeastern part of

Inner Mongolia, China, with geographic coordinates ranging from

115°31’ to 126°04’ east longitude and 47°05’ to 53°02’ north latitude.

It shares borders with Mongolia and Russia and features an east-to-

west sloping terrain, with elevations ranging from 650 to 700 m. The

region exhibits a temperate continental climate and is classified as a

semiarid area. It is influenced by dry and cold air masses from

higher latitudes during winter and warm and humid air masses

from lower latitudes during summer. This unique combination not

only gives rise to distinct monsoonal climate characteristics but also

renders the climate environment highly responsive to changes (Bao

et al., 2012). The area experiences frequent droughts, mainly in the

spring and summer seasons. The annual precipitation ranges from

approximately 250 to 350 mm, with summer rainfall contributing to

approximately 60-70% of the total precipitation throughout the

year, and average annual temperature is approximately 2°C (Liu

et al., 2021). Based on data from the MODIS MCD12Q1 product,

the steppe area in the region covers approximately 101,288 km².

Steppe coverage represents approximately 80% of the entire region

(Figure 1). Consequently, the land in the Hulunbuir steppe is

primarily used for grazing (Na et al., 2019). This research was

primarily conducted in the southeastern region of New Barag Right

Banner in Hulunbuir, an area that experienced a severe BV

outbreak in 2021 (Table 1), making it one of the most heavily

impacted areas.
2.2 Data

The two sets of GF-2 satellite image data were purchased from

the Inner Mongolia autonomous region military-civilian

integration development research center (http://219.159.12.25/

cxxt/portalIndex, accessed on December 2022). The GF-2 satellite

is China’s first civilian satellite with a ground sample distance below

1 m. It is equipped with PAN/MS cameras, where the former

captures imagery at a spatial resolution of 0.8 m, and the latter

collects four bands (R, G, B, and NIR) with a spatial resolution of 3.2

m each (Huang et al., 2018; Ren et al., 2020). To ensure consistent
frontiersin.org
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geographic and image conditions for identifying BV burrow

clusters, two adjacent images from the same date were selected.

These images were used to create Dataset 1 and Dataset 2 (Table 2).

Furthermore, according to the China Rodent Information Network

(http://www.chinarodent.com/, accessed on August 15, 2023)

reports, over the past five years, the typical steppes of Hulunbuir

have experienced cyclical population peaks in the BV population,

with 2021 undeniably marking the year of the most severe

population outbreak (Table 1, Figure 2). Additionally, according

to research by Davis (Davis et al., 2008), the threshold for triggering

plague outbreaks in rodent populations is determined by the density

of occupied burrow clusters, which is the product of the occupancy

rate (subject to temporal variations) and the density of burrow

clusters (constant over time). This suggests that fluctuations in

rodent burrow clusters density may explain the spatial variations in

historical plague activity. Therefore, it is more reasonable to detect

relatively stable BV burrow clusters by integrating HRS imagery

with BV population characteristics (Addink et al., 2010). The choice

of spring season holds significant ecological implications for

predicting the BV population size in the current and upcoming

years (Du et al., 2022).
3 Methodology

The primary methodology employed in this study is supervised

classification based on DL object detection. To efficiently and

accurately detect BV burrow clusters, we trained the Faster R-

CNN model, which is one of the most representative two-stage
Frontiers in Ecology and Evolution 04
object detectors. Finally, we evaluated the accuracy and

