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Objective: This study recalculates the carbon emissions of urban and rural

residents in China, analyzing the dynamic evolution trends of urban and rural

carbon emissions. It explores the spatial spillover effects centered around the

inequality in carbon emissions between urban and rural areas.

Methods: The study calculates the carbon emissions of urban and rural residents

in each province based on the IPCC method. Non-parametric kernel density

estimation is employed to depict the dynamic evolution characteristics of

national, urban, and rural carbon emissions. The Theil Index is used to measure

the disparities in urban and rural carbon emissions in major strategic regions,

further applying the Theil Index to evaluate the inequality of urban and rural

carbon emissions across provinces. This helps identify the driving factors

affecting the inequality of urban and rural carbon emissions and their spatio-

temporal effects.

Finding: Carbon emissions from urban and rural residents in China present a

divergent development pattern. Urban emissions have increased, with inter-

provincial disparities widening; rural emissions tend to stabilize, with slight

growth in inter-provincial gaps. The overall inequality of carbon emissions in

various regions of China experiences a three-phase journey of rise, decline, and

stabilization. Urban inequality first increases then decreases, while rural inequality

gradually lessens, showing clear regional and urban-rural differences. Market and

government factors significantly impact the inequality of urban and rural carbon

emissions. The development of the digital economy aids in reducing inequality

and generates significant spatial spillover effects. The relationship between

economic development level and carbon emission inequality is U-shaped.

Industrial structure optimization can reduce urban-rural inequality, but its

spatial spillover effect is not significant. Government intervention has limited

effects, while environmental regulations may increase inequality. Opening up to

the outside world helps reduce inequality, and the impact of population density

is complex.
KEYWORDS

climate governance, emissions inequality, Theil Index, spatio-temporal evolution,
carbon neutral, spatial econometrics
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1 Introduction

Over the past few decades, global warming has escalated into a

severe worldwide issue, exerting profound impacts on the

environment, economy, and society (Shen et al., 2023; Liu et al.,

2024). Since the 1980s, the trend of global warming has notably

accelerated, leading to consequences including glacier melting,

rising sea levels, increased frequency of extreme weather events,

and significant biodiversity loss (Hansen et al., 2010; Hu, 2023).

According to the World Meteorological Organization, the global

average temperature in 2022 was approximately 1.15°C higher than

pre-industrial levels. A report from NASA stated that the global

mean surface temperature in 2022 equaled that of 2015, making it

the fifth hottest year on record, with temperatures about 1.11°C

above the late 19th century average. Early research had not

universally accepted the greenhouse effect as the primary cause of

global warming. However, further studies have led the academic

community to widely recognize that the substantial emissions of

greenhouse gases, such as carbon dioxide and methane, are key

contributors to global warming (Liu and Li, 2014; Wu et al., 2023;

Ielpi et al., 2023). To address this global challenge, the international

community has undertaken various initiatives, including the

signing of the United Nations Framework Convention on Climate

Change, the Kyoto Protocol, and the Paris Agreement, aimed at

limiting greenhouse gas emissions through global cooperation.

Despite these international agreements and efforts, global

greenhouse gas emissions continue to rise, particularly in rapidly

developing countries (Chien et al., 2023; Du et al., 2023; Jahanger

et al., 2023). According to estimates by the International Energy

Agency, global energy-related greenhouse gas emissions reached a

record high of 41.3 billion tons of carbon dioxide equivalent in

2022. Of this total, carbon dioxide emissions from energy

combustion and industrial processes accounted for 89% of

energy-related greenhouse gas emissions. These increasing trends

are evident not only on a global scale but also at regional and local

levels. In China, one of the world’s largest greenhouse gas emitters,

there is a significant disparity in carbon emissions between urban

and rural areas (Luo et al., 2023; Xu C., 2023; Guo et al., 2023). This

inequality reflects China’s economic development and urbanization

process and impacts global strategies for addressing climate change.

The key to achieving the “dual carbon” goals lies in emission

reduction and carbon sequestration, with the former being

fundamental (Hu et al., 2023; Li et al., 2022; Shen et al., 2023). In

China, significant disparities exist between urban and rural areas in

terms of economic growth, resource allocation, and infrastructure

development. These disparities are also reflected in the

consumption patterns of residents, with structural differences

between urban and rural areas being particularly pronounced. As

urbanization progresses and the level of consumer spending

increases, the lifestyles of urban and rural residents in China have

undergone substantial changes, leading to increased demand for

energy consumption. To effectively reduce carbon emissions caused

by consumer consumption and promote a transition to low-carbon

consumption, a comprehensive analysis of carbon emissions from

Chinese residents’ consumption is imperative (Liu et al., 2024; Qi

et al., 2022). This involves understanding the current level of carbon
Frontiers in Ecology and Evolution 02
emissions from urban and rural resident consumption, the degree of

inequality in these emissions, and investigating the factors that

influence this inequality. Developing targeted strategies to address

these issues is crucial not only for promoting low-carbon

consumption behaviors among urban and rural residents but also

for further exploring the ecological value of urban and rural areas.

In this context, this paper investigates the carbon emissions

from consumption activities of urban and rural residents in China,

distinguished by these two dimensions. Firstly, the CO2 emissions

from direct energy consumption of urban and rural households at

the provincial level are measured using the IPCC carbon emission

calculation method. Secondly, the dynamic evolution characteristics

of carbon emissions from urban and rural residents are explored

using the kernel density estimation method. Thirdly, the regional

differences in carbon emissions between urban and rural areas

across China’s eight major regions are studied using the Theil

Index, and the degree of inequality in carbon emissions among

urban and rural residents is quantified. Finally, key factors

influencing the degree of inequality in carbon emissions between

urban and rural residents in China are analyzed based on

provincial-level panel data, and the potential spatial spillover

effects are discussed.
2 Literature review

Due to the absence of authoritative official agencies directly

publishing carbon dioxide emission data in China, initiating

research on carbon emission intensity necessitates the verification

and calculation of carbon emission The measurement of carbon

emissions in urban and rural areas primarily encompasses chemical

mass balance and inventory methods, eddy covariance and

micrometeorological methods, as well as remote sensing and

geospatial technologies. In the realm of chemical mass balance

and inventory methods, Blanchard et al. (2013) utilized the

chemical mass balance method and the U.S. EPA’s National

Emission Inventory to identify emission sources of particulates

and gases in urban and rural areas. Heinonen and Junnila (2011)

explored a consumption-based approach, linking the climate effects

of urban-level development with global emission production.

