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The significance of urban landscapes in safeguarding biodiversity is often

disregarded, even though a considerable amount of conservation focus is

directed toward biodiversity hotspots where urban land conversion is

happening at the fastest pace. Maintaining biodiversity in urban areas not only

benefits the environment, but along with social, economic, and technological

factors can increase the stability of urban systems to disturbance, a concept

known as “urban resilience”. In this synthesis paper, we explore the ecological

dimension of urban resilience and specifically focus on avian biodiversity because

birds are easy to observe, relatively abundant, and can serve as an indicator of the

overall health of urban environments. We first examine the concept of ecological

resilience and discuss the role of environmental stressors associated with

urbanization in the ongoing avian biodiversity crisis. We then provide an

overview of characteristics of the urban environment that may promote

ecological resilience in birds, and associations between social and economic

factors and urban ecological resilience. Finally, we provide recommendations on

future research regarding strategies to improve urban ecological resilience and

thus, urban resilience as a whole, at the intersections of urban ecology,

ecosystem ecology, environmental justice, and urban planning. Since 68% of

the world’s population is projected to live in urban areas by 2050, it is imperative

that scientists, urban planners, civil engineers, architects, and others consider

urban ecological resilience as a dimension of both environmental health and the

resilience of cities to future natural and anthropogenic stressors.
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1 Urban ecological resilience

Fifty-five percent of the world’s population resided in urban

areas in 2018 and that number is expected to increase to 68% by

2050 (United Nations, 2019). The importance of these urban areas

for conservation of biodiversity is increasingly recognized (Soanes

and Lentini, 2019; Kondratyeza et al., 2020). At the same time,

biodiversity has a reciprocal influence on urban systems, shaping

human health and well-being to enhance the overall resilience of the

urban environment (Alberti and Marzluff, 2004; Sharifi, 2023).

Here, we define ‘ecological resilience’ as the ability of an

ecological system to resist and recover from perturbations

(Harrison, 1979; Scheffer et al., 2015; Selwood et al., 2015).

Resistance refers to the magnitude of disturbance causing a

change in structure, while recovery pertains to the speed at which

the system returns to its original structure or a stable state (Tilman

and Downing, 1994; Côté and Darling, 2010). While the concept of

ecological resilience was first introduced into the scientific literature

by C.S. Holling in 1973 (Holling, 1973), the term is an evolving and

multidimensional concept (Desjardins et al., 2015).

Measuring ecological resilience directly can be difficult, so

researchers often use proxy metrics at different levels, such as

species, communities, or ecosystems. A critical component of

ecological resilience is the ability of an ecological community to

compensate for lost species and/or open niches following a

perturbation (McCloy et al., 2022). Thus, many current

approaches include species diversity, because it correlates with

increased functional redundancy and niche overlap (Biggs et al.,

2020). The effectiveness and complexity of these measures vary

depending on the scale of analysis (Fischer et al., 2007). The most

straightforward methods include species abundance, probability of

occupancy, richness, and diversity indices such as Shannon’s Index

(Clergeau et al., 1998; Johnson and Winker, 2010; Irizarry et al.,
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2021). For example, species occupancy data was used in BirdLife

Australia’s Atlas Program to estimate resistance and recovery of

Australian birds following a 13-year drought (Selwood et al., 2015).

These proxies for resilience are easy to calculate and implement,

and many authors claim they are adequate for assessing questions

pertaining to localized resilience (Johnson and Winker, 2010; Karp

et al., 2011; Selwood et al., 2015; Irizarry et al., 2021).

Ecological resilience in urban settings is typically referred to as

“urban ecological resilience” and is the ability of an urban ecological

system to maintain its structure (i.e., stable state) in response to a

disturbance. Urban ecological resilience forms one dimension of

urban resilience, along with the social and technological

dimensions, and these dimensions are dynamically interconnected

(Figure 1; Alberti and Marzluff, 2004; Sharifi, 2023). For example, in

Austin, TX, taxpayers have consistently voted to fund open space

acquisitions by the city (social dimension) to protect the Edwards

Aquifer and for flood mitigation (ecological dimension). In 2020,

this resulted in the protection of 28,000 acres of land,

predominantly as parks (both social and ecological dimensions).

Additionally, Austin’s Watershed Protection Department has

implemented a pilot program to reverse damage to the aquifer by

incentivizing homeowners (social dimension) to install rain gardens

and cisterns (technological dimension). These initiatives involve

social support and technological advances to reestablish ecosystem

services and create an urban system with more resilience to water

stress and flooding. Simultaneously, these measures support greater

biodiversity, human health and well-being, and work to reduce

social disparities and vulnerability, further stabilizing the ecological

and social dimensions and contributing to greater urban resilience

(Bixler et al., 2020).

Here, we examine the ecological dimension of urban resilience,

with a focus on avian biodiversity. We provide a brief overview of

typical environmental stressors that impact avian biodiversity in the
FIGURE 1

Diagram of the high-level influencing factors of urban ecological resilience, and their implications on societal and ecological levers. Solid arrows
represent the directionality of influence, while dotted lines connect subcategories to their parent factor. Created with biorender.com.
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urban environment and evaluate urban attributes that may mitigate

these stressors. We then discuss socioeconomic associations with

biodiversity and conclude with recommendations for

future research.
1.1 Bird communities as proxies of urban
ecological resilience

Birds are often the focus of urban ecological studies (Collins

et al., 2021) due to their high visibility, abundance, and ability to be

observed across spatial scales, offering valuable insights into how

ecosystems respond to urban development (Lepczyk and Warren,

2012). At the same time, bird populations can serve as indicators of

the overall health of urban environments (Pollack et al., 2017;

Morelli et al., 2021), helping city planners and policymakers make

informed decisions for a more sustainable and resilient future. In

addition, bird watching is a hugely popular activity, with avian

diversity appreciated by human residents (Clergeau et al., 2001) and

as a component of total biodiversity can impact human

psychological well-being, sense of community, and identity

(Horwitz et al., 2001). Therefore, this paper focuses on bird

biodiversity (e.g., species and functional diversity) as an indicator

of urban ecological resilience (Alberti and Marzluff, 2004; and

references therein).