performance of this detector.
3.1 Data processing

To extract more abundant and accurate image information of BV

burrow clusters from GF-2 satellite images, we employed the

NNDiffuse fusion method to merge the panchromatic and

multispectral bands of the two datasets. This fusion method

demonstrated superior results in the comprehensive fusion of

visible light bands compared to other approaches (PC, Gram

−Schmidt, and HSV sharpening) (Zhang et al., 2018) (Figure 3). To

enable the object detection detector and its backbone network to

efficiently extract ground features of BV burrow clusters, we selected

BV burrow clusters with higher clarity and distinct characteristics as

ground truth boxes (GTBs). Dataset 1 and Dataset 2 were annotated

with 25,000 and 26,520 GTBs, respectively. To determine the optimal

classification method for identifying BV burrow clusters in the typical

steppe of Hulunbuir, we adopted three different approaches. First, the

object-based image classification (OBIC) method was used to detect

BV burrow clusters directly from the preprocessed images. Second,

the based on vegetation index classification (BVIC) method was

employed to differentiate whether BV burrow clusters exhibited

significant differences from the surrounding vegetation. For this

purpose, the normalized difference vegetation index (NDVI) was

calculated using the formula (Equation 1).

NDVI =
NIR − RED
NIR + RED

(1)
B

CA

FIGURE 1

Location of the study area. (A) Location of the Mongolian Plateau and Hulunbuir, (B) Elevation of Hulunbuir, (C) Vegetation type map of Hulunbuir.
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where NIR (near infrared) = band 4 and RED = band 3;

In the based on texture classification (BTC) method, texture

information plays a crucial role in image analysis (Huang et al.,

2014; Castelo-Cabay et al., 2022). Among statistical methods, gray-

level co-occurrence matrices (GLCMs) serve as powerful texture

descriptors in image analysis (Siqueira et al., 2013). We applied this

method to compute the texture values of the two sets of images and

conducted object detection.
3.2 Deep learning model

At present, one-stage and two-stage object detection networks

are widely used. Although one-stage methods are significantly faster

in terms of detection speed compared to two-stage methods, they

often perform worse than the latter in terms of localization accuracy

(Lin et al., 2017). The primary reason for this difference lies in the

training process of the one-stage approach, where an imbalanced

distribution between foreground (object) and background classes

(e.g., 1:1000) hampers the model’s accuracy. On the other hand,

two-stage approaches utilize a proposal-driven mechanism in the

first stage to filter out a substantial number of negative samples

(background), allowing for relatively accurate classification of each

candidate box in the second stage (Lin et al., 2017). Considering

these factors, to achieve precise and efficient identification of BV

burrow clusters, we opted to abandon the one-stage object detection

approach and focused our efforts on training the Faster R-CNN

model, which will be detailed in the following sections.

3.2.1 Faster R-CNN network framework
Faster R-CNN is a well-known two-stage object detection

method (Jiao et al., 2019). It is an improvement over the original

R-CNN and Fast R-CNN approaches. R-CNN is a region-based

CNN object detector that employs selective search to identify

regions of interest (RoIs) and bounding boxes in each image.

These regions are then refined and fed into a CNN network for

feature extraction. Classification is performed using linear support

vector machines (SVMs) specific to each class (Girshick et al., 2014).

Fast R-CNN (Girshick, 2015) is a faster variant of R-CNN, and

it introduces several enhancements. First, the network extract

features from the entire image and employs RoI pooling to obtain

fixed-size features for subsequent fully connected layers. This

approach saves time compared to R-CNN, which processes each

region proposal separately. Second, Fast R-CNN combines

classification and bounding box regression, enabling end-to-end

training in a single stage. This contrasts with R-CNN, which

involves multiple stages of training, fine-tuning, SVM

classification, and bounding box regression. Softmax classification

is used instead of multiple SVM classifiers and bounding box

regressors as in R-CNN.

