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Hunter S. Lenihan1, Steven D. Gaines1 and Robert J. Miller3

1Bren School of Environmental Science and Management, University of California, Santa Barbara,
Santa Barbara, CA, United States, 2Channel Islands National Park, U.S. National Park Service, Ventura,
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CA, United States, 4Ecology and Evolutionary Biology Department, University of California, Santa Cruz,
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Foundation species are essential to ecosystem function, but their role as habitat

providers is predicated on their spatial dominance. Worldwide, kelps, seagrasses,

corals, and other marine foundation species have declined. This is true also for

rockweeds, the canopy-forming analog of subtidal kelp forests in temperate

rocky intertidal ecosystems. On the west coast of North America, dense beds of

the rockweed Silvetia compressa occur across large biogeographic regions,

benefitting numerous species by ameliorating physical stress caused by sun

exposure, desiccation, heat, and wave disturbance. Like many rockweed species,

Silvetia is long-lived, slow-growing, and short-dispersing – characteristics that

reduce its resilience to disturbance. Using a generalized additive mixed-effects

model with explicit spatial effects, we analyzed canopy cover data from 30 sites

spanning 18 years, and we tested the hypothesis that Silvetia population trends

are tightly linked to atmospheric climate conditions, particularly Santa Ana wind

events (SAWs): strong, hot, and dry downslope winds that originate inland and

move offshore. We found that the rockweed had declined markedly, particularly

at sites south of the major biogeographic break, Point Conception (PC), including

the California Channel Islands and southern California mainland, and a highly

significant negative effect of dewpoint depression, a measure of moisture

content in the atmosphere, on Silvetia cover across all three regions in this

study. Our results suggest that any increases in the frequency or intensity of SAWs

are likely to lead to large declines and possible extirpation of Silvetia, as well as

the important ecological services the species provides.
KEYWORDS

ecosystem engineer, desiccation, rockweed, fucoid, offshore winds, prolonged
desiccation events
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1 Introduction

Foundation species define much of the structure of the

community they occupy by modulating fundamental ecosystem

processes and creating locally stable conditions for other species

(Dayton, 1985; Ellison et al., 2005). Examples include mangroves

(Duke et al., 2007), corals (Hughes et al., 2003), seagrasses (Short

et al., 2006), kelps (Steneck et al., 2002), oysters (Lenihan et al.,

2001), cordgrass (Zedler et al., 2001), and many tree species

including redwood, hemlock, and birch (Ellison et al., 2005).

These species share commonness and high local abundances,

hence the tendency to name ecosystems after them – seagrass

beds, kelp forests, oyster beds, and hemlock forests. Maintaining

their foundational role in ecosystems, and the resulting effects on

biodiversity, community composition, and ecosystem function,

requires high local abundances, not simply species survival.

However, many foundation species are declining due to coastal

development (Zedler et al., 2001; Duke et al., 2007), pollution (Duke

et al., 2007), invasive species (Steneck et al., 2002), introduced

pathogens (Ellison et al., 2005), over-harvesting (Jackson et al.,

2001; Steneck et al., 2002; Ellison et al., 2005), and climate change

(Sagarin et al., 1999; Hughes et al., 2003), likely resulting in

cascading impacts on associated communities (Sarà et al., 2021;

Smale et al., 2022; Wernberg et al., 2023 and references therein).

In temperate rocky intertidal ecosystems, perennial fucoid

macroalgae, commonly referred to as rockweeds, are often

important foundation species (Chapman, 1995; Schiel and Foster,

2006). At low tide, rockweed canopies protect the substratum and

communities beneath the canopy from sun exposure, desiccation,

and heat stress (Bertness et al., 1999; Sapper and Murray, 2003;

Råberg and Kautsky, 2007; Marzinelli et al., 2014) and thereby

enhance biodiversity (Råberg and Kautsky, 2007; Marzinelli et al.,

2014). Via this protection, as well as hydrodynamic effects,

rockweed canopies also facilitate the recruitment of numerous

intertidal species, including the rockweeds themselves (Bertness

et al., 1999; Viejo et al., 1999), a positive feedback loop that likely

contributes to their long-term population stability (Bertness et al.,

1999). In addition to these ecosystem engineering effects, rockweeds

are highly productive (Golléty et al., 2008; Tait and Schiel, 2010;