Björkegren and Grimmond (2018) assessed urban carbon

emission using an inventory approach, summarizing all known

CO2 emissions and sequestrations within a specific area. In terms of

eddy covariance and micrometeorological methods, Christen et al.

(2011) validated urban neighborhood carbon emission models

using direct eddy-covariance flux measurements. Ueyama and

Ando (2016) employed continuous CO2 flux measurements with

the eddy covariance method to evaluate urban area carbon

emissions. Crawford and Christen (2015) discussed the challenges

of eddy covariance CO2 flux measurements in urban areas and

proposed solutions. Regarding remote sensing and geospatial

technologies, Soegaard and Møller-Jensen (2003) used texture

classification of Landsat-TM satellite images as a proxy for CO2

emissions from urban land use and activities. Dietrich et al. (2021)

introduced the Munich Urban Carbon Column Network

(MUCCnet), which uses differential column measurements
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(DCMs) for greenhouse gas measurement, suitable for quantifying

urban greenhouse gas emissions.

Accurately accounting for carbon dioxide emissions enables

research into the current characteristics and influencing factors of

carbon emission inequality. At the global and national levels, Padilla

and Serrano (2006) highlighted the carbon emission inequality

among countries due to differences in per capita income,

revealing a slight decrease in carbon emission inequality from

1971 to 1999. The study by Sarkodie et al. (2020) extended to the

impact of urban expansion, industrialization, trade, and economic

development on global emissions, covering multiple scales from

national to household levels. At the regional and urban

agglomeration levels, Zhang et al. (2021) focused on the spatial

carbon inequality in China’s Yangtze River Economic Belt, finding

that this inequality was primarily driven by economic factors,

industrial structures, and final demand structures. The research

by Chen et al. (2019) observed a downward trend in the per capita

industrial carbon emissions inequality within the Pearl River Delta

urban agglomeration, with industrial energy intensity being a major

contributing factor. Regarding the relationship between income

inequality and carbon emissions, Liu et al. (2019) found that higher

income inequality in the United States increased carbon emissions

in the short term, but led to carbon emission reduction in the long

term. Wu and Xie (2020) noted that higher income inequality in

OECD countries and high-income non-OECD countries led to a

reduction in emissions, but its impact was not significant in low-

income non-OECD countries. The study by Belaïd et al. (2020)

discovered that greater income inequality led to environmental

degradation, thereby negatively impacting carbon emissions.

Hailemariam et al. (2020) also pointed out that an increase in

top-level income inequality was positively correlated with carbon

emissions. In terms of spatial spillover effects, Sun and Sun (2020)

found positive spatial correlation in carbon emissions among

Chinese provinces, with population and economic urbanization

being the main factors directly affecting regional carbon emission

levels. Xu X. (2023) observed significant spatial spillover effects in

carbon emissions, particularly in Western China compared to the

Eastern and Central regions. Liu and Liu (2019) indicated that

urbanization, technology, wealth, and population levels had

different spatial interaction effects on carbon emissions in various

regions of China.

Existing literature suggests that while research on carbon

emission intensity has been increasing annually, there remains

substantial room for expansion in this field. First, research on

carbon emissions has mainly focused on the industrial sector,

with limited studies addressing household sector emissions from

domestic energy consumption. However, with advancing

urbanization and improved living standards in urban and rural

areas, emissions from domestic energy consumption cannot be

overlooked. Second, studies on carbon emissions from household

energy consumption have been primarily concentrated in specific

regions or rural households. There is a need for more in-depth

research on urban and rural households in China under a unified

measurement method and analytical framework. Third, there is a

lack of systematic and comprehensive analysis of the current state

and characteristics of urban and rural carbon emissions in China,
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with few scholars analyzing the spatial spillover effects of factors

influencing the inequality of carbon emissions among urban and

rural residents.
3 Research methodology and
data sources

3.1 Research methodology

3.1.1 Urban and rural residents’ carbon
emission calculation

The Intergovernmental Panel on Climate Change (IPCC)

introduced a methodology and guiding principles for measuring

carbon emissions in 2006, designed for estimating and reporting

greenhouse gas emissions. The IPCC approach focuses on

estimating emissions from three primary sources: the combustion

of fossil fuels, industrial processes and product usage, and

agricultural activities (Cheng et al., 2013; Chen and Li, 2023).

Carbon emission is calculated as follows:

CO2 =o
n

i=1
Ei � NCVi � CEFi � COFi �

44
12

(1)

In Equation 1, i represents the category of consumed energy,

where the final energy consumption is denoted by E, and NCV

refers to the average lower heating value of the energy. CEF stands

for the carbon emission factor per unit of heating value. COF is the

carbon oxidation factor. Additionally, 44 and 12 are the molecular

weights of carbon dioxide and carbon, respectively.

3.1.2 Kernel density analysis method
The kernel density estimation method is an efficient non-

parametric statistical technique aimed at estimating the

probability density function of a random variable. This method

involves applying a smooth kernel function around data points to

generate a continuous density estimate, thereby revealing the

distribution characteristics of the data. The application of the

kernel density analysis method is instrumental in clarifying the

dynamic evolution trends of carbon emissions at the national,

urban, and rural levels. It unveils the distribution and changing

trends of carbon emission data across different geographical areas

without the need for any presupposed assumptions about the data’s

distribution (Zhang et al., 2022). This approach enables a more

detailed and intuitive representation of the spatial distribution and

temporal evolution of carbon emissions, providing policymakers

and researchers with a more accurate tool to identify and evaluate

the effectiveness and differences in carbon emission reduction

strategies among various regions. Additionally, the kernel density

analysis method has unique advantages in revealing the

multimodality and skewness of emission data, which is crucial for

understanding complex emission patterns. The formula for this

method is as follows:

f (x) =
1
nho

n

i=1
K

x − xi
h

� �
(2)
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In Equation 2, f(x) represents the estimated density at point x. n

denotes the number of observational samples, while xi refers to an

individual sample point. The bandwidth, h (where h>0), determines

the width of the kernel function. K(·) symbolizes the kernel density,

a non-negative function that integrates to one and is used to smooth

the data around each data point.