Faster R-CNN (Ren et al., 2015) represents an advancement

over Fast R-CNN by introducing a region proposal network (RPN)

in its first stage, which employs a fully convolutional network

instead of the selective search method. The RPN efficiently

predicts region proposals with varying scales and aspect ratios,

significantly expediting the region proposal generation process by
T
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sharing full-image convolutional features and convolutional layers

with the detection network. Moreover, Faster R-CNN introduces

the concept of multiscale anchors to detect objects of different sizes,

streamlining the region proposal generation without requiring

multiscale images and features as input. In the output feature

layer of the last shared convolutional layer, a fixed-size sliding

window (3×3) is applied, where the center of the window

corresponds to a point in the original input image. The anchor

boxes are defined in the original paper with three different scales

and three different aspect ratios, resulting in a total of nine anchor

boxes. For a W×H convolutional feature map, the anchor box set is

of size W×H×k, comprising positive (foreground) and negative

(background) samples. However, this leads to the notorious issue of

positive and negative samples being extremely unbalanced, which

can overwhelm the model accuracy. To address this problem, the

RPN network randomly selects positive and negative samples

according to a 1:1 ratio to create a mini-batch. The region

proposals are then generated by comparing these samples against

the GTBs for each object. The bounding box classification layer (cls)

of the RPN produces 2×k scores, evaluating the probability of each

proposal being an object (foreground) or background. A regression

layer predicts 4×k coordinates for the k boxes (center point, width,

and height). The loss function for this network is as follows

(Equation 2):

L( pif g, tif g) = 1
Ncls
o
i

Lcls(pi, p*i ) +⋋
1

Nreg
o
i

p*i Lreg (ti, t
*
i ) (2)
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where i is the index of an anchor in a mini-batch and pi
represents the probability of anchor i being an object. p*i is the

ground truth label, where p*i = 1 indicates a positive anchor and 0

indicates otherwise. Lcls denotes the logarithmic loss for object and

nonobject categories. To calculate the regression loss, we employ

the function Lreg (ti, t*i ) = R(ti − t*i ), where R refers to the S R

smooth L1 function. The regression loss, p*Lreg (ti, t*i ), is

exclusively applied to positive samples for bounding box

regression. Here, ti represents the vector that represents the

predicted bounding box, while t*i corresponds to the ground truth

bounding box associated with the positive anchor. Ncls and Nreg

denote the mini-batch size and the number of anchor locations,

respectively. The parameter  ⋋ is utilized to balance the different

terms within the loss function.

In the second stage of the Faster R-CNN network, ROI pooling

is applied, followed by softmax-based classification, which is

consistent with the approach used in Fast R-CNN. The accurate

localization and precise classification of objects heavily rely on the

efficient extraction of target features from the input image. To

effectively extract the features of BV burrow clusters, this study

employs the feature pyramid network (FPN) based on the ResNet

architecture (Figure 4) as the feature extraction network in the

Faster R-CNN framework. The FPN improves upon the VGG

network mentioned in the original paper by enhancing the top-

down pathway and lateral connections in the convolutional

network. Additionally, FPN enables the construction of a rich,

multiscale feature pyramid using a single-resolution input image
TABLE 2 Details of two GF-2 images.

Types Acquisition Date Images Date Geographic Scope Spatial Resolution (m) Surface Area (km²)

Dataset 1 10/26/2022 04/09/2021 E117.3_N48.0 1 819.69

Dataset 2 10/26/2022 04/09/2021 E117.2_N47.9 1 820.34
B

A

FIGURE 2

Characteristics of Brandt’s vole burrow clusters; (A) is the GF-2 satellite image feature, and (B) is the field ground feature of Brandt’s vole.
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(Lin et al., 2017). With a deeper network and easier-to-optimize

depth residual modules compared to VGG, FPN has demonstrated

excellent performance on the ImageNet classification dataset while

maintaining a lower complexity (He et al., 2016). Finally, the

nonmaximum suppression (NMS) algorithm is added at the end

of the model to effectively eliminate redundant detections of objects

in overlapping regions (Neubeck and Van Gool, 2006).
3.3 Parameter settings

During the training process of the Faster R-CNN network, the

hyperparameters including batch size, learning rate, and number of

epochs, were fine-tuned to optimize the network’s performance.