Tait et al., 2014; Bordeyne et al., 2015), providing an important

source of food for intertidal herbivores (Moore, 1977; Lubchenco,

1983; Steinberg, 1985; Bertness and Leonard, 1997; Jenkins et al.,

2004; Hawkins et al., 2008) and detrital consumers (Bishop et al.,

2010; Golléty et al., 2010; Renaud et al., 2015), and contributing to

nutrient cycling (Schmidt et al., 2011).

Silvetia compressa (Agardh, 1824) (Phaeophyceae, hereafter

Silvetia) is the dominant rockweed species in the northeast Pacific

from Monterey County, California to Punta Baja, Baja California,

Mexico (Abbott and Hollenberg, 1992; Silva et al., 2004; Skamarock

and Klemp, 2008). Silvetia can live at least eight years (Gunnill,

1980) and is slow to recover from population declines due to the

short-range dispersal of its gametes (Hays, 2006). Attaining frond

lengths of 90 cm with up to 20 orders of branching (Silva et al.,

2004), Silvetia can form large and dense beds (Figure 1) that harbor

a diverse understory community. For example, Sapper and Murray
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(2003) documented 47 species of algae, 20 sessile and 44 mobile

invertebrate species under the canopy formed by Silvetia at a rocky

intertidal site in southern California.

Upper and middle intertidal rockweeds, including Silvetia, are

regularly subjected to prolonged periods of aerial exposure (i.e.,

emersion) during low tides. Rapidly fluctuating atmospheric

variables, such as temperature, irradiance, wind speed, and

relative humidity, impose increasingly greater stress on intertidal

biota as a function of shore height (e.g., Hawkins and Hartnoll,

1985). Physiological stress generally results in increased rates of

mortality (Graham et al., 2000) and reduced physiological

performance (Schonbeck and Norton, 1980), and individuals

living higher on the shore often exhibit morphological differences

in response, such as thickened and stunted body forms (Sideman

and Mathieson, 1985; Davison and Pearson, 1996). As a result,

stress from emersion, and particularly desiccation, is considered

among the most important drivers of species performance and

abundance in the rocky intertidal zone (Brinkhuis et al., 1976;

Brawley and Johnson, 1993; Davison and Pearson, 1996; Stengel

and Dring, 1998; Helmuth and Hofmann, 2001 and

references therein).

The coast from central California to northern Baja California

including southern California and the Channel Islands in the

Southern California Bight is periodically exposed to strong, dry,

and often warm downslope winds, commonly referred to as Santa

Ana winds (SAWs) (Abatzoglou et al., 2021; Guirguis et al., 2023).

These harsh winds result from sharp gradients between high-

pressure systems across the interior of the western United States

and low pressure at the coast. As the air masses move from the dry

Great Basin to the west over the coastal mountain ranges, they are

compressed down the mountains and through canyons where they

accelerate, heat, and dry in the process termed downsloping. SAWs

can reach sustained speeds of 7-13 m s-1 (and gusts of >25 m s-1)

and are characterized by low humidity (<15%) and warm air (>21°

C) (Rolinski et al., 2019). SAWs can occur any time of the year, but

they peak in late fall through early spring.

Recent modeling studies have revealed marked interannual

variation in the frequency, intensity, and spatial coverage of

SAWs (Jones et al., 2010; Abatzoglou et al., 2013; Guzman‐

Morales et al., 2016; Dye et al., 2020), and these temporal trends

have been linked to variation in environmental indices, including

the El Niño-Southern Oscillation (Raphael, 2003), Pacific Decadal

Oscillation, and the Atlantic Multi-decadal Oscillation (Li et al.,

2016). SAWs are well studied due to their impact on vegetation and

catastrophic wildfire threats (e.g., Moritz et al., 2010; Dye et al.,

2020), but research on their impacts on marine life and

oceanographic patterns is scarce. Intertidal organisms in southern

California are severely stressed in late fall and winter when SAWs

frequently coincide with extreme low tides (Seapy and Hoppe, 1973;

Gunnill, 1980; Littler, 1980), and die-backs of Silvetia and other

species have been attributed to prolonged aerial exposure (Seapy

and Littler, 1982).