Urbanization tends to result in higher densities of birds than

that of surrounding, undeveloped areas. However, the resilience of

these urban avian communities, as measured by species richness

and species density (i.e., the number of species per unit area), tends

to be reduced (Chace andWalsh, 2006; Aronson et al., 2014). Strong

evidence indicates that urban avian communities experience biotic

homogenization, resulting in global reductions in taxonomic

diversity and evolutionary uniqueness (Morelli et al., 2016;

Ibáñez-Álamo et al., 2017), although the strength of these effects

varies regionally (Ibáñez-Álamo et al., 2017). Urban environments

exert especially strong, homogenizing selection on the foraging and

nesting habits of birds (reviewed in McCloy et al., 2022). Granivory,

omnivory, aerial insectivory, ground foraging, secondary cavity-

nesting, and cup-nesting are traits that are typically favored by

urban environments, while surface foraging insectivory, carnivory,

primary cavity-nesting and ground-nesting traits are selected

against (Emlen, 1974; Allen and O’Connor, 2000; Lim and Sodhi,

2004; Blewett and Marzluff, 2005; Chace and Walsh, 2006; Croci

et al., 2008; Evans et al., 2011; Guetté et al., 2017; Tomasevic and

Marzluff, 2017). Thus, compared to undisturbed habitats, urban

environments frequently display both reduced avian biodiversity

and ecological resilience.
2 Urban environmental stressors

Four environmental stressors are present in nearly all urban

habitats across geographic zones: chemical pollution, noise, artificial

light at night (ALAN), and human presence (Isaksson, 2018).

Chemical pollution in urban areas is associated with reduced

avian survival (Mitra et al., 2011; Kekkonen, 2017), and is an
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ongoing concern for both ecological and human health in urban

areas (Bolund and Hunhammar, 1999; Cristiano et al., 2021). The

most common pollutants in urban areas, globally, are those

generated by the combustion of fossil fuels by cars (i.e., nitrogen

oxides and soot) (Isaksson, 2018). Even in the relatively sparsely

populated cities of Sweden, chemical pollution is high enough to

cause negative effects in birds and humans (Salmón et al., 2018).

Heavy metal pollution is also common in urban areas, although this

varies regionally, depending on locations of polluting industries

(reviewed in Isaksson, 2018).

Urban ambient noise is also well recognized to reduce bird

species richness (Ciach and Fröhlich, 2017; Pena et al., 2017;

Barbosa et al., 2020; da Silva et al., 2021). As with many urban

characteristics, urban noise can impose niche filtering selection on

avian species, favoring habitat generalists whose vocalizations are

outside of the range of anthropogenic noise (0-3 kHz; reviewed in

Barbosa et al., 2020). Apart from noise, urban birds can be disturbed

by the presence of humans. Although urban birds do exhibit some

tolerance for human presence (e.g., shorter flight initiation

distances than rural conspecifics, reviewed in Evans et al., 2009),

negative impacts of human disturbance on bird abundance and

species richness persist (Figure 2). For example, human disturbance,

including recreational activities, negatively correlates with avian

diversity in urban green spaces (Kang et al., 2015), and breeding

bird densities tend to be reduced when human disturbance is high

(reviewed in Evans et al., 2009).

ALAN is also of growing concern for human and ecological

health (Cupertino et al., 2023), but existing policy structures are

poorly designed to address the growth of ALAN or mitigate its

impacts (Burt et al., 2023). Researchers have clearly established that

ALAN disrupts animal movements and orientation, especially for

nocturnally migrating birds of which over a billion individuals are

killed annually in collisions with buildings (Burt et al., 2023; Loss

et al., 2023). At the individual level, experimental ALAN has been

linked to shifts in avian circadian rhythms (de Jong et al., 2016), while

also promoting physiological changes linked to decreased brain

plasticity (Moaraf et al., 2020, 2021), endocrine dysregulation

(Injaian et al., 2021), early reproductive timing (Dominoni et al.,

2013), and temporarily increases innate immune activity in birds

(Saini et al., 2019). With the widespread use of ALAN in urban

habitats, birds are exposed to systemic physiological disruption.

which has been shown in humans to negatively affect individual

resilience by inflicting a “wear and tear” cost (Oken et al., 2015). At

the community level, Morelli et al. (2021) found that light pollution

had a significant filtering effect on urban bird communities, leading to

taxonomic and functional homogenization in cities across Europe.

The homogenizing effect of ALAN on urban bird communities

directly correlates to reduced functional and alpha diversity, which

in turn, suggests reduced avian community resilience.

Urban areas also modify albedo (reflectivity) and evapotranspiration

(the combined water vapor released by plants and evaporation from

surfaces), while introducing increased aerosols and anthropogenic heat

sources. These factors lead to elevated temperatures, and thus urban

environments tend to be warmer than surrounding less developed areas

by up to 10°C (Figure 3; Dimoudi et al., 2013; Sharifi and Lejmann, 2015)

i.e., the “Urban Heat Island” effect, (reviewed in Aram et al., 2019), an
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effect that is expected to increase under climate change scenarios (Aram

et al., 2019; Leveau et al., 2021). High temperatures associated with

urbanization can be a stressor across cities (Cai et al., 2023), but their

effect may be especially pronounced in arid environments and those

with already high temperatures (e.g., du Plessis et al., 2012), or

where species are not adapted to warm temperatures (e.g., Oliver et al.,

2017). Conversely, high temperatures may be beneficial to species

diversity where cold winter temperature is a limiting factor (Bowler

et al., 2018).

Changes in food abundance, predation, and pathogens relative

to adjacent undisturbed areas are additional urban environmental
Frontiers in Ecology and Evolution 04
stressors which may affect species diversity and richness of birds

(Isaksson, 2018). Anthropogenic food resources in urban areas tend

to be patchy, yet relatively predictable. For example, supplementary

feeding (i.e., the intentional provision of food by humans to wild

birds that supplements their diet) is a widespread phenomenon and

regular activity in backyards of developed countries (Reynolds et al.,

2017). While our definition frames supplementary feeding as an

intentional act, we note that humans unintentionally supplement

the diets of birds through discarded waste. Despite increases in

anthropogenic food in urban areas via intentional and

unintentional supplementary feeding, urbanization may reduce

the availability of natural foods (Seress et al., 2018), especially

where non-native plants are abundant (Narango et al., 2018).

Moreover, reduced diversity of avian food items appears to be a

consistent trait of urban environments, regardless of supplementary

feeding customs (Isaksson, 2018).

The effect of urbanization on avian predators likely varies with

behavioral and physiological traits, and life-histories that predict

sensitivity to disturbance (Rodewald and Gehrt, 2014; Boal, 2018).

Apex predators have been shown to avoid urban areas (Blecha et al.,

2018; Ellington and Gehrt, 2019; Soccorsi and LaPoint, 2023) which

may facilitate mesopredator release (Crooks and Soule, 1999).