The key to kernel density estimation lies in the selection of the

kernel function and the determination of the bandwidth h.

Common choices for the kernel function include the Gaussian

kernel, uniform kernel, triangular kernel, among others. The

selection of the bandwidth significantly impacts the smoothness

of the estimated density. The optimal expression for h is shown in

Equation 3:

h = (
4
3n

)
1
5 ≈ 1:06n−

1
5 (3)

In this paper, building upon the foundation laid by Tian and

Yin (2021), the Gaussian kernel is selected as the kernel function. Its

function expression is shown in Equation 4:

k(x) =
1ffiffiffiffiffiffi
2p

p exp½− x2

2
� (4)
3.1.3 Spatial econometric analysis
(1) Global Spatial Autocorrelation. To better delineate the

spatial autocorrelation of urban-rural carbon emission inequality

and its influencing factors, this paper employs the Global Moran’s

Index for measurement. The calculation formula is as follows:

I =
n

o
n

i=1
o
n

j=1
wij

o
n

i=1
o
n

j=1
wij(xi − �x)(xj − �x)

o
n

i=1
(xi − �x)2

(5)

In Equation 5, n represents the total number of observation

points, while xi and xj denote the observed values at locations i and j,

respectively. x is the mean of all observed values. The spatial weight

between locations i and j, denoted as wij, reflects the spatial

relationship between these two locations. The value range of the

Global Moran’s Index typically lies between -1 and +1, where +1

indicates perfect positive correlation, -1 denotes perfect negative

correlation, and 0 represents a random distribution.

In the study of urban and rural carbon emissions and their

influencing factors, the Global Moran’s Index is utilized to quantify

spatial autocorrelation. It aids in identifying the presence of spatial

clustering of carbon emissions and how these clusters vary with

geographical location. This provides a spatial analytical perspective

for understanding and addressing urban and rural carbon

emission issues.

(2) Spatial Durbin Model: This paper employs the Spatial

Durbin Model (SDM) based on spatio-temporal dimensions to

investigate the impact of various factors on urban-rural carbon

emission inequality and to examine their respective spatial spillover

effects. The SDM not only considers the spatial lag effects of the

dependent variable but also accounts for the spatial lag effects of the

explanatory variables. This enables the SDM to capture spatial
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dependencies and the spillover effects of explanatory variables,

thereby offering a more comprehensive analysis of spatial

correlations (Han and Yang, 2020). The basic formula is shown

in Equation 6:

yit = rWyit + bXit +WXitg + mi + xt + eit (6)

In the Spatial Durbin Model (SDM), W represents the spatial

weight matrix. In subsequent analyses, besides utilizing the

geographic distance spatial weight matrix for baseline analysis,

this paper also introduces the contiguity spatial weight matrix

and the inverse distance spatial weight matrix for robustness

checks to mitigate potential errors in the spatial weight matrix

setting (Tian and Yin, 2021; Yuan et al., 2019). r is the spatial

autoregressive coefficient, indicating the degree of spatial

dependency of the dependent variable. b and g are coefficient

vectors, representing the coefficients of direct effects and spatial

spillover effects, respectively. mi and xt denote regional and temporal

fixed effects, while eit is the random error term.

Urban-rural carbon emission inequality (URC) serves as the

dependent variable Y, with the explanatory variables X

encompassing aspects of both market and government factors

(Zhou and Jiang, 2020; Guo and Zhang, 2023; Zeng et al., 2023).

Firstly, market-level factors include the digital economy (DT), level

of economic development (AGDP), and industrial structure (IS).

Currently, the measurement of the digital economy is based on the

provincial digital economy evaluation index system in China,

constructed from three dimensions: information development,

internet development, and digital transaction development,

following Liu et al. (2020). The level of economic development is

represented by the per capita GDP index, price-adjusted, and to

examine the potential nonlinear relationship between economic

development level and urban-rural carbon emission inequality, a

quadratic term of the economic development level (AGDP2) is

included as an explanatory variable. The industrial structure is

represented by the ratio of the tertiary industry output to the

secondary industry output; industrial agglomeration is defined as

the number of employed persons per unit administrative area.

Secondly, government-level factors include environmental

regulation (ER) and the degree of government intervention (GI).

Environmental regulation (ER) is measured by the ratio of

industrial pollution control investment to industrial added value;

the degree of government intervention (GI) is calculated as fiscal

expenditure relative to regional GDP. Additionally, the degree of

openness to the outside world (FI) and population density (PP) are

included. Foreign direct investment (FI) is determined by the total

value of imports and exports multiplied by the USD to RMB

exchange rate, divided by regional GDP, while population density

(PP) is the total population of the region divided by its

administrative area.
3.2 Data sources and processing

The data on urban and rural carbon emissions, encompassing

various types of energy consumption, were derived from the “China
frontiersin.org
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Energy Statistical Yearbook.” Other influencing factor variables

primarily originated from the “China Finance Yearbook,” the

“China Fixed Asset Investment Statistical Yearbook,” and the

statistical yearbooks or bulletins of individual provinces. Missing

data were addressed using methods such as linear interpolation and

mean imputation. Descriptive statistics for each variable are

presented in Table 1, as shown.
4 Dynamic evolution of urban-rural
carbon emissions

This paper, in addition to examining the overall national

situation, also delves into separate discussions of urban and rural

carbon emissions. The kernel density analysis results of the dynamic

evolution of national, urban, and rural carbon emissions are

illustrated in Figure 1.

Figure 1A depicts the overall evolution of national residential

carbon emissions during the study period. Overall, the center of the

density function shifts from left to right, with the peak in 2021 being

higher than in 2005, evolving from a more concentrated unimodal

pattern to a broader distribution with an expanded range. Initially,

compared to 2005, the peak of the curve in 2010 slightly decreases,

but the center of the density function moves rightward, expanding

the range. This indicates an overall increase in national residential

carbon emissions during this phase, with an increase in emission
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variability. Subsequently, compared to 2010, the center of the

density function in 2015 continues to move rightward, the peak

becomes flatter, and the range further expands, revealing a

continued growth in the average emissions and an increase in

variability among individuals. Furthermore, compared to 2015,

the density function in 2021 remains in a higher emission range,

with a relatively lower peak and continued widening of the

distribution. This suggests that although the proportion of

residents with high emissions has decreased, the overall emissions

and variability among individuals are still increasing. Finally,

compared to 2005, the center of the density function in 2021

shifts significantly rightward, with a notably expanded range,

indicating a clear increase in the average carbon emissions of

national residents and a widening provincial gap during the study

period. The likely explanation is the changes in energy consumption

patterns among residents across provinces, influenced by economic

development and improved living standards, which in turn affect

lifestyles and carbon emission intensity, thereby exacerbating

provincial disparities in emissions.