According to the Santa AnaWildfire Index, a model derived from

the climatological data used in this study to generate time series

representing the trend for SAWs from 1981-2016, the annual
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frequency gradually increased beginning in 2000 (Li et al., 2016; see

Figure 17 in Rolinski et al., 2019). By 2006, the mean number of SAW

days had increased 54% from 46 days per year (1981-2005) to 71; a

trend that persisted through the remainder of the climatology

(Rolinski et al., 2019). This trend appears inversely proportionate to

changes in Silvetia cover observed at numerous long-term monitoring

study sites in the region affected by SAWs, with the most precipitous

losses in cover occurring after 2005.

Here, we test the hypothesis that SAW events are driving

declines in Silvetia populations in southern California. To

perform our test, we used climatological time series data along

with long-term monitoring data for Silvetia measured throughout

much of its geographical range, extending across ca. 900 km of

shoreline from Los Angeles, California to near the California/

Mexico border, including several of the offshore Channel Islands

in southern California.
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2 Materials and methods

2.1 Study sites

Thirty long-term monitoring sites (Figure 2; Supplementary

Table S1) were established by the Multi-Agency Rocky Intertidal

Network (MARINe; pacificrockyintertidal.org), a consortium of

government agencies, academic institutions, and nonprofit

groups, from 1981 to 1999 across Silvetia’s range. Sites were

established on bedrock benches with Silvetia beds. Refer to Engle

et al. (2022) for detailed descriptions of methods.

Sites were grouped consistent with biogeographic regions described

in Blanchette et al. (2008): central California (CEN, n = 4), defined as

sites north of Point Conception (PC), a major biogeographic barrier

separating the southern California sites (SOU, n = 10). Although

located in the Southern California Bight, the offshore Channel Islands
FIGURE 2

Map of long-term monitoring sites for Silvetia compressa used in this study. See Supplementary Table S1 for full site names and positions. Site
abbreviations are color-coded by region (black = central California, blue = Channel Islands, orange = southern California).
B

C

A

FIGURE 1

Rockweed, Silvetia compressa, forming large beds in the middle intertidal zone on the northwest side of Santa Rosa Island (A); fixed plot established
to document the percent cover of the rockweed, Silvetia compressa (B) (photos, S. Whitaker); lead author S. Whitaker scoring a fixed plot for
rockweed (C) (photo, K. Chan).
frontiersin.org

https://doi.org/10.3389/fevo.2024.1291310
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Whitaker et al. 10.3389/fevo.2024.1291310
are exposed to a latitudinal gradient in environmental and

oceanographic conditions that differs from the mainland (Dailey

et al., 1993; Harms and Winant, 1998; Kapsenberg and Hofmann,

2016). Therefore, we grouped the Channel Islands (CHA, n = 16) sites

separately from the southern California mainland sites. The sites were

primarily limited to the northern Channel Islands which are subjected

to colder water temperatures than the southern Channel Islands.
2.2 Survey methods

At each of the sites, five fixed rockweed plots (50 x 75 cm) were

established mostly in the mid-1980s to 1990s and were originally

chosen haphazardly at each site in areas of high canopy cover of Silvetia

(Engle et al., 2022) (Figure 1). Stainless steel hex bolts were installed in

three corners of each rectangular plot so they could be relocated.