Concomitantly, increased availability of anthropogenic foods may

promote small to mid-sized generalist predators (e.g., northern

racoons [Procyon lotor] and Virginia opossums [Didelphis

marsupialis]), although results are highly variable amongst studies

(Rodewald and Gehrt, 2014). Notably, urbanization may also

increase densities of free-ranging domesticated cats (Felis catus)

(Haskell et al., 2001), although these effects may be mediated by

human land use and demographics (Bennett et al., 2021). However,

despite increased predation risk from at least some predators,

predation rates on birds tend to be higher in rural areas

compared to urban areas (Eötvös et al., 2018). The presence of

anthropogenic foods in urban areas may underscore this apparent

‘predator paradox’ (Rodewald and Gehrt, 2014).
FIGURE 3

Land Surface Temperature (LST) of Houston, Texas on June 13,
2023 at 17:05 local time. Streets and areas with more buildings are
hot spots reaching 47°C. Large parks, Bear Creek Pioneers Park
(BCP) and George Bush Park (GB) on the western side of the city are
cooler. Green spaces along Buffalo Bayou (arrows) running eastward
from these large parks are also cooler (Image from data generated
by NASA’s ECOsystem Spaceborne Thermal Radiometer Experiment
(ECOSTRESS) mission, Jet Propulsion Laboratory, a division of
Caltech in Pasadena, California.
FIGURE 2

Influence diagram of the relationships between environmental stressor management actions (yellow squares), intermediate stressor (pink squircles),
human (orange squircle) and environmental (green squircle) processes, and avian biodiversity (blue hexagon) as a metric of resilience. Black arrows
indicate predominantly positive relationships, blue arrows indicate predominantly negative relationships. Created with biorender.com.
frontiersin.org
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Finally, although pathogen abundance and diversity is

moderated by urban climate and the presence of water bodies,

pathogen transmission is generally higher among birds in urban

environments (Isaksson, 2018), due to increased bird density

(Chace and Walsh, 2006; Aronson et al., 2014) and effects

associated with supplementary feeding (Adelman et al., 2015;

Galbraith et al., 2017). However, it is worth noting that the

prevalence of birds infested with ticks has been shown to be

lower in urban areas (Roselli et al., 2022) suggesting that

urbanization may reduce the transmission of tick-borne

pathogens, but further study is needed to address this idea.
3 Urban management strategies that
can promote avian biodiversity and
urban ecological resilience

Urban bird species richness and density appear to be more

strongly influenced by local factors than regional factors (Evans

et al., 2009). This is good news for urban neighborhoods attempting

to increase biodiversity, because it suggests that local management

has the potential to increase species richness, biodiversity, and

functional diversity. These improvements can enhance urban

ecological resilience to future disturbance. Management to

increase biodiversity in urban environments generally aims to

directly or indirectly reduce the strong selective effects of biotic

homogenization and niche filtering on wildlife. Below, we discuss

several approaches to promoting avian biodiversity, and thus urban
Frontiers in Ecology and Evolution 05
ecological resilience. These approaches are not an exhaustive list of

management strategies for avian biodiversity in urban habitats, but

rather a selection of readily understood and frequently used

management frameworks.
3.1 Urban green and blue spaces

Avian biodiversity can be increased through investment in

complex urban green (e.g., parks, gardens, and street trees) and

blue spaces (e.g., water bodies, streams, rivers, and wetlands) that

utilize a diversity of native vegetation. Several studies indicate that

urban land cover and the proportion of built infrastructure are

negatively associated with bird species density and richness

(Aronson et al., 2014; Suárez-Castro et al., 2022), although

measures of functional diversity may be more complexly related to

urban infrastructure (Suárez-Castro et al., 2022). Urban green and

blue spaces can increase bird species density and provide refugia

for biodiversity (Figure 4; e.g., Suri et al., 2017; Barbosa et al.,

2020) by reducing impervious surfaces and their associated

homogenizing effects. In a Neotropical avian community, at least

one study indicates that although urban parks exhibit lower

resiliency compared to preserved continuous forests, they are

important components of urban ecological resilience. This is

reflected in reduced species richness, feeding guild richness, and

within-scale redundancy, but similar functional richness, functional

diversity, functional evenness, and cross-scale redundancy in urban

parks as compared to preserved continuous forest (Estevo

et al., 2017).
FIGURE 4

Influence diagram of the relationships between management actions for urban green/blue spaces (yellow squares), intermediate human processes
(orange squircle) and environmental processes (green squircle) and avian biodiversity (blue hexagon) as a metric of resilience. Black arrows indicate
predominantly positive relationships, blue arrows indicate predominantly negative relationships. Created with biorender.com.
frontiersin.org
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Urban green spaces with diverse, mature native vegetation, and

standing dead trees appear to provide the strongest benefits to avian

species richness (Campos-Silva and Piratelli, 2021; da Silva et al.,

2021). The presence of mature trees in urban green spaces increase

both bird taxonomic and functional richness (Morelli et al., 2017),

and water bodies or rivers/streams increase both taxonomic

richness and functional diversity (Morelli et al., 2017; Suri et al.,

2017; Barbosa et al., 2020). Numerous studies provide

overwhelming support for the importance of woody vegetation in

increasing overall avian biodiversity (Evans et al., 2009; Fontana

et al., 2011; Morelli et al., 2017; Kaushik et al., 2022) and the

richness and abundance of native resident bird species (Rico-Silva

et al., 2021). However, heterogeneous habitat designs have the

strongest positive effects on avian biodiversity (Clergeau et al.,

2001; Evans et al., 2009). The presence of native vegetation

composition and structure, vegetation complexity, and habitat

connectivity between urban green and blue spaces are all

positively correlated with the number of native bird species and

avian biodiversity (Chace and Walsh, 2006; Kang et al., 2015;

Jasmani et al., 2017; Isaksson, 2018; Beaugeard et al., 2021),

probably because these factors alleviate both the stress of

decreased food diversity and changes to predator dynamics, at the

same time as providing habitat and corridors in which to travel.

Larger urban green spaces generally provide greater benefits to

avian biodiversity (i.e., species richness, Shannon diversity, and

functional diversity) than smaller spaces (Evans et al., 2009; Kang

et al., 2015; Callaghan et al., 2018; Kaushik et al., 2022). However,

small parks can still be important for avian diversity if several are

distributed throughout an urban area. Networks composed of these

small parks can support higher species richness compared to larger

urban parks, in part due to increased use of these networks as

stopover sites by migrating species (La Sorte et al., 2023). Large

parks likely enhance avian biodiversity more so than isolated small or

medium sized parks due to a higher prevalence of mature trees and

water bodies, diverse vegetation zones, reduced edge effects, and the

capacity to support larger, more stable wildlife populations (Evans

et al., 2009; Aram et al., 2019). However, small public urban green

spaces are often more feasible to implement, especially in medium

and low-income neighborhoods, and thus should also be considered

to play an important role in maintaining biodiversity (Jasmani et al.,

2017; da Silva et al., 2021). Many of the benefits that large urban green

spaces provide can be applied to planning small urban green spaces

and gardens, for example: diverse native vegetation, complex

vegetation structure, and water bodies (Evans et al., 2009). The

negative effects of edge and isolation on biodiversity can be

mitigated in small urban green spaces by providing green or blue

corridors to connect these spaces (Evans et al., 2009). Where limits to

species dispersal and gene flow are identified, “rewilding” or the

introduction of native species to urban areas may be a useful

management tactic (Lambert and Donihue, 2020). More research is

needed on the role of small urban green spaces in avian community

richness/diversity, and the costs and benefits of different types of

connecting corridors (e.g., power lines, pipe lines, wildlife bridges,

etc.) and barriers (e.g., fences, roads, hedges, etc.).