The stochastic gradient descent (SGD) algorithm was utilized to
Frontiers in Ecology and Evolution 07
expedite the network’s convergence. The optimal values for these

hyperparameters can be found in Table 3. For both sets of datasets,

the images were resized to 256×256 to train the network, with 90%

of the data allocated for training and the remaining 10% allocated

for validation. Additionally, data augmentation techniques such as

horizontal rotation were applied to enhance the training dataset.

This study was implemented on the PyTorch platform using an

Intel(R) Core (TM) i7-8700 CPU processor, 16 GB of RAM, and an

NVIDIA GeForce RTX2060 GPU.
3.4 Model validation

The two most commonly used performance metrics in object

detection tasks are average precision (AP) and F1 score (Alganci
FIGURE 4

Faster R-CNN architecture using ResNet101 as the backbone network.
B C D EA

FIGURE 3

Effect comparison of different fusion methods for GF-2 satellite imagery; (A) GF-2 multispectral imagery (RGB), (B) HSV sharpening, (C) Gram
−Schmidt pan sharpening, (D) PC spectral sharpening, (E) NNDiffuse pan sharpening.
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et al., 2020). True positive (TP) refers to the number of correctly

detected objects, false positive (FP) refers to the number of missed

objects, and false negative (FN) refers to the number of falsely

detected objects. During the training process, the detector compares

the detected objects (predicted bounding boxes) with the GTBs

using the intersection over union (IoU) at each iteration and

updates its parameters accordingly. It is widely accepted that an

IoU >= 0.5 indicates that a predicted bounding box overlaps with

the GTBs by at least 50% and is considered a correct prediction

(Alganci et al., 2020). In this study, the threshold value for IoU was

set to 0.5 for both datasets. Precision represents the proportion of

correctly matched objects among all objects detected as matches

(Equation 3), while recall represents the ratio of correctly detected

objects to the total number of ground truth samples (Equation 4):

Precision =
TP

TP + FP
� 100% (3)

Recall =
TP

TP + FN
� 100% (4)

While precision and recall are valuable metrics, they

individually do not provide a comprehensive assessment of a

detector’s performance (Alganci et al., 2020). However, their

harmonic mean, known as the F1 score, offers a more robust

measure of the detector’s effectiveness. The F1 score is computed

using the formula depicted in Equation (5):

F1   score = 2 ∗
Precision ∗Recall
Precision + Recall

(5)

The average precision (AP) represents the area under the

precision-recall curve, offering a visual assessment of the
Frontiers in Ecology and Evolution 08
network’s accuracy in detecting individual objects. It is calculated

as in Equation (6):

AP =o
n

i=1

Precisioni(Recalli − Recalli−1),with  Recalli=0 = 0 (6)
4 Results

4.1 Model accuracy evaluation

In this study, we employed the Faster R-CNN model and

ResNet backbone network with different convolutional layers,

which are representative models of two-stage object detectors, to

detect BV burrow clusters in the typical steppe of Hulunbuir using

GF-2 imagery. As this study focused solely on identifying BV

burrow clusters as the target object, we only calculated precision,

recall, F1 score, and AP at the IoU = 0.5 threshold for both sets of

datasets. Table 4; Figure 5 show that both Dataset 1 and Dataset 2

achieved the highest precision, recall, F1 scores, and AP values

when the OBIC method was applied. Regarding texture filtering,

eight values, including mean, variance, homogeneity, correlation,

dissimilarity, entropy, second, and correlation, were computed for

each dataset, and BV burrow cluster identification was performed

individually. It was found that the mean feature offered the highest

recognition accuracy, resulting in an AP value of 55.5% for Dataset

1 and 56.4% for Dataset 2. The precision, recall, and F1 scores also

provided the second-highest values. On the other hand, the BVIC

method yielded the poorest recognition results, with AP of only

30.2% for Dataset 1 and 28.7% for Dataset 2. Notably, the recall
TABLE 4 Precision, recall, F1 scores and average precision score of all datasets.