Percent cover of Silvetia, as well as other species or bare substrate when

Silvetia was absent, was scored in each plot using a point contact

method with a grid of 100 points, either in the field or using a digital

photo of the plot (Engle et al., 2022). Until 2015, fixed plots were

photographed and sampled biannually in the spring (March–May) and

fall (October – January) during daytime low tides. Beginning in 2015,

plots were sampled annually to reduce survey effort since seasonal

differences in Silvetia cover were not significant (Raimondi et al., 2018),

and most annual monitoring was conducted during the fall period. The

long-term monitoring, fixed-plot approach used by MARINe was

established to support a reasonable sampling effort while providing

effective statistical power to detect changes over space and time. To

maximize spatial and temporal coverage, we included all data on

Silvetia cover from 2002-2020. The initial year was chosen based on the

period when protocols and the resolution of taxonomic identifications

were standardized across monitoring sites.
2.3 Climatology

For each Silvetiamonitoring site, daily mean and max statistics (3-

km horizontal resolution) for dewpoint depression (Dd) (°C) and wind

velocity (Ws) (km h-1) were generated using a numerical weather

prediction and atmospheric simulation system, the Weather Research

and Forecasting (WRF) model (Rolinski et al., 2016). Daily values for

Dd and Ws for each site were averaged between sampling events to

provide a synopsis of the environmental conditions prior to measuring

the percent cover of Silvetia. Dewpoint depression, the difference

between air temperature and dewpoint temperature, together with

near-surface wind gust time series, represents the drying process

characteristic of synoptically driven offshore Santa Ana winds. Refer

to Rolinski et al. (2016) and Skamarock et al. (2008) for detailed

descriptions of how the atmospheric data used in this study

were generated.
2.4 Statistical analysis

Data exploration of SAW patterns was carried out following the

protocol described by Zuur et al. (2010). Dewpoint depression (Dd)
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and Ws climatological data were visually inspected using QQ plots,

histograms, and a pair plot. Collinearity between Dd and Ws was

assessed using scatterplots. Data transformations were deemed

unnecessary, since the time series appeared approximately normally

distributed, and various transformations including square root, cubic

root, and logarithmic calculations did not significantly improve the

linearity of the time series (Akaike, 1974). Data examination revealed

nonlinear temporal and covariate effects.

To test for relationships between Silvetia cover and SAW time

series data, trends in Silvetia populations were modeled as a function

of the covariates using generalized additive mixed-effects models

(GAMM) via restricted maximum likelihood (REML) in the mgcv

package (Wood, 2011) using R Ver. 4.2.2 (R Core Team, 2022). Fixed

covariates included Season_number (ordered integer with 36 levels),

Region [categorical with three levels, central California (CEN),

southern California (SOU), and the Channel Islands (CHA)], and a

summary statistic (mean or maximum) for SAW time series data (Dd

and Ws). Site (30 levels) was used as a random intercept to

incorporate dependency among observations from the same site. A

smoother for the Site spatial coordinates (Xkm, Ykm) was included to

account for spatial dependency among sites.

We used interactions to test for regional differences in SAW time

series data (e.g., meanDd� Region) and time (i.e., Season_number �
Region) resulting in four full models: 1) interactions of Region with

maxW2, maxDd, and Season_number, 2) interactions of Region with

meanWs, meanDd, and Season_number, 3) interactions of Region

with maxWs, meanDd, and Season_number, and 4) interactions of

Region with meanWs, maxDd, and Season_number. We compared

multiple reduced models based on the full models to test whether to

include the interactions and both covariates (Ws and Dd)

(Supplementary Table S2). The Akaike Information Criterion (AIC)

and Bayesian Information Criterion (BIC) were used to identify the

preferred model (i.e., lowest AIC and BIC) (Akaike, 1974; Schwarz,

1978). A beta distribution with a logistic link was used to ensure that

the fitted values ranged from 0 to 1 for the response variable, mean

percent cover of Silvetia [Equation (1)]. To account for the extremes 0

and 1, response variable data were transformed using (y · (n − 1) + 0.5)/n

where n is the sample size (Smithson and Verkuilen, 2006).

Using GAMM, we analyzed the following equation:

Coverij   ∼  Beta(pij)

E(Coverij  ) =   pij

Var(Cover)ij =   pij  �(1 − pij)=(1 + q)

logit(pij) = Intercept + Regionij + s Sampleseasonnumber
ij� Regionij

� �

+ s Ddstatistic � Regionij
� �

+ s Wsstatistic � Regionij
� �

+ s Xkm� Ykm) + Siteið

Sitei ∼ N(0,s 2
Site) (1)

where Coverij is the jth observation in site i, and i = 1, …, 30, q
is an unknown parameter controlling the variance, and Siteiis the
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random intercept, which is assumed to be normally distributed with

mean 0 and variance s 2.