Figure 1B overall portrays the evolution of urban residential

carbon emissions during the study period. In general, the center of

the density function moves rightward, the peak experiences

fluctuations but ultimately remains relatively unchanged, and the

range expands. Initially, compared to 2005, the 2010 curve shows

little change in shape, but the center of the density function moves

rightward with a slightly lower peak, and the range expands. This
B CA

FIGURE 1

Kernel density analysis results of carbon emissions in national, urban, and rural areas. (A) National; (B) Urban; (C) Rural.
TABLE 1 Descriptive statistics.

Variable Obs Mean SD Min Median Max

URC 510 0.078 0.090 0.000 0.050 0.550

DT 510 0.131 0.145 0.000 0.079 0.819

AGDP 510 1.208 0.780 0.326 0.934 4.808

IS 510 1.117 0.642 0.500 0.934 5.297

GI 510 0.226 0.099 0.080 0.208 0.643

ER 510 0.004 0.004 0.000 0.003 0.031

FI 510 0.297 0.354 0.008 0.139 1.721

PP 510 455.612 668.935 7.518 292.142 3925.870
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indicates an increase in urban residential carbon emission intensity

and a widening provincial gap during this phase. Subsequently,

compared to 2010, the peak in 2015 evolves from a unimodal to a

smoother shape, and the range further expands, revealing continued

growth in urban residential carbon emission intensity and an

ongoing expansion of the provincial gap. Finally, compared to

2005, the center of the density function in 2021 shifts significantly

rightward, with a lower main peak, a significantly expanded range,

and a display of multimodality. This indicates an increase in the

average carbon emissions of urban residents and a significant

widening of the provincial gap during the study period.

Figure 1C overall depicts the dynamic evolution trend of rural

residential carbon emissions. In general, the center of the density

function slightly moves rightward, the peak fluctuates and is slightly

lower in 2021 compared to 2005, and the range expands. Initially,

compared to 2005, the center of the density function in 2010 shifts

slightly rightward, the peak slightly decreases, and the range

expands. This suggests a slight increase in rural residential carbon

emission intensity during this phase, with no evident reduction in

the provincial gap. Subsequently, compared to 2010, the center of

the density function in 2015 further shifts rightward, the peak

slightly decreases and becomes smoother, and the range continues

to expand, indicating a continued slight increase in rural residential

carbon emission intensity and a possible expansion of the provincial

gap. Again, compared to 2015, the center of the density function in

2021 shows little change, the peak further decreases and becomes

smoother, displaying a certain multimodal tendency, and the range

maintains an increasing trend. This implies that the average level of

rural residential carbon emission intensity might have slightly

decreased or stabilized during this phase, with the provincial gap

remaining or slightly increasing. Lastly, compared to 2005, the

center of the density function in 2021 overall remains unchanged,
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the peak decreases, and the range expands, showing a certain

multimodality. This suggests that the average level of rural

residential carbon emission intensity remains relatively stable

during the study period, but the provincial gap might

have increased.
5 Regional disparities in urban-rural
carbon emission inequality

Regarding the overall carbon emissions as illustrated in Figure 2,

the national Theil Index demonstrated a fluctuating trend, decreasing

from 0.1056 in 2005 to 0.0598 in 2021. This trend signifies a gradual

narrowing of the variance in carbon emission intensity across the

country over time. Regionally, a notable increase in the Theil Index

was observed in the Northeast, escalating from 0.0099 in 2005 to

0.0621 in 2021, indicating a rise in the imbalance of carbon emission

intensity within the area. Conversely, coastal regions such as the

Northeastern Coastal, Northern Coastal, and Southern Coastal areas

exhibited relatively stable Theil Index trends. While the Northwest

and Southwest regions experienced some fluctuations, their overall

trends remained stable. On the other hand, the Theil Index for the

Yangtze River Midstream and Yellow River Midstream regions

showed more significant variations, particularly in the Yellow River

Midstream region where the index increased from 0.0757 in 2005 to

0.0854 in 2021, suggesting that the disparity in carbon emission

intensity in these areas is widening.

In terms of urban carbon emissions, as shown in Figure 3, the

national Theil Index decreased from 0.177 in 2005 to 0.1124 in 2021,

indicating a reduction in the variance of urban carbon emission

intensity across the country. The Theil Index for the Northeast region

increased significantly from 0.0007 in 2005 to 0.1214 in 2021,
FIGURE 2

Dynamic trends in the overall distribution of carbon emissions in China.
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reflecting a rise in the imbalance of urban carbon emission intensity

in this area. Coastal regions such as the Northeastern Coastal,

Northern Coastal, and Southern Coastal areas showed minor

fluctuations in their Theil Index, indicating relatively stable

differences in carbon emission intensity. The Northwest and

Southwest regions also exhibited some variability, but without

significant overall changes. The Yangtze River Midstream and

Yellow River Midstream regions experienced more notable changes

in their Theil Index, especially in the Yellow River Midstream area,

where the index was significantly higher than other regions during

2008 to 2011, suggesting an increasing disparity in urban carbon

emission intensity in these areas.