Types Classification Prec Rec F1 scores AP(%)

Dataset1

OBIC 0.872 0.651 0.737 64.3

BVIC 0.657 0.361 0.460 30.2

BTC 0.831 0.567 0.674 55.5

Dataset2

OBIC 0.852 0.604 0.707 63.3

BVIC 0.704 0.293 0.414 28.7

BTC 0.851 0.536 0.658 56.4
front
TABLE 3 Faster R-CNN model hyperparameter settings.

Types Classification Backbone Batch size Learning rate Epochs

Dataset 1

OBIC ResNet50 4 0.001 32

BVIC ResNet50 4 0.001 38

BTC ResNet50 4 0.003 40

Dataset 2

OBIC ResNet50 4 0.003 39

BVIC ResNet101 4 0.001 42

BTC ResNet152 8 0.001 36
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value was particularly low, indicating that the Faster R-CNN model

failed to detect the increased signs of the target object in

BVIC recognition.

To conclude, the research conducted on BV burrow cluster

detection using the Faster R-CNN model and three classification

methods on two datasets showed that the OBIC method achieved

the highest average AP value (63.80%). The BTC method obtained

the second-highest average AP value (55.95%), while the BVIC

method yielded the lowest average AP value (29.45%) in this study.

These findings indicate that the OBIC approach outperforms the

BTC and BVIC methods in recognizing BV burrow clusters using

the Faster R-CNN model on the two datasets.
4.2 Visual evaluation

To provide a more intuitive assessment of the Faster R-CNN

algorithm’s performance, a visual inspection was conducted on the

detection results of Dataset 1 and Dataset 2. Based on the partial

results shown in Figures 6, 7, both datasets achieved relatively high

recognition accuracy in OBIC detection. Upon analyzing the visual

effects, the Faster R-CNN model successfully detected and

recognized BV burrow clusters with clear image features, with

only few burrow clusters with less distinct features being missed.

In BTC detection, the Faster R-CNN model also performed well in

detecting BV burrow clusters with obvious image features.

However, compared to the OBIC method, the Faster R-CNN

model not only missed more clusters with less distinct image

features but also misclassified some livestock enclosures in

residential areas as BV burrow clusters (Figure 7). In contrast,

BVIC recognition yielded the poorest detection results in this study.

From a visual standpoint, the BV burrow clusters exhibited

significant variations in size, illumination, and background

complexity, which posed challenges for the Faster R-CNN model

and its backbone network in effectively extracting the distinctive

features of BV burrow clusters.
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In summary, the visual inspection of the detection results

highlights that the Faster R-CNN algorithm achieved higher

recognition accuracy when employing the OBIC detection

method on both Dataset 1 and Dataset 2. While BTC detection

also showed positive outcomes, it had certain limitations compared

to the OBIC approach. On the other hand, BVIC detection

performed poorly due to the diverse and challenging

characteristics of BV burrow clusters, impeding the model’s

ability to accurately identify them.
5 Discussion

Rodents pose a significant threat not only to global food security

but also endanger human lives around the world (Stenseth et al.,

2003). In the Asian region alone, approximately 200 million people

lose their food supply annually due to rodent invasions (Singleton

and Brown, 2003). During occasional years of rodent outbreaks, the

impact on food security becomes even more pronounced (Singleton

et al., 2010). In the typical steppe areas of Hulunbuir, outbreaks of

BV can result in approximately 15-44% total grass yield loss during

affected years (Zhong et al., 1999). Based on data from the China

Rodent Information Network, the average BV population density in

Hulunbuir steppe (Table 1) showed a significant rise from 150,000/

km² in 2018 to 670,000/km² by late 2021, followed by a decline to

127,600/km² in 2022. In the same year (2021), the Inner Mongolia

government allocated approximately 1 million USD to restore

ecological damage to the Hulunbuir steppe caused by BV, sand

rats (Rhombomys opimus), and zokor(Myospalax fontanieri Milne)