To account for temporal dependency observed in the time-

series data, we incorporated an autoregressive component [AR(1)

correlation structure] into the model in which the random intercept

w_it at time t and location i is similar to w_i, t-1 at time t-1 at

location i. The AR(1) generates a latent variable that is spatially

correlated, slowly changes over time, and captures any spatial and

temporal patterns that are not modeled by the covariates. This

latent variable ensures that the model residuals are independent and

imposes a dependency structure on the response variable,

Silvetia cover.

Underlying model assumptions including independence and

absence of residual patterns were verified by plotting residuals

versus fitted values and each covariate in the model. Temporal

autocorrelation was assessed via partial autocorrelation function

(PACF) plots of the model residuals. We then simulated 10,000

datasets from the preferred GAMM and calculated a frequency table

for each simulated dataset. An average frequency table was

generated from the simulated data and compared with the

frequency table of the observed data.

Nonlinear trends and linear fits for Silvetia cover were

generated at the region and site levels along with the regional

relationship between Silvetia cover and maxDd using JMP Ver.

14.2.0 (SAS Institute Inc., 2018).
3 Results

3.1 Trends

Cover of the rockweed Silvetia compressa was highly variable in

space and time across California. At the regional level, central

California (CEN) Silvetia cover was relatively stable over time with

slight declines until around 2009 and after 2015 (Figure 3). Channel
Frontiers in Ecology and Evolution 05
Islands (CHA) Silvetia cover declined precipitously until around

2012 followed by a period of stabilization. Similarly, southern

California (SOU) Silvetia cover followed a relatively steep

negative trajectory but failed to recover.

Most sites (22 of 30) exhibited significant declines in rockweed

cover over the study period. Declines were most prevalent south of

Point Conception on the Channel Islands and the southern

California mainland (Figure 4). The SOU sites exhibited high

incidence (90% of sites) of decline, and nearly all declines

exceeded 50% cover followed by minimal or no recovery. Within

the CHA region, Silvetia cover decreased at all but five sites

(ANSFC, SBLC, SBSLR, SRFR, SRNWT) with similar trajectories.

CEN rockweed populations appeared most resilient, with one site

(CAY) increasing in cover significantly during the study period and

two sites (BOA, PSN) declining. The remaining sites across the

three regions had relatively stable populations of rockweed over

time (CEN 25%, CHA 25%, SOU 10%).

Most Silvetia declines occurred steadily after 2005 until

approximately 2015 when Silvetia cover either slightly increased

or continued declining for the remainder of the study period

(Figures 3, 4). Sites that had stable or increasing Silvetia

populations generally peaked in cover near the beginning of the

study period and/or after 2015. Sites that precipitously declined

more than 30% failed to recover.
3.2 Model results

The model (M17) with the lowest AIC and BIC included a

smoother for time (i.e., Season_number) and an interaction with

Region and a smoother for the covariate maxDd (Table 1;

Supplementary Table S2). Based on DAIC, M9, M11 and M13

were considered comparable to M17 since AIC values for each

were< 5 points apart. However, M9, M11 and M13 each were more

complex than M17. Therefore, we identified M17 as the preferred
FIGURE 3

Mean annual percent cover data for Silvetia by region. Shade lines represent approximate linear fit. CEN, Central California region (P = 0.0982); CHA,
Channel Islands region (P < 0.0001); SOU, Southern California region (P < 0.0001).
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model. Based on DBIC, only one other model (M18) was

comparable to the preferred model (M17).