In addition, urban green spaces offer opportunities for

recreation, relaxation, and connection with nature, improving the
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overall well-being and mental health of city dwellers (Akpinar et al.,

2016; World Health Organization, 20161). Urban green spaces can

also contribute to the cultural identity and sense of place for urban

communities (Seeland et al., 2009; Keleg et al., 2021). Blue spaces

(including man made surface water) are also associated with

improved human well-being and mental health (Smith et al.,

2021). Additionally, these urban green and blue spaces can attract

tourists, boost property values, and support local economies

through recreational activities, eco-tourism, and green businesses

(Vance and Hedel, 2007; Brownstone and Golob, 2009; Dodman,

2009), boosting the overall resilience of a city.

Urban green and blue spaces can also provide ecosystem

services by reducing noise pollution, and removing chemical

pollutants from the air and water, benefiting humans and wildlife,

alike. Vegetation can reduce noise pollution by directly acting as a

sound barrier, and providing positive benefits to biodiversity that

mitigate the negative effects of noise (Pena et al., 2017). Diverse

assemblages of mature native trees appear to provide the highest

benefit to bird species richness in noisy urban areas, probably due to

nesting site preferences and the availability of resources, such as

arthropods (Pena et al., 2017). Vegetation in urban green spaces can

also reduce air pollution through filtering (Bolund and

Hunhammar, 1999). Filtering capacities increase with more leaf

area, thus large, coniferous trees have the highest filtering capacities

(especially since they are green year round), and bushes and

grasslands the lowest (Bolund and Hunhammar, 1999). However,

coniferous trees are generally more sensitive to pollutants than

deciduous trees, which are also better at absorbing gasses. Thus, a

mixture of tree types appears most desirable to filter air pollutants

(Bolund and Hunhammar, 1999). Water pollution can be mitigated

through the use of urban wetlands to treat urban sewage or

bioswales to reduce contaminants in urban run-off (Anderson

et al., 2016). Wetlands can absorb large amounts of nutrients and

allow particles to settle by slowing the flow of sewage (Bolund and

Hunhammar, 1999).

Urban green and blue spaces also provide substantially cooling

benefits to mitigate the urban heat island effect (Bolund and

Hunhammar, 1999), benefiting human health and well-being

while simultaneously providing relief from the homogenizing

effects of heat on ecological communities. Urban parks and

forests with sizes of greater than 10 hectares appear to provide

the largest cooling benefit, reducing temperatures by 1-2°C for up to

350m beyond the park boundary, depending on vegetation cover

and tree shade (Aram et al., 2019). Estimates of cooling intensity

and distance from urban blue spaces vary widely, depending on the

area, shape, depth, movement, and surrounding features of the

water body (reviewed in Zhou et al., 2023), but can reach reductions

up to 5°C for a 270 m wide section of river in Japan (Murakawa

et al., 1991). This cooling benefit is even higher when blue spaces are

integrated into urban green spaces (e.g., Figure 2). For example, a

30m green buffer on either side of an urban river can reduce land

surface temperatures by 3.1 - 3.6°C compared to the blue space,

alone, and 2.7 - 3.7°C compared to the green space, alone (Zhou
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et al., 2023). Thus, large urban parks with water bodies not only

provide diverse habitat for wildlife, but can also reduce heat stress

for both wildlife and humans alike.

The benefits provided to avian biodiversity by urban green and

blue spaces depend on the recreational use of the green space, and

human traffic surrounding the green space. Sports facilities (e.g.,

soccer fields, baseball fields, football stadiums) have few, if any,

mature trees, low percent canopy covers, low vegetation diversity,

and higher environmental stressors such as human presence and

artificial light. These factors limit their usefulness as wildlife habitat.

Traffic of humans and their commensals (e.g., dogs) through

greenspaces can also be quite high, with associated disruption to

nesting and foraging activities of birds (Banks and Bryant, 2007; but

see Forrest and St. Clair, 2006). Increasing cover habitat may

decrease disturbance in these instances, by decreasing alert and

flight distances of birds (reviewed in Evans et al., 2009).
3.2 Community engagement programs

Community engagement which brings awareness to the

stressors faced by urban birds is an important component of

many strategies to increase urban biodiversity, and thus

ecological resilience. This community engagement can be

achieved via outreach programs, citizen science projects

partnering professional researchers with members of the public

to collect scientific data (Cooper et al., 2007), or community

science approaches linked to social action (Cooper et al., 2021).

For example, Lights Out Texas! (Audubon Texas, 20232) has

worked to spread awareness of the negative effects of ALAN on

migrating birds through education. By encouraging community

members to turn out lights, the program likely bolsters bird

communities by decreasing avian mortality (Lao et al., 2020; Van

Doran et al., 2021). Similarly, the American Bird Conservancy’s

‘Cats Indoors ’ program provides resources to promote

responsible cat ownership behaviors that reduce cat-caused

avian mortality (American Bird Conservancy, 20213). Other

programs, such as the National Wildlife Federation ’s

certification program of residential yards with wildlife-friendly

native landscaping, aim to actively increase both biodiversity and

ecological resilience at a hyper-local level (Widows and Drake,

2014). This benefit of native plants is illustrated by frequently

increased richness of local avian communities (Campos-Silva

and Piratelli, 2021; da Silva et al., 2021).

Citizen science efforts may also promote public awareness of the

biodiversity crisis, engaging community members in conservation

research while also contributing to scientific datasets. Data

contributed to citizen science programs such as eBird (Sullivan

et al., 2009) and iNaturalist (iNaturalist, 20244) can be used to assess

biodiversity metrics in urban spaces (Callaghan et al., 2018) and
2 URL: https://tx.audubon.org/urbanconservation/lights-out-texas

3 URL: https://abcbirds.org/program/cats-indoors/

4 URL: https://www.inaturalist.org
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inform natural resource management and conservation plans

(McKinley et al., 2017) that have the potential to increase urban

ecological resilience. One of the longest running citizen science

examples is the National Audubon Society’s Christmas Bird Count,

which has been in existence since 1900 (National Audubon Society,

2024b5) and brings together birdwatchers of all experience levels.