(source: http://grassland.china.com.cn/).Therefore, 2021 was the

most severe year of BV population outbreak in the Hulunbuir

steppe in the past five years. From the disaster areas and several

previous studies have further corroborated that BV populations

tend to erupt over broader spatial extents (Shi et al., 2002; Zhang

et al., 2003; Andreassen et al., 2021). Consequently, HRS remote

sensing imagery, as opposed to UAV imagery, is evidently better
B CA

FIGURE 5

Graphical representation of the precision, recall, F1 scores, and AP.
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suited for detecting BV burrow clusters, which was the primary

motivation behind this research. To our knowledge, this is the first

study to detect BV burrow clusters in a land area exceeding 1000

km² using three different classification methods (OBIC, BVIC, and

BTC) in conjunction with the Faster R-CNN model in a typical

steppe. From the results, it is evident that OBIC delivers the highest

precision, with average AP and F1 scores of 63.80% and 0.722,

respectively, across the two datasets (Figure 5). In this classification

method, the Faster R-CNN model comprehensively detected areas

with more prominent BV burrow cluster features (Figures 6, 7),

omitting only BV burrow clusters where image features were less
Frontiers in Ecology and Evolution 10
distinct. The second-highest accuracy was provided by BTC, with

average AP and F1 scores of 55.95% and 0.666, respectively, across

the two datasets (Figure 5). In this method, the CLCM algorithm

was used to apply a mean filter to the two datasets to reduce noise

and enhance image smoothness. Although this approach

successfully mitigated the issue of abrupt image transitions, it

inadvertently blurred the edges of burrow clusters (Ryherd and

Woodcock, 1996), making it challenging for the Faster R-CNN

model and the ResNet backbone network to extract the target object

features and filter out some BV burrow clusters with less distinctive

image features. This is probably the underlying cause of BTC’s
B

C D

E F

A

FIGURE 6

Comparative analysis of Brandt’s vole burrow cluster detection results using different classification methods in Dataset 1. (A, B) OBIC; (C, D) BVIC;
(E, F) BTC visual effect maps. Note: Red indicates GTBs, while green represents prediction boxes, consistent with Figure 7.
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inferior detection accuracy when compared to OBIC. Nonetheless,

within this classification approach, the Faster R-CNN network

achieved precise localization of BV burrow clusters. This is

attributed to BTC retaining BV burrow clusters with prominent

feature influence. Conversely, the BVIC method exhibited the

lowest precision; across the two datasets, it only reached an

average AP of 29.45% and an F1 score of 0.437. The main factor

behind this outcome is that during the early spring each year, the

vegetation in Hulunbuir Grassland has not yet turned green (Wang
Frontiers in Ecology and Evolution 11
et al., 2019b). Consequently, there were no significant feature

differences in the NDVI values of the two datasets and the bare

soil surrounding BV burrow clusters in the satellite imagery. This

posed challenges for the detection network’s generalization and

learning processes, resulting in the observed outcome. The BVs in

the typical steppe of Hulunbuir start their increase period each year

in the spring. Therefore, the population size of BV in April serves as

the foundational population size for the year and is also the

preferred time for managing this species (Du et al., 2022).
B

C D

E F

A

FIGURE 7

Comparative analysis of Brandt’s vole burrow cluster detection results using different classification methods in Dataset 2. (A, B) OBIC; (C, D) BVIC;
(E, F) BTC visual effect maps.
frontiersin.org

https://doi.org/10.3389/fevo.2024.1310046
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Sun et al. 10.3389/fevo.2024.1310046
Consequently, detecting the density of BV burrow clusters in spring