Regarding rural carbon emissions, as depicted in Figure 4, the

national Theil Index decreased from 0.2275 in 2005 to 0.1136 in 2021,

showing a reduction in the variance of rural carbon emission intensity

across the country and reflecting a trend towards uniformity in carbon

emission intensity in rural China. The Theil Index in the Northeast

region also displayed a decreasing trend, from 0.165 in 2005 to 0.0427

in 2021, indicating a reduction in the disparity of rural carbon emission

intensity in this area. Coastal regions such as the Northeastern Coastal,

Northern Coastal, and Southern Coastal areas experienced larger

fluctuations in their Theil Index, but without a clear long-term trend,
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suggesting diversity in agricultural production methods and energy use

patterns in these regions. The Northwest and Southwest regions

showed relatively minor fluctuations in their Theil Index, indicating

more stable differences in rural carbon emission intensity. The Theil

Index in the Yangtze River Midstream and Yellow River Midstream

regions underwent more complex changes, with the Yangtze River

Midstream area showing fluctuating indices from 2005 to 2021 and the

Yellow River Midstream area displaying a downward trend from 2008

onwards, particularly notable from 2008, reflecting structural changes

in agricultural production and energy consumption in this region.
6 Influencing factors of urban-rural
carbon emission inequality and spatial
spillover effect

6.1 Global spatial autocorrelation test

Prior to analyzing the inequality in urban-rural carbon

emissions and its influencing factors, this study conducted a test

for global spatial autocorrelation of these variables, with results
FIGURE 3

Dynamic trends in the distribution of urban carbon emissions in China.
FIGURE 4

Dynamic trends in the distribution of rural carbon emissions in China.
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presented in Table 2. Figure 5 presents the Moran scatterplot

illustrating the inequality in carbon emissions between urban and

rural residents in 2018. It was observed that the Moran’s I of urban-

rural carbon emission inequality passed the significance test in most

of the years under investigation, exhibiting fluctuations in certain

years but generally showing an upward trend. This finding indicates

that during the examination period, the distribution characteristics

of urban-rural carbon emission inequality in China manifested as

high-inequality areas being adjacent to other high-inequality areas,

while low-inequality areas neighbored other low-inequality regions.

Notably, the Moran’s I for the digital economy reached a significant

positive value in 2010, suggesting a positive spatial correlation effect

between the development of the digital economy and urban-rural

carbon emission inequality, with this effect being particularly strong

in that year. The Moran’s I for the level of economic development

was consistently significant and positive across all years, indicating a

stable positive spatial clustering characteristic between economic

growth and urban-rural carbon emission inequality. The Moran’s I

for industrial structure was negative in some years, implying a

potential dispersed spatial distribution for industrial structure. The

Moran’s I for government intervention and foreign direct

investment also passed the significance test in most years,

indicating significant spatial clustering for these factors. The

Moran’s I for industrial concentration was significant in all years

and showed a relatively stable spatial autocorrelation, suggesting a

strong spatial correlation effect of industrial concentration on
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urban-rural carbon emission inequality. The Moran’s I for

population density was not significant in most years, which may

indicate that the spatial relationship between population density

distribution and urban-rural carbon emission inequality is not

apparent. In summary, the results in Table 2 reveal significant

spatial autocorrelation between urban-rural carbon emission

inequality and its influencing factors in China, with these

autocorrelations exhibiting certain differentiated characteristics in

different years. This suggests that policy formulation should

consider the spatial clustering characteristics of these factors and

how they influence urban-rural carbon emission inequality through

spatial relationships.
6.2 Analysis of the impact of various
factors on urban-rural carbon
emission inequality

For the analysis of urban-rural carbon emission inequality and

its influencing factors, this study employed various spatial matrices,

including geographic distance matrix, economic distance matrix,

and adjacency spatial weight matrix, to conduct a comprehensive

spatial econometric analysis. Initially, a series of tests were

performed on Equation 5, encompassing the Lagrange Multiplier

(LM) test, Likelihood Ratio (LR) test, Hausman test, and Wald test,

aiming to ascertain the most suitable estimation form for the

dynamic spatial econometric model. Specifically, in the first step,

an Ordinary Least Squares (OLS) estimation was conducted on a

model without considering spatial effects. This approach facilitated

the derivation of the LM and its robust statistics (R-LM) to

determine whether to employ a Spatial Autoregressive (SAR)

model or a Spatial Error Model (SEM). Subsequently, if the LM

test indicated the presence of spatial effects, following Elhorst’s

(2014) recommendation, the more general Spatial Durbin Model

(SDM) was directly applied for spatial econometric estimation. In

the third step, the LR test was utilized to evaluate the fixed effects in

the spatial Durbin model, determining the inclusion of Spatial Fixed

Effects (SFE) or Temporal Fixed Effects (TFE). The fourth step

involved executing the Hausman test on the spatial Durbin model

to decide between fixed effects and random effects. The fifth step

entailed assessing whether the spatial Durbin model could be

simplified to a SAR or SEM model through the Wald or LR test.

The test results indicated that the dynamic spatial Durbin model

with dual fixed effects was the most appropriate choice for spatial

econometric estimation in this study. To further ascertain the fitting
FIGURE 5

Moran scatter chart of carbon emission inequality between urban
and rural residents in 2018.
TABLE 2 Moran’s I values for urban-rural carbon emission inequality and its influencing factors from 2005 to 2021.

year URC DT AGDP IS ER GI FI IA PP

2005 0.038** 0.008 0.112*** -0.066 -0.036 0.118*** -0.002 0.072*** -0.015

2010 0.054** 0.079*** 0.118*** -0.047 0.041** 0.148*** 0.009 0.058*** -0.023

2015 -0.002 0.012 0.100*** -0.060 0.047** 0.138*** 0.017 0.044*** -0.023

2021 0.104*** -0.036 0.044** -0.036 0.014 0.140*** 0.001 0.038*** -0.020

Total 0.082*** 0.119*** 0.120*** 0.137*** 0.235*** 0.239*** 0.043*** 0.059*** -0.021
** Significant at the 5% level, *** significant at the 1% level. The standard errors are enclosed in parentheses.
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efficacy of the Spatial Durbin Model (SDM), Wald and Likelihood

Ratio (LR) tests were conducted. The resultant P-values for the

Wald space lag test, LR space lag test, Wald space error test, and LR

space error test were found to be significantly zero at a 1% level.

This finding underscores the superior fitting effect of the SDM

model. Furthermore, the regression coefficients of the SDM model

do not align with the transformation hypothesis, indicating an

inequivalence in transitioning the SDM model into either Spatial

Autoregressive (SAR) or Spatial Error Model (SEM) formats.

Consequently, this study opts for the SDM model for its

analytical approach.

As evident from Table 3, significant differences in the impact of

various factors on urban-rural carbon emission inequality were

observed under different spatial matrices. Firstly, the digital

economy (DT) exhibited a negative influence in all models and

passed at least the 5% significance test in geographic and economic

models. This suggests that with the development of the digital

economy, the degree of urban-rural carbon emission inequality is

reduced. The level of economic development passed the significance

test in all models, with its primary term coefficient being negative
Frontiers in Ecology and Evolution
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and the quadratic term positive, indicating a U-shaped relationship

between economic development level and urban-rural carbon

emission inequality. That is, after a certain stage of economic

development, urban-rural carbon emission inequality first

decreases and then increases. The industrial structure showed a

negative impact in all models, passing at least the 5% significance

test, implying that the optimization of industrial structure

contributes to reducing the inequality of carbon emissions

between urban and rural areas.