Knowledge about local biodiversity also promotes conservation

ideals amongst the general public and can lead to an enhanced

sense of place and responsibility for the natural world (Cosquer

et al., 2012) alongside associated mental health benefits (Horwitz

et al., 2001) increasing the overall resilience of our towns and cities.

Though citizen science programs for biodiversity awareness exist

across taxa, they are perhaps known best through their use in the

identification of birds.

Recreational birdwatching may also be viewed as a popular

form of community engagement, with 45 to 85 million individuals

in the United States (US) self-identifying as birdwatchers (Cordell,

2013; Carver, 2009). Birdwatchers are more likely to engage in

conservation behaviors that enhance wildlife populations than

people who do not engage in wildlife-focused recreation (Cooper

et al., 2015). More recently, initiatives such as Black Birders Week

(National Audubon Society 2024a6) and the National Park Service’s

Outdoor Recreation Legacy Partnership (National Parks Service,

20247) aim to connect underserved urban communities with

outdoor recreational opportunities. As community engagement

efforts grow across social and economic boundaries with active

inclusivity promotion, their importance in enhancing urban

ecological resilience is likely increasing. Increasing human

awareness of biodiversity is a critical component of a.) fostering

successful conservation efforts with a net positive ecological impact,

and b.) ensuring that strategies to strengthen and maintain urban

ecological resilience persist within a system long-term.
3.3 Supplementary feeding

Providing backyard bird food (hereafter ‘supplementary feeding’)

such as seeds, grains, and suet is common practice in urban areas in

much of the western world (i.e., countries populated by people

originating from Europe), especially in areas that experience

relatively cold conditions during winter (e.g., northern Europe,

North America; Reynolds et al., 2017). In addition, where

nectivorous birds frequent residential areas (e.g., South Africa, New

Zealand), people regularly provide sugar water in artificial nectar

feeders (Coetzee et al., 2021; Erastova et al., 2021). While

supplementary feeding may be unintentional (e.g., through

discarded waste), here we focus on the intentional provision of
5 URL: https://www.audubon.org/conservation/science/christmas-bird-

count/history-christmas-bird-count

6 URL: https://www.audubon.org/black-birders-week

7 URL: https://www.nps.gov/subjects/lwcf/outdoor-recreation-legacy-

partnership-grants-program.htm
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food (e.g., via bird feeders). The scale of supplementary feeding is

staggering; in the US alone, 70.5% of people 16 years or older

intentionally feed wild birds annually, spending approximately US

$4 billion on bird food, and an additional US$10 billion on associated

hardware, annually (US Fish & Wildlife Service, 2018). The energy

inputs represented by this extensive practice are likely vast, as are the

potential number of birds supported; estimates suggest that

provisioning levels in the UK alone are sufficient to fully support

196 million backyard birds (Orros and Fellowes, 2015).

Correlational studies suggest that supplementary feeding

supports diverse communities of birds in backyards (Plummer

et al., 2019), and that feeders may support birds experiencing

declines in natural food availability (Figure 5; Chamberlain et al.,

2005). Similarly, experimental approaches demonstrate that avian

abundance and diversity may increase in response to commonly

provided food types including bread and wild bird seed (Galbraith

et al., 2015; Lamberson, 2022). However, such results are typically

underscored by increases in granivorous and omnivorous species

that occur within the urban species pool (Lerman et al., 2021), while

the abundance of species infrequently seen at feeders (e.g.,

insectivores) may decrease, possibly in response to the presence

of dominant heterospecifics (Galbraith et al., 2015). Under

scenarios where nectar is provided in artificial feeders, the

abundance of nectar-specialists may also increase (Sonne et al.,

2016; du Plessis et al., 2021). Supplementary feeding has also been

shown to increase species-richness and the abundance of mammals

(Reed and Bonter, 2018; Hansen et al., 2020), while decreasing the

abundance of invertebrates (ground-beetles: Coleoptera:

Carabidae), potentially driven by increased avian predation
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(Orros et al., 2015). Therefore, supplementary feeding may

restructure communities rather than increase overall biodiversity,

and thus whether it aids in urban ecological resilience is unclear and

warrants further investigation.

While supplementary feeding may appear to bolster

biodiversity in some cases, it is important to consider the

potential negative effects on birds (reviewed in Shutt and Lees,

2021) in discussions concerning urban ecological resilience. For

example, while supplementary feeding may promote metrics of

health in wild bird populations (e.g., increased antioxidant levels,

reduced stress levels; Wilcoxon et al., 2015), it may facilitate

disease transmission (Figure 5) where feeders serve as sites for

increased bird interactions and as reservoirs for pathogens

(Adelman et al., 2015; Galbraith et al., 2017). Such effects may

be amplified where the density of bird feeders is high (Moyers

et al., 2018). Concomitantly, while the majority of studies suggest

birds experience enhanced breeding productivity in response to

supplementary feeding (reviewed in Ruffino et al., 2014), others

have demonstrated negative effects in this regard (e.g., reduced

clutch size - Harrison et al., 2010; reduced offspring body

condition and survival - Plummer et al., 2013; skewed offspring

sex ratios - Clout et al., 2002). Furthermore, supplementary

feeding may affect predator-prey relationships by increasing the

abundance of predators (Hanmer et al., 2017; Malpass et al., 2017)

although further research is needed to explore this idea further.

Where the provision of nectar in artificial feeders attracts

nectivorous birds, visitation rates at flowers may decrease, thus

potentially disrupting pollination services provided by birds (du

Plessis et al., 2021).
FIGURE 5

Influence diagram of the relationships between the management actions (yellow squares) from our case studies, intermediate stressor (pink
squircles), human (orange squircle) and environmental (green squircle) processes, and avian biodiversity (blue hexagon) as a metric of resilience.
Black arrows indicate predominantly positive hypothesized relationships, blue arrows indicate predominantly negative hypothesized relationships.
Supplementary feeding can have both positive and negative effects on food availability because it generally increases food availability for
granivorous, omnivorous, and nectivorous birds, but food quality and the availability of insects may be reduced. Population size can also have
positive and negative relationships with avian biodiversity because large populations of some species can reduce or eliminate those of other species
through competition. Created with biorender.com.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fevo.2024.1302002
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


McCloy et al. 10.3389/fevo.2024.1302002
3.4 Urban landfills

The creation of urban-based landfills to store and manage solid

waste produced in urban areas removes suitable habitats for many

wildlife species. Yet, landfills can provide food subsidies that support

scavenging, carnivorous, and omnivorous birds including species of

gulls (Burger and Gochfeld, 1983; Belant et al., 1998; Duhem et al.,

2008; Ackerman et al., 2018), raptors (Burger and Gochfeld, 1983;

Turrin et al., 2015; Al Fazari and McGrady, 2016), corvids

(Marasinghe et al., 2018), and wading birds (Burger and Gochfeld,

1983; Singha et al., 2002; Ciach and Kruszyk, 2010; Dorn et al., 2011).