Residuals from M17 met regression assumptions including

normality and homogeneity of variance, and no clear patterns were

seen when the residuals were plotted against covariates included and

not included in the model. The AR(1) correlation structure markedly

reduced the autocorrelation of the model residuals for M17

(Supplementary Figure S1). Residuals for the spatial coordinates

represented variation in Silvetia cover not captured by covariates

modeled with the GAMM (Supplementary Figure S2). Slightly higher

residuals were observed in the middle latitudes corresponding with the
Frontiers in Ecology and Evolution 06
CHA region. Lower residuals occurred in the southern latitudes near

the lower portion of the SOU region. Low variability in the residuals

was observed in the remaining study areas.
3.3 Dewpoint depression

Maximum dewpoint depression (maxDd) was negatively correlated

with Silvetia cover in all three regions (Table 1; Figures 5, 6). The

relationship between Silvetia cover and maxDd appeared nonlinear for

the three regions (Figures 5, 6). Model selection indicated that an
TABLE 1 Silvetia cover GAMM (beta response distribution with logit link function) summary.

Component Term Estimate Std Error t-value p-value

A. parametric coefficients (Intercept) -0.227 1.475 -0.154 0.8780

georegionCHA -1.504 1.379 -1.090 0.2759

georegionSOU 2.092 1.908 1.096 0.2733

Component Term edf Ref. df F-value p-value

B. smooth terms s(event):georegionCEN 1.944 2.459 1.076 0.2786

s(event):georegionCHA 3.355 4.271 26.697 0.0000 ***

s(event):georegionSOU 5.375 6.651 12.220 0.0000 ***

s(maxDD) 3.450 4.397 18.996 0.0000 ***

te(Xkm.std,Ykm.std) 3.000 3.000 1.809 0.1439

s(site_code) 22.412 25.000 12.131 0.0000 ***
frontiersin
Signif. codes: 0 <= '***'.
Adjusted R-squared: 0.739, Deviance explained 0.835.
fREML : -57.440, Scale est: 1.000, N: 841.
FIGURE 4

Mean annual percent cover data for Silvetia at each of the thirty sites arranged by latitude. Site codes are defined in Table 1. Asterisk denotes
significance of the linear regression slope (P = <0.05). CEN, Central California region; CHA, Channel Islands region; SOU, Southern California region.
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interaction between maxDd and Region was not necessary since AIC

for the full models was not substantially lower compared with the

models excluding the interaction.

Simulating the preferred model (M17) 10,000 times, we found

strong correspondence between the actual data and our modeled data

(Figure 5). Silvetia cover across all three regions declined steadily as

maxDdincreased according to the actual data and the modeled fit. At

the regional level, Silvetia cover in CEN and SOU responded similarly

to increasing maxDdby decreasing precipitously until approximately

8°C then stabilizing (Figure 6). At the CHA region, Silvetia cover

remained relatively stable until around 20°C before declining as

maxDdincreased (Figure 6).
3.4 Wind

Mean near-surface wind gust (meanWs) and max near-surface

wind gust (maxWs) were not significantly correlated with Silvetia

cover in the three regions (Supplementary Table S2). Collinearity

between Dd and Ws was low (Supplementary Figure S3). Model

selection indicated that neither meanWs nor maxWs should be

included in the preferred model based on AIC and BIC

(Supplementary Table S2).
4 Discussion

We found large declines of the intertidal foundation species,

Silvetia putatively driven by harsh, desiccating wind events across
Frontiers in Ecology and Evolution 07
most of its geographical range, particularly the California Channel

Islands and southern California mainland (Figures 3, 4). This

pattern mirrors worldwide declines and range shifts in rockweeds

and other fucoids (Bokn and Lein, 1978; Kautsky et al., 1986; Vogt

and Schramm, 1991; Munda, 1993; Sagarin et al., 1999; Thompson

et al., 2002; Lotze and Milewski, 2004; Keser et al., 2005; Torn et al.,

2006; Airoldi and Beck, 2007; Ugarte et al., 2009; Lamela-Silvarrey

et al., 2012; Martıńez et al., 2012; Nicastro et al., 2013; Riera et al.,

2015; Buonomo et al., 2018; Whitaker et al., 2023 and references

therein). Spatio-temporal modeling revealed a pervasive trend of

declining abundance for Silvetia populations at the Channel Islands

and the California mainland south of Point Conception (PC), an

important biogeographic break. Sites north of PC were

characterized by a heterogeneous combination of trends, most of

which indicated that Silvetia was relatively stable or increasing in

cover during the study period.