is of utmost importance. However, this precisely resulted in the

lowest detection accuracy of BVIC. In the summertime, even

though the visual distinctions between the vegetation and the

bare soil surrounding BV burrow clusters become more evident,

the population of this species reaches its peak phase (Du et al.,

2022). As autumn approaches, a crash phase ensues, leading to

considerable fluctuations in population density that pose challenges

to the accurate assessment of the BV population. Up to late autumn,

the population of this species starts to stabilize (low hase), and the

BV individuals who survive are termed overwintering voles, serving

as the foundation for the population’s growth in the following year

(Xinrong et al., 2006). Therefore, it is possible to consider image

data from autumn when vegetation has not yet turned yellow. This

may enhance the detection accuracy of BVIC for BV burrow

clusters. Concerning BV population outbreaks, the frequency of

BV population fluctuations differs due to a combination of internal

and external factors (Bai et al., 2022). Internal factors usually

pertain to the underlying mechanisms that regulate the BV

population, resulting in cyclic outbreaks approximately every 3-5

years (Shi et al., 2002; Avirmed et al., 2016). External factors

primarily involve how BV population numbers and spatial

distribution respond to climate change and human activities

(Zhang et al., 2003; Bai et al., 2022). As indicated in the research

conducted by Zhong, W et al (Zhong et al., 1999), it was revealed

that the excessive grazing of livestock resulted in the population

outbreak of BV. The research conducted by Zhang, Z et al. explicitly

highlights that the population outbreaks of BV take place over a

wide geographical range, potentially as a result of climate changes

on a broader regional level (Zhang et al., 2003). Moreover, the

research conducted by Bai, D et al. (Bai et al., 2022) also presented a

substantiation of alterations in the distribution range of BV

populations due to the impact of climate change and human

intervention pressures. Although previous research by scholars

has to some degree offered substantial insights into the factors

driving BV population outbreaks and alterations in spatial

distribution, there remains a gap in our understanding regarding

the impact of diverse administrative units (Mongolia and China)

and cultural contexts on BV population fluctuation cycles and

spatial distribution changes within the same climatic conditions.

Addressing this gap will be the primary objective of the author’s

future work.

The Faster R-CNN model is a representative example of a two-

stage object detector (Ren et al., 2015). It is built upon the RPN,

which effectively predicts region proposals with a wide range of

scales and aspect ratios (Jiao et al., 2019). While it offers a 10-fold

improvement in detection speed compared to its previous version

Fast R-CNN (Girshick, 2015), it is still slower than single-stage

object detection methods, particularly when dealing with large

datasets. In our study, the three classification methods needed

over 10 hours from model training to target object detection, and

the average detection speed of the network was only approximately

5 frames per second (fps). Considering this, we trained several

models using representative single-stage object detectors, such as

SSD (Liu et al., 2016), YOLOv3 (Redmon and Farhadi, 2018), and
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RetinaNet (Lin et al., 2017). Although these single-stage object

detection models addressed the speed issue, the detection accuracy

in both datasets fell below acceptable levels. As a result, the author

chose to prioritize enhanced detection accuracy over time

constraints and implemented the Faster R-CNN network.

Regarding the backbone network, various convolutional layers of

the ResNet network were utilized as feature extractors. This

network introduced the identity shortcut to bypass residual blocks

and obtain features. While this step effectively improved the

efficiency and accuracy when deepening the network, it may limit

the network’s expressive power (Zagoruyko and Komodakis, 2016).

DenseNet can mitigate this problem by utilizing multilayer feature

connections, but it requires more GPU memory and a longer

training time (Zhang et al., 2021). However, DSNet combines the

advantages of the aforementioned backbone networks, making it a

potential option for future research (Zhang et al., 2021).