At the government level, the impact of government intervention

was inconsistent across different models and did not pass the

significance test in all models, indicating that the effect of

government intervention on urban-rural carbon emission

inequality might be influenced by other factors and become less

apparent. Environmental regulation did not pass the significance

test in any model, possibly indicating an unclear relationship

between environmental regulation and urban-rural carbon

emission inequality. The degree of openness to the outside world

passed the 5% significance test in the spatial adjacency model,

suggesting that an increase in openness helps reduce urban-rural

carbon emission inequality. Population density exhibited a positive

impact in the geographic model and passed the 5% significance test,

while its effect was less pronounced in other models.

The inverted U-shaped relationship between the level of

economic development and the inequality in carbon emissions

between urban and rural residents can be attributed to the rapid

rise in carbon emissions in urban areas during the initial stages of

economic growth, driven by rapid industrialization and high energy

consumption. In contrast, slower development in rural areas

exacerbates this inequality. As the economy further develops and

matures, urban areas begin to adopt cleaner energy sources and

improve energy efficiency, thereby reducing carbon emissions and

narrowing the emission gap with rural areas. The advancement of

the digital economy significantly reduces carbon emission

inequality between urban and rural areas by enhancing resource

efficiency and promoting dematerialized services. Concurrently, the

optimization of industrial structure, especially the transition to

service and high-tech industries, is more pronounced in urban

areas and contributes to reducing carbon emissions among urban

residents. However, higher population density, particularly in urban

areas, often leads to increased energy consumption and carbon

emissions, thus exacerbating the inequality in carbon emissions

between urban and rural areas.

Additionally, the spatial autocorrelation coefficient r was

negative and passed the 10% significance test in the geographic

model, negative in the economic model, and positive in the spatial

adjacency model, all passing the 10% significance test. This

indicates that the spatial distribution of urban-rural carbon

emission inequality is related to geographical location, economic

connections, and spatial adjacency relationships.

By comparing the results of the three models, despite some

differences in the direction of impact for certain variables, the

majority exhibited a degree of consistency in their influence

direction and significance characteristics across different spatial

matrices. This demonstrates the robustness of the estimation results.
TABLE 3 Results of spatial econometric model.

Variables
Geographic
distance

Economic
distance

Gographical
proximity

DT
-0.055*** -0.038* -0.017

(0.019) (0.019) (0.021)

AGDP
-0.108** -0.226*** -0.115**

(0.052) (0.044) (0.053)

AGDP2
0.064*** 0.065*** 0.058***

(0.008) (0.007) (0.008)

IS
-0.034** -0.032** -0.037***

(0.014) (0.014) (0.014)

GI
0.113 -0.020 0.025

(0.083) (0.080) (0.089)

ER
0.805 1.319 0.933

(0.776) (0.822) (0.784)

FI
-0.034 -0.036 -0.055**

(0.026) (0.027) (0.026)

PP
0.000** -0.000 0.000**

(0.000) (0.000) (0.000)

Spatial rho
-0.340* -0.156* 0.121*

(0.176) (0.089) (0.063)

N 510 510 510

R2 0.201 0.207 0.030

Log-
likelihood

923.3807 898.7932 918.8741
***, **, * Significance levels at 1%, 5%, and 10%, respectively; standard errors in parentheses.
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6.3 Analysis of the spatial spillover effects
of various factors on urban-rural carbon
emission inequality

To accurately represent the mechanism and actual impact of

various factors on urban-rural carbon emission inequality, this

study, following the approach of LeSage and Pace (2009), utilized

the partial differential method to unbiasedly process the estimation

results from Table 3. These results were then decomposed into

direct, indirect (spatial spillover), and total effects. The direct effects

comprise two parts: the impact of factors on local urban-rural

carbon emission inequality and the feedback effects received by

local inequality. Indirect effects, also known as spatial spillover

effects, specifically refer to the direction and magnitude of influence

exerted by factors in neighboring regions on local urban-rural

carbon emission inequality. Accordingly, this paper dissects the

direct (local) effects and indirect (spatial spillover) effects of each

factor on urban-rural carbon emission inequality, with results

presented in Table 4.

Integrating the findings from Table 4, under the geographic,

economic, and spatial adjacency weight matrices, the direct effect

parameter estimates for the digital economy (DT) are -0.050 in the

geographic matrix, significant at the 5% level, while the indirect

effects are -0.204, also significant at the 5% level. This suggests that

the development of the digital economy not only directly reduces

local urban-rural carbon emission inequality but also exerts a

positive spillover effect on neighboring regions through spatial

associations. This conclusion implies that as the digital economy
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grows, it bears certain spatial spillover effects in promoting the

reduction of urban-rural carbon emission inequality.

The direct effects of the economic development level are

negative under all spatial matrices, being -0.100 in the geographic

matrix, -0.224 in the economic matrix, and -0.126 in the spatial

adjacency matrix, all significant at least at the 5% level. This

indicates that the enhancement of the economic development

level can effectively reduce the carbon emission inequality

between urban and rural areas. The quadratic term of the

economic development level is positive in all models, signifying a

U-shaped relationship, where after a certain level of economic

growth, urban-rural carbon emission inequality increases. The

direct effects of industrial structure are negative under all spatial

matrices and significant at least at the 5% level in the geographic

and economic matrices. However, the indirect effects of industrial

structure are not significant across the models. The direct effects of

government intervention are not significant in any model,

suggesting that government intervention might not have a direct

significant impact on urban-rural carbon emission inequality. The

direct effects of environmental regulation are positive and

significant at the 10% level in the economic matrix, indicating

that stronger environmental regulation might increase urban-rural

carbon emission inequality in some cases. The direct effects of the

degree of openness are negative and significant at the 5% level in the

spatial adjacency matrix, suggesting that increased openness helps

reduce urban-rural carbon emission inequality. The direct effects of

population density are positive and significant at the 5% level in the

geographic matrix, but its indirect effects are negative and
TABLE 4 Direct and indirect effects.