Although declining rockweed populations were most prevalent

in the southern California region, trends varied by site, and all three

regions had examples of declining and stable sites (Figure 4). The

possible causes of this complexity may, like the between-region

patterns, reflect variability in meteorological and oceanographic

climate, but on different spatial scales. The central California region

is influenced primarily by the cool California current, while the

California Current and the opposing, warmer Southern California

Countercurrent (Hickey, 1979) combine to form a more complex

seascape in the SCB (the region below PC including the islands). As

a result, SST along the southern California mainland and the

southern islands is consistently warmer, and onshore winds and

fog are generally lighter relative to central California and the

northwestern islands, San Miguel, and Santa Rosa Islands (Dailey

et al., 1993). The islands in between occupy a transitional zone

where these currents mix and SST can be highly variable (Dailey

et al., 1993).

At the site level, variations in substratum aspect, slope (Harley,

2008) and extent (Gedan et al., 2011) interact with atmospheric and

oceanographic variables to affect the conditions experienced by

intertidal organisms including aerial temperature (Helmuth and

Hofmann, 2001), wave energy (Harley and Helmuth, 2003), solar

radiation (Schoch and Dethier, 1996), wind velocity, relative

humidity and fog (Helmuth and Hofmann, 2001; Helmuth et al.,

2006). A high degree of spatial heterogeneity exists across the

network of sites in this study given its broad spatial scale, which

likely corresponds to significant site-level variation in abiotic

conditions (Choi et al., 2019). As a result, the mosaic of trends

for Silvetia likely reflects environmental heterogeneity at both the

local and regional levels, thereby influencing the population

dynamics of Silvetia.

During the study period, sea surface temperatures (SST) rose

more rapidly in southern California than in most other regions of

the world (Hobday and Pecl, 2014). Anomalously high SSTs

occurred in the northeastern Pacific Ocean during El Niño events

in 2009-10 and 2014-16. The latter event, one of the strongest El

Niño’s in recent history (Huang et al., 2016), resulted in

exceptionally high SST anomalies in part due to the concurrence

of a widespread marine heat wave in the North Pacific (Jacox et al.,

2016). In addition, the average annual air temperature in southern
FIGURE 5

Effect of max dewpoint depression (maxDd) on Silvetia cover at an
average site and year plotted on the original scale. The blue dashed
line represents a smoothed fit using the actual data. The red line
represents a smoothed fit using the model (predicted data). The
grey areas indicate the 95% confidence interval for the actual data
and the modeled fit. Points denote measured data.
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California steadily increased from 1950 to 2010 (Gonzalez, 2020).

Macroalgae including Silvetia can be stressed by oceanographic

parameters including seawater temperature (Breeman, 1988;

Wernberg et al., 2011; Hurd et al., 2014; Graham et al., 2018) and

wave energy (Vadas et al., 1990), as well as by atmospheric

conditions such as high temperatures (Bell, 1995) and high

irradiance (Henley, 1992). These changes in regional atmospheric

and oceanographic conditions are consistent with the general

latitudinal pattern of trends we identified in Silvetia cover and

suggest that declines in southern California may be linked to overall

warming conditions both in the coastal ocean and on land.

Downsloping, offshore wind is a natural occurrence in western

North America due to gradients between high-pressure systems in

the inland Great Basin and low pressure over the Pacific Ocean. As

low-pressure systems offshore of California pull air masses from

inland desert areas, winds more than 25 m s−1 (56 mi h−1) (Keeley

et al., 2004; Cao and Fovell, 2013) are generated through canyons

and mountain passes compressing, drying, and heating the air in the

process. Below PC, these conditions are called Santa Ana winds

(SAWs), and recent studies suggest that downslope wind systems in

central and northern California coincide with SAWs (Gershunov

et al., 2021; Guirguis et al., 2023). SAWs occur annually between

September and June (Cao and Fovell, 2016). However, SAW

frequency and intensity are greatest during the winter months of

December and January, respectively, (Guzman-Morales et al., 2016)

a time of year coincident with periods of day-time aerial exposure

for intertidal ecosystems in southern California. More than any

other environmental variable, the seasonal pattern of diurnal

emersion has been attributed to changes in the abundances of