Supplementary food from landfills can compensate for reductions in

natural food sources (Duhem et al., 2008; Dorn et al., 2011;

Ackerman et al., 2018) and support endangered species (Singha

et al., 2002; Dementieieva et al., 2023). Certainly, proximity

to landfill can be a major determinant in explaining the

composition and stability of urban bird communities (Ciach and

Fröhlich, 2017).

Landfill design depends on its size, location, and the specific

regulations and practices followed in an area. Most contain a drop-

off area where garbage is unloaded and several cells or disposal areas

where waste is deposited. Once an active disposal site is filled, it is

covered with soil, clay, or an impermeable material to prevent

leaching. Then, waste deposition shifts to a new cell, and the process

continues. Modern landfi l ls are designed to minimize

environmental impacts and have leachate collection systems to

capture liquid that percolates through the layers of waste and gas

collection systems to prevent methane from escaping into the

atmosphere. Proper stormwater management systems are

established to prevent rainwater from accumulating in the landfill

(United States Congress, 1976). Thus, modern landfills can provide

a variety of avian habitats (Figure 5) from wetland stormwater

collection sites, active dumping sites, closed dumping sites that are

planted with grasses, and perimeter areas that are often forested

(Marasinghe et al., 2018; Arnold et al., 2021).

Avian abundance tends to be greatest in areas of active

dumping, while avian diversity and evenness is greatest at closed

dumping areas (Marasinghe et al., 2018). Other features of urban

landfills that promote avian diversity are tree cover (Malekian et al.,

2021), distance to communal roosts (Turrin et al., 2015), lower

human disturbance (Burger and Gochfeld, 1983), and distance to

water (Malekian et al., 2021). Once active dumping sites are filled

and capped, grasses are planted and maintained to prevent growth

of woody plants whose roots could damage the capping system.

These grassy areas can support populations of declining grassland

specialists (Arnold et al., 2021) and rural surrounding areas can

support species of conservation concern (Dementieieva et al., 2023).

Thus, urban landfills can play a crucial role in preserving avian

diversity and resilience despite posing hazards to wildlife through

exposure to plastics, toxic compounds, and pathogens (Figure 5;

Plaza and Lambertucci, 2017). Populations of some species of

conservation concern, like white storks (Ciconia ciconia) are

predicted to decline if urban landfills are closed (López-Garcıá

et al., 2023). However, closed landfills can be reclaimed as open

urban green spaces (Hoefer et al., 2016).
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3.5 Artificial nesting structures

Urban environments offer unique challenges and opportunities

for nesting birds. In response to urbanization, birds may exploit

novel nesting habitats provided by humans, either purposefully or

incidentally. Here, we focus on North American breeding species

and define artificial nesting structures as man-made structures that

support or contain bird nests, even if they were not specifically built

for the purpose of providing nesting resources for birds

(Mainwaring, 2015). Artificial nesting structures include, but are

not limited to, electric pylons, roads, buildings, pipes, rooftops, nest

boxes, burrows, and cavities (Mainwaring, 2015). We do not focus

on anthropogenic nesting material (i.e, materials incorporated into

birds’ nests that are manufactured by humans) because numerous

reviews already exist to connect anthropogenic nesting materials to

avian reproductive success, and thus resilience (see Jagiello et al.,

2019; Reynolds et al., 2019; Jagiello et al., 2023).

In the ever-changing urban landscape, many bird species have

demonstrated remarkable plasticity by colonizing novel nesting sites,

effectively expanding their ranges as cities continue to grow. For

instance, cliff swallows (Petrochelidon pyrrhonota) have exhibited an

expansion of their distribution, seizing opportunities presented by the

widespread construction of concrete bridges and highway overpasses

(Brown et al., 2020). Similarly, ground-nesting birds including

common nighthawks (Chordeiles minor), various gull and tern

species (Laridae spp.), and killdeer (Charadrius vociferus) have

adopted gravel and “green” rooftops in urban areas as novel

nesting sites (Fisk, 1978; Brigham, 1989; Cañero and Redondo,

2010; Washburn et al., 2016). Some birds have become highly

reliant on the artificial nesting structures provided by humans.

Chimney swifts (Chaetura pelagica) and purple martins (Progne

subis), for instance, have become almost entirely dependent on

human-provided nesting structures for breeding, often expanding

into heavily urbanized habitats in pursuit of suitable nest sites (Bridge

et al., 2016). Their human “landlords’’ maintain these nesting sites

and often report a strong sense of satisfaction and connection with

nature through their involvement in avian conservation efforts, which

can positively influence mental health and foster a deeper sense of

place within urban communities (Figure 5).

Urban habitats can act as substitutes for natural breeding sites

(Martıńez-Abraıń and Jiménez, 2016). For example, peregrine

falcons (Falco peregrinus) have exploited anthropogenic

structures, including buildings, electric pylons, and buoys which

function as cliffs following population recovery after their drastic

population declines related to organochlorine pesticides in the

1940s-1970s (US Fish and Wildlife Service, 1999). Similarly,

crested caracaras (Caracara plancus), a species typically associated

with open or semi-open habitats (Smith et al., 2017; Morrison and

Dwyer, 2021) have successfully exploited unconventional nesting

sites, such as advertising billboards and electrical pylons,

particularly in environments where natural nesting substrates are

limited such as in urban areas (Dwyer and Rosa, 2015), and this

may be leading to range expansion (Smith and Dwyer, 2024). This

underscores the relatively high nesting substrate plasticity that

certain bird species exhibit in urban habitats. At the guild level,
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primary cavity nesting birds (i.e., those that create their own nesting

cavity) are often selected against in urban habitats, due to removal

of natural structures for nest excavation (Tomasevic and Marzluff,

2017), but secondary cavity nesting species (i.e., those that nest in

existing cavities), will readily transition to nesting in cavities in

anthropogenic structures (Tomasevic and Marzluff, 2017) where

existing natural cavities are limited.