Variable Geographic distance Economic distance Gographical proximity

Direct
Effects

Indirect
Effects

Total
Effects

Direct
Effects

Indirect
Effects

Total
Effects

Direct
Effects

Indirect
Effects

Total
Effects

DT -0.050** -0.204** -0.254*** -0.042** 0.179*** 0.137** -0.021 -0.166*** -0.187***

(0.020) (0.091) (0.085) (0.020) (0.056) (0.063) (0.021) (0.039) (0.035)

AGDP -0.100** -0.521*** -0.621*** -0.224*** -0.149 -0.372*** -0.126** -0.316*** -0.441***

(0.051) (0.181) (0.164) (0.044) (0.096) (0.090) (0.050) (0.094) (0.084)

AGDP2 0.062*** 0.160*** 0.222*** 0.064*** 0.060*** 0.124*** 0.061*** 0.101*** 0.163***

(0.008) (0.034) (0.033) (0.007) (0.020) (0.020) (0.008) (0.018) (0.018)

IS -0.036*** 0.056 0.020 -0.036*** 0.103*** 0.067* -0.037*** 0.028 -0.010

(0.013) (0.072) (0.075) (0.013) (0.034) (0.036) (0.014) (0.038) (0.044)

GI 0.132 -0.811** -0.679* -0.012 -0.249 -0.261 0.023 -0.179 -0.157

(0.086) (0.407) (0.375) (0.079) (0.167) (0.183) (0.087) (0.145) (0.139)

ER 0.900 -2.505 -1.605 1.413* -1.759 -0.346 0.953 -0.870 0.083

(0.781) (4.192) (4.198) (0.827) (2.053) (2.144) (0.783) (1.922) (2.127)

FI -0.031 -0.098 -0.129 -0.035 -0.002 -0.038 -0.057** -0.078* -0.134**

(0.027) (0.133) (0.143) (0.029) (0.070) (0.071) (0.028) (0.045) (0.061)

PP 0.000** -0.000 -0.000 -0.000 0.000 0.000 0.000* -0.001*** -0.001***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
f

***, **, * Significance levels at 1%, 5%, and 10%, respectively; standard errors in parentheses.
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significant at the 1% level in the spatial adjacency matrix, indicating

that an increase in population density might directly lead to an

increase in urban-rural carbon emission inequality, while

potentially exerting a negative spillover effect on neighboring

regions through spatial associations.

In summary, these factors demonstrate significant spatial

associations in their impact on urban-rural carbon emission

inequality. The analysis of direct and indirect effects reveals that

these factors not only affect urban-rural carbon emission inequality in

the local area but also influence neighboring regions through spatial

linkages. This spatial association might be due to the interaction and

diffusion effects of economic activities, environmental policies, and

technological dissemination across space. For instance, the expansion

of the digital economy might promote the sharing of technological

and managerial knowledge in surrounding regions, enhancing energy

efficiency and reducing carbon emissions, thereby decreasing urban-

rural carbon emission inequality at the regional level.

The enhancement of the economic development level and

optimization of industrial structure might directly reduce local

carbon emission inequality through the increase of efficient, low-

carbon industrial activities and improved resource utilization

efficiency. Furthermore, due to regional clustering effects of

economic activities, these changes might also have spillover effects

on neighboring regions, further affecting their urban-rural carbon

emission inequality. However, the direct effects of some factors,

such as government intervention and environmental regulation, are

not significant, possibly reflecting the complexity of the

implementation and impact of these policy measures on carbon

emission inequality. The results for the degree of openness and

population density suggest that they might influence urban-rural

carbon emission inequality in different directions, likely related to

variations in openness policies and population distributions.
7 Conclusions and policy implications

7.1 Conclusions

This paper applies the IPCC methodology to calculate the

carbon emissions of urban and rural residents in various

provinces of China from 2005 to 2021. Using kernel density

estimation and the Theil Index, the study investigates regional

differences and dynamic evolution in carbon emissions across the

nation and in eight major regions. The main conclusions drawn are

as follows:

First, the dynamic progression characteristics of carbon

emissions among national, urban, and rural residents in China

have shown significant differences. From 2005 to 2021, the center of

the national urban carbon emission density function has overall

shifted from left to right, indicating a general increase in carbon

emissions and a widening of inter-provincial disparities. For urban

residents, the center of the density function moved to the right, and

the peak experienced fluctuations before stabilizing, reflecting an

overall increase in carbon emission intensity and a widening gap

between provinces. In contrast, the center of the rural residents’

carbon emission density function shifted slightly to the right, and
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the peak slightly decreased after fluctuations, suggesting a relative

stability in carbon emission intensity among rural residents but an

increase in inter-provincial differences.

Second, during the period from 2005 to 2021, China experienced

three distinct phases in urban-rural carbon emission inequality: a rise,

a decline, and stabilization. Specifically, from 2005 to 2010, the Theil

Index displayed a rapid increasing trend, whereas from 2017

onwards, it showed a yearly decline. During this period, the

inequality in carbon emissions among urban residents increased

from 2005 to 2010, while for rural areas, it significantly decreased

from 2005 to 2008. The Northeast region of China overall showed an

increasing trend in carbon emission inequality, particularly a

significant increase in urban areas since 2017. In contrast, the

Eastern Coastal and Southern Coastal regions exhibited a

decreasing trend in carbon emission inequality. The Northwestern

region’s inequality in carbon emissions displayed fluctuations but

remained generally low. Additionally, the Southwestern region and

the Yangtze River Midstream region also showed a downward trend

in carbon emission inequality. As for the Yellow River Midstream

region, the Theil Index for carbon emission inequality

fluctuated considerably.

Third, urban-rural carbon emission inequality is influenced by

factors at both the market and government levels. On the market

side, the development of the digital economy has a direct effect and

a significant spatial spillover effect in reducing urban-rural carbon

emission inequality. The relationship between the level of economic

development and urban-rural carbon emission inequality is U-

shaped. The optimization of industrial structure helps reduce

carbon emission inequality between urban and rural areas,

although its spatial spillover effect is not significant. Regarding

government-level factors, the direct impact of government

intervention is not significant, and the strengthening of

environmental regulations might increase urban-rural carbon

emission inequality in certain situations. The influences of the

degree of openness and population density show complexity; the

former helps reduce urban-rural carbon emission inequality, while

the latter may directly increase inequality but also exert a negative

spillover effect on neighboring areas.