This study focuses on the detection of BV burrow clusters in the

typical steppe of Hulunbuir using HRS imagery in combination

with the Faster R-CNN model. While the results have shown

satisfactory recognition accuracy, various factors contribute to

uncertainties in the detection process. First, in the natural steppe

environment, several challenging factors can lead to

misclassification by the detector. These include the presence of

livestock enclosures, variations in the sizes of BV burrow clusters,

the occurrence of shadows, and the nonuniformity of the imagery

with areas of varying brightness and darkness. Consequently,

developing a segmentation algorithm capable of accurately

handling these environmental factors and optimizing the

parameters for different scenarios is a crucial future trend in

geographic object-based image analysis (GEOBIA) (Cheng and

Han, 2016). Moreover, the current pixel units predominantly

have a square shape, which presents a challenge when trying to

match them with circular entities found in the natural world. In

contrast, hexagonal pixels are more effective in representing surface

entities on Earth (Sahr et al., 2013). For example, a study conducted

on WorldView-2 satellite imagery revealed that a hexagonal pixel-

based multiresolution segmentation (MSR) approach outperformed

the traditional square pixel-based MSR in segmenting a football

field and yielded superior results (Hofmann and Tiede, 2014).

Although the adoption of hexagonal pixels in current satellite

sensors is limited, recognizing their potential as a future trend

could lead to more accurate and efficient detection and recognition

of objects in remote sensing imagery. Finally, while DL techniques

have shown great promise in identifying and detecting target objects

efficiently and accurately, they typically require a significant

number of labeled samples for training. In this study, 51,520 GTB

annotations were manually labeled in the two datasets. This process

was time-consuming and labor-intensive and demanded a certain

level of expertise. To address this limitation, future research

directions could focus on the development of techniques for

extracting useful information from remote sensing images with

limited labeled samples. Additionally, exploring semisupervised or

unsupervised classification methods could allow for more cost-

effective and scalable approaches to object extraction in remote

sensing imagery (Lecun et al., 2015).
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6 Conclusions

In this study, we conducted a BV burrow cluster object

detection method for a typical steppe of Hulunbuir using two sets

of GF-2 satellite images. The Faster R-CNN model was employed,

and three different methods were explored: OBIC, BVIC, and BTC.

From an overall perspective, the Faster R-CNN model

demonstrated the best robustness in detecting BV burrow clusters

using the OBIC method, achieving an average AP of 63.80% and an

F1 score of 0.722. Visual analysis confirmed that the Faster R-CNN

model successfully detected and predicted BV burrow clusters with

prominent features in both datasets, with only a few instances where

targets with features less distinguishable from the background were

missed. Therefore, with optimized parameters, Faster R-CNN excels

in convergence capability when applied to the OBIC method. The

BTC method provided the second-highest accuracy, with average

AP and F1 scores reaching 55.95% and 0.666, respectively. Visual

analysis revealed that the Faster R-CNN model comprehensively

detected and recognized BV burrow clusters with distinct features

from the background in this classification method, yet it missed

several targets with less distinguishable features and misclassified

some livestock enclosures. The detection network in this method

may be affected by object size and diversity imbalance, but it

performed well in target localization. The poorest results were

observed in the BVIC method, with average AP and F1 scores

only reaching 29.45% and 0.437, respectively. This outcome can be

attributed to the fact that the steppe of Hulunbuir studied here not

only has a high latitude but is also a semiarid region. In early spring

(April), the surface vegetation in this area has not fully regrown, and

the bare soil features of BV burrow clusters could not be clearly

distinguished from the surrounding vegetation in the imagery. This

made the model’s generalization and learning processes

challenging, resulting in an average recall rate of only

0.3270 (Figure 5).

Typically, conventional poison-baiting methods have been

utilized to manage BV populations in Hulunbuir’s typical steppes.

While this approach effectively reduces BV population density, it

often results in secondary poisoning of BV predators and chemical

contamination of the ecosystem (Zhong et al., 1999). Additionally,

small rodent population outbreaks often occur over large spatial

extents (Zhang et al., 2003), necessitating an urgent need for

accurate detection and identification methods that can cover

extensive areas of their burrow clusters. Consequently, we believe

that the integration of HRS imagery and DL for object detection will

assume a pivotal role in addressing steppe rodent infestations. This

not only holds long-term benefits for the sustainability of the local

ecological environment but also directly contributes to the

monitoring and control of plague, thereby providing public

health benefits.
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