However, the establishment of urban nesting sites may also have

negative consequences for urban ecological resilience. In North

America, invasive birds often predominate native birds in urban

areas (Green and Baker, 2003), and outcompete native species for

nesting resources (Charter et al., 2016). House sparrows (Passer

domesticus) and European starlings (Sturnus vulgaris) are

synanthropic species that exhibit high plasticity in nesting habitat

(Clergeau and Quenot, 2007; Sheldon and Griffith, 2017), and will

readily nest in artificial nesting structures, often aggressively

removing native cavity nesting birds. Provisioning of artificial

nesting structures, particularly for cavity nesters, may facilitate

these interactions and support non-native species in urban

habitats (Clergeau and Quenot, 2007). These non-native species

present a dilemma when assessing urban ecological resilience.

Incorporating non-native species into community-level

biodiversity metrics for resilience is likely to diminish community

resilience due to biotic homogenization and the prevalence of non-

native species in urban habitats (Green and Baker, 2003). However,

when considering adaptive capacity and behavioral or functional

plasticity in resilience metrics, highly successful non-native species

may be considered more resilient and adaptive than native birds,

thus increasing the resilience of ecological communities. This

paradoxical relationship highlights the need for more explicit

definitions and metrics for ecological resilience, particularly in

urban habitats.

It is clear that artificial nesting structures are a tool that can be

used to enhance avian biodiversity at various levels, from

landowners to government entities (Savard et al., 2000).

Management of these structures will likely increase the positive

impacts of artificial nesting on the biodiversity of urban habitats,

and thus affect resilience metrics. However, broad-scale and

effective management strategies for artificial nesting structures in

urban environments are lacking. In light of the vital role that urban

nesting bird communities play in enhancing urban biodiversity and

contributing to the resilience of urban ecosystems, proactive

management strategies aimed at optimizing the benefits of

artificial nesting structures are needed.
4 Intersections between avian urban
ecological resilience, socioeconomic
factors, and technology

Urban ecological resilience is dynamically connected to social,

economic, and technological factors (Figure 1). Most human

residents of cities reside in areas of low biodiversity, representing

“biological poverty” (Melles, 2005). Given that over 50% of the

human population now resides in cities, it is probable that most of

the global human population now lives under this scenario (Turner
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et al., 2004; Melles, 2005). The majority of those living in biological

poverty appear to be located in densely populated low-income

urban communities. For example, studies in Vancouver, Canada

and Phoenix, Arizona, US conclude that low-income urban

neighborhoods tend to have less diverse avian communities and

fewer native species of birds than higher income neighborhoods

(Kinzig et al., 2005; Melles, 2005), although this is not always the

case (e.g., Chicago, Illinois, US; Loss et al., 2009). Urban human

residents appear to perceive and appreciate bird diversity more than

abundance (Clergeau et al., 2001) and reduced biodiversity can

negatively impact human psychological well-being, sense of

community, and identity (Horwitz et al., 2001). Within this

context, urban ecological resilience can be considered an

environmental justice issue.

Unequal social and economic distribution among urban human

populations can affect urban biodiversity through multiple processes.

First, the density of the urban area directly affects the amount of

habitat available for wildlife, with subsequent effects on biodiversity

(Figure 3). The majority of human city dwellers reside in densely

populated areas characterized by below-average biodiversity (Turner

et al., 2004). Second, the distribution of urban greenspaces is typically

skewed toward higher-income neighborhoods (Kinzig et al., 2005).

These greenspaces are also usually larger and more well-managed

than their counterparts in lower-income neighborhoods (Rigolon,

2016). Larger green spaces typically maintain higher levels of avian

biodiversity (Kang et al., 2015; Callaghan et al., 2018), especially when

they include large mature trees, diverse habitat zones, and water

bodies (Morelli et al., 2017; Suri et al., 2017; Aram et al., 2019;

Barbosa et al., 2020). These features are also more likely to occur in

neighborhoods of higher socioeconomic status (Rigolon, 2016). Of

course, there are some exceptions such as large National Wildlife

Refuges or other not locally-funded reserves that were created to

protect unique and important habitats, irrespective of their

relationship with human settlement.

Third, homeowner landscaping choices can affect biodiversity

outside of urban greenspaces (Kinzig et al., 2005). Although isolated

small urban greenspaces are not as effective at increasing avian

biodiversity as large urban greenspaces (Evans et al., 2009; Kang

et al., 2015; Callaghan et al., 2018; Kaushik et al., 2022), small urban

greenspaces are often more easily implemented and maintained

(Jasmani et al., 2017; da Silva et al., 2021), especially in medium- and

low-income neighborhoods. Homeowner landscaping choices may

be driven by wealth where wealthier individuals are able to invest

more in landscaping options that promote biodiversity (i.e., the

luxury effect; Hope et al., 2003). Certainly, positive relationships

between wealth and bird diversity have been found in numerous

studies (Leong et al., 2018), although the strength of this effect may

depend on the level of urbanization (Chamberlain et al., 2019), and

the aridity of the area, suggesting issues of environmental justicemay

be amplified as climate change effects (e.g., drought) increase in

severity (Chamberlain et al., 2020). Homeowner landscaping choices

that promote biodiversity may also depend on other drivers of

behavior including social norms and motivations (Peterson et al.,

2012; Goddard et al., 2013).

Finally, the extent of supplementary feeding of wild birds is also

strongly driven by housing density and socioeconomics where
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household income predicts bird-feeding activity (Fuller et al., 2013).

Under this scenario, the potential for supplementary feeding to

affect avian abundance, species richness, and diversity may only be

relevant to a relatively wealthy subset of the human population (e.g.,

luxury effect; Hope et al., 2003). Bird feeding serves to connect

people with nature and increase human well-being (Figure 5; Cox

and Gaston, 2016), thus inequalities in bird-feeding activities can

also produce inequalities in human psychological health and sense

of place. These social and economic determinants of biodiversity

and ecological health highlight the dynamic interactions between

socioeconomic inequalities in human urban populations, ecological

resilience, and urban resilience as a whole.

Biodiverse landscapes can also bring economic benefits to a

community. Birdwatchers will often travel to view a rare bird

species or species they cannot view in their home region,

bolstering the tourism and hospitality industries of the hosting

community. For example, over one month in winter 2021-2022

thousands of people traveled to see a Steller’s sea-eagle (Haliaeetus

pelagicus) on the North American eastern seaboard, generating an

estimated $584,373 - $731,809 (Pease et al., 2023). In 2016, over

300,000 birdwatchers visited Alaska, spending an approximately

$378 million and supporting an estimated 4,000 jobs (Schwoerer

and Dawson, 2022). Canadian birdwatchers prefer areas of high

biodiversity, and in Canada are estimated to spend an additional

$0.68 for every additional species on a birdwatching trip (Jayalath

et al., 2023). Annual birdwatching festivals such as the Grand Isle

Migratory Bird Celebration in Grand Isle, Louisiana, US contribute

millions of recurring dollars to the local economy (Isaacs, 2010).