In addressing the third conclusion of the paper, which identifies

factors at both market and government levels influencing urban-

rural carbon emission inequality, a coherent policy should be

constructed with a focus on harnessing the positive aspects of

these factors while mitigating their negative impacts. The policy

should prioritize the advancement of the digital economy,

recognizing its dual role in directly reducing urban-rural carbon

emission inequality and generating significant spatial spillover

benefits. This can be facilitated through increased investment in

digital infrastructure, particularly in rural areas, and fostering

digital literacy and innovation across various sectors, enabling a

transition to more efficient and less carbon-intensive operations.
7.2 Policy implications

Given the dynamic progression of carbon emissions among

national, urban, and rural residents in China, as detailed in this
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study, a nuanced and differentiated policy approach is imperative.

This policy seeks to harmonize the disparate trajectories of urban

and rural carbon emissions, which are characterized by increasing

and widening inter-provincial disparities in urban areas, in contrast

to the relative stability and emerging differences in rural regions. A

dual-pronged strategy is advocated: intensifying carbon reduction

efforts in urban centers through stringent emission targets,

advanced monitoring systems, and sustainable, energy-efficient

urban development practices. Concurrently, a tailored approach

for rural areas is essential, focusing on sustainable agricultural and

energy practices, supported by educational and developmental

initiatives, to address inter-provincial disparities. This bifurcated

strategy promises more effective and equitable carbon emissions

management across China, in line with the distinct environmental

and socio-economic contexts of its urban and rural areas. At the

national governance level, the implementation of a differentiated

carbon tax policy is suggested. In urban areas, the imposition of

higher carbon taxes is recommended, while rural areas should

receive subsidies and incentives for the adoption of clean

technologies. This policy aims to reduce carbon emissions in

urban settings and encourage a transition to low-carbon practices

in rural areas. In terms of consumer behavior, national campaigns

promoting sustainable consumption habits are recommended.

These initiatives should focus on educating consumers about the

carbon footprint of products and encouraging low-carbon lifestyle

choices, such as using energy-efficient appliances, reducing meat

consumption, and preferring public transportation. Tailored

incentive programs and publicity strategies should be designed to

meet the specific consumption patterns and needs of urban and

rural residents. Management strategies should include enhancing

carbon absorption capabilities in rural areas. This involves

increasing investment in afforestation projects, promoting

agricultural practices that improve soil carbon storage, and

supporting the development of carbon-neutral or negative

practices in rural communities. These measures aim not only to

reduce the urban-rural carbon emission gap but also to contribute

significantly to the national reduction of carbon emissions.

In Northeast China, the escalation of urban carbon emission

inequality necessitates investments in green infrastructure and strict

implementation of emission reduction policies in urban centers.

Complementary measures to foster economic diversification and

transition to low-carbon industries are crucial to mitigate potential

inequality increases during the transition phase. In the Eastern and

Southern Coastal areas, where carbon emission inequality is

declining, the focus should be on solidifying these gains, possibly

through expanding low-carbon initiatives, enhancing cross-regional

collaboration, and sharing best practices. For regions with variable

inequality, such as the Northwest and the middle reaches of the

Yellow River, a dynamic and responsive policy framework is needed

to adapt to evolving carbon emission patterns. This could entail

establishing regional carbon monitoring systems for prompt policy

adjustments based on real-time data, alongside promoting

renewable energy and sustainable agricultural practices. In regions

with generally low or decreasing carbon emission inequality, like the

Southwestern region and the Yangtze River Midstream, policies

should aim to sustain this trend through continued support for
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sustainable development in both urban and rural settings. This

support could encompass ongoing financial and technical assistance

for renewable energy projects, sustainable agriculture, and rural

development programs that concurrently reduce carbon emissions

and enhance socio-economic equality.

In response to the paper’s third conclusion, which highlights the

influence of market and government factors on urban-rural carbon

emission inequality, a coherent policy must be devised to capitalize

on positive influences while mitigating negative impacts. The policy

should prioritize advancing the digital economy, acknowledging its

role in directly reducing urban-rural carbon emission inequality

and its significant spatial spillover benefits. Facilitation could come

through increased investment in digital infrastructure, particularly

in rural areas, and promoting digital literacy and innovation across

various sectors to transition towards more efficient, low-carbon

operations. Recognizing the U-shaped relationship between

economic development and carbon emission inequality, the policy

should aim to elevate regions, especially rural areas, to a level of

economic development where inequality begins to diminish. This

could involve targeted economic support and development

programs emphasizing sustainable, inclusive growth benefiting

both urban and rural populations. Additionally, the policy should

encourage optimizing industrial structures to reduce carbon

emission inequality, including incentivizing more sustainable,

low-carbon industries, encouraging shifts away from high-

emission industries, and supporting green technology research

and development. On the government intervention front, given

the limited impact of direct government action and the potential for

stringent environmental regulations to inadvertently increase

inequality, a more strategic and balanced approach is warranted.

This approach should entail thorough impact assessments of new

regulations or interventions to ensure they do not unintentionally

widen urban-rural inequalities.
7.3 Research limitations

This study, which delves into the carbon emissions of urban and

rural residents in China, presents several limitations. Its

geographical focus on China, while offering detailed insights,

constrains the extrapolation of its results to nations with differing

socio-economic and environmental contexts, thereby limiting its

global applicability. Predominantly utilizing quantitative methods,

the study might overlook qualitative aspects such as residents’

subjective perceptions or the intricate implementation of policies,

which could yield deeper understanding of the disparities in urban

and rural carbon emissions. The observed minimal spatial spillover

effect of industrial structure optimization in mitigating urban-rural

inequality invites further investigation to uncover additional factors

that might enhance these outcomes. The nuanced effects of

governmental interventions and environmental regulations,

coupled with the complex influence of population density, suggest

a complex policy landscape necessitating more comprehensive,

case-specific analyses. Reliance on available data sources also

raises questions regarding the comprehensiveness, accuracy, and

representativeness of the data, crucial elements for ensuring the
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study’s validity and reliability. These limitations underscore the

necessity for continued research, incorporating a variety of

methodologies, wider temporal and geographical frames, and a

combination of quantitative and qualitative approaches to expand

the understanding of carbon emissions and their inequalities in

urban and rural settings.
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