Thus, biodiversity and socioeconomic factors are dynamically

interlinked in the urban system (Figure 6). Investments in

biodiversity can improve the economic position and well-being of

a community, and, likewise, improvements in the socioeconomic

status of a community can bolster biodiversity.
5 Conclusions and recommendations

Urban wildlife communities are shaped by selective processes

influenced by environmental features, species traits, species

interactions, and human socioeconomic factors and behavior,
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collectively determining which species persist in urban

environments. These dynamics highlight the pivotal role of

human decision-making in shaping urban bird biodiversity, and

thus urban ecological resilience. In this paper we have discussed

how urban ecological resilience, using the biodiversity of birds as a

proxy, can be altered by characteristics of urbanization, and

highlight several local management actions that may promote

urban ecological resilience. In particular, there is strong evidence

to support the benefits of large green and blue spaces with mature,

diverse native vegetation for both avian biodiversity and human

physical and mental health.

Synergism between urbanization and climate change may

exacerbate their individual negative effects on biodiversity (Travis,

2003; McCloy et al., 2022) and introduce novel dimensions to the

selective processes that shape urban avian communities (Pimm,

2009; reviewed in McCloy et al., 2022). For example, Urban Heat

Island effects are expected to be amplified as the Earth warms under

projected climate change scenarios (Aram et al., 2019; Leveau et al.,

2021), leading to the loss of cold-adapted wildlife species (Oliver

et al., 2017) and biotic homogenization toward warm-adapted

species (Clavero et al., 2011). Urban environments can also create

fragmented habitat that restricts the ability of species and

communities to track moving climate envelopes (Roberts et al.,

2019), as we see with saltmarsh specialist communities (Thorne

et al., 2012; Rosencranz et al., 2018).

Despite these negative effects, urban environments can provide

relatively stable habitat for species whose ranges are reduced by

climate change (reviewed in McCloy et al., 2022), provided the

species can adapt to urban environments and/or urban spaces are

managed effectively. Urbanization also offers possibilities for

effective resource use that can mitigate the effects of climate

change, reduce carbon footprints, and increase human well-being

and socioeconomic status. Compact urban development with high

concentrations of residents and businesses can decrease per capita

energy consumption, the distance traveled by vehicles, and carbon

emissions (Vance and Hedel, 2007; Brownstone and Golob, 2009;

Dodman, 2009), thus reducing climate impacts.

In this paper we use biodiversity (e.g., richness, occupancy,

diversity) as a proxy for urban ecological resilience because these

measures are straightforward, widely reported, easy to calculate, and
FIGURE 6

High-level influence diagram of the social, technological, and ecological components (blue squircle) of urban resilience (orange squircle) and how
they are influenced by both human well-being (pink squircles) and biodiversity. Black arrows indicate directional relationships, with a two-way
interaction between human economic status and biodiversity. Mental health, sense of place, and identity all are core components of human well-
being as illustrated in this figure. Created with biorender.com.
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frequently used in prior studies to represent ecological resilience

(Johnson and Winker, 2010; Karp et al., 2011; Selwood et al., 2015;

Irizarry et al., 2021). However, these ‘simple’ methods do not

directly consider redundancy or complementarity of species, nor

do they account for temporal or spatial heterogeneity in niche

space, making them less accurate proxies for resilience (McCloy

et al., 2022). To address these issues, ecological resilience can be

quantified at the community level through functional diversity

indices. These offer a more complex ecological picture (Ricotta

et al., 2014; Morelli et al., 2020) by accounting for the components

of a species’ phenotype that influence ecosystem functioning,

specifically functional traits (Petchey and Gaston, 2006).

Therefore, functional diversity indices group members of a

community by similarity in ecological functions (Blondel, 2003;

Hooper et al., 2005). Since many animal species are either migratory

or undertake local seasonal movements, annualized metrics of

species and/or functional diversity may commonly be an

appropriate choice.

We foresee four primary opportunities for future research to

help address the ecological threat of urbanization within the context

of climate change:
Fron
1.) The influence of land/water management strategies in

densely populated urban areas (e.g., green and blue space

connectivity, landscaping choices in small green/blue

spaces, supplemental resources for birds including food

and nest structures/substrates) on ecological resilience and

biological poverty.

2.) Understanding the impact of socioecological factors on

urban ecological resilience, with a specific focus on birds.

Deeper investigations of the influence of social,

technological, and economic factors on urban bird

communities, and methods to mitigate these effects will

provide insight for urban planning. The One Health

framework provides a model of how this could be

accomplished (Ottinger and Geiselman, 2023).

3.) Investigating urban ecological resilience through functional

analyses, such as functional diversity, and multi-taxa

studies will offer a more holistic picture of species

presence and subsequently provide a comprehensive

understanding of the challenges and opportunities for

humans and wildlife in urban habitats.

4.) Collaboration with stakeholders at multiple levels of social-

ecological-technological resilience, from landowners to

government entities, to promote active management of

urban landscapes for biodiversity. Engaging varied

stakeholders can enhance the effectiveness of gathering

data on urban wildlife productivity. This includes

improving the creation and maintenance of quality

habitat, implementation of monitoring technologies,

fostering participation from underrepresented stakeholder

groups, and growth of citizen and community science

efforts (i.e, eBird, iNaturalist, or community groups

dedicated to biodiversity monitoring). A more holistic
tiers in Ecology and Evolution 12
understanding of urban wildlife ecology will enrich

scientific knowledge and provide valuable insights for

informed conservation practices and urban planning.

Consequently, this will contribute to the development of

more resilient and sustainable urban environments.
Urban ecological resilience is at the intersection of climate

change, urbanization, technological development, social justice,

and human decision-making. To address this, we advocate for

interdisciplinary and multiscalar investigations through the lens

of urban ecological resilience, the development of proactive urban

planning and management strategies, and the promotion of

equitable access to greenspaces and resilient urban environments.

By comprehensively addressing the complex interplay between

humans and avian communities in changing urban environments,

we can work toward building more resilient and sustainable urban

ecosystems for both humans and wildlife.
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et al. (2020). Artificial light at night affects brain plasticity and melatonin in birds.
Neurosci. Lett. 716, 134639. doi: 10.1016/j.neulet.2019.134639
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Morelli, F., Benedetti, Y., Ibáñez-Álamo, J. D., Tryjanowski, P., Jokimaki, J.,
Kaisanlahti-Jokimaki, M.-L., et al. (2020). Insurance for the future? Potential avian
community resilience in cities across Europe. Clim. Change 159, 195–214. doi: 10.1007/
s10584-019-02583-7

Morelli, F., Benedetti, Y., Su, T., Zhou, B., Moravec, D., Šıḿová, P., et al. (2017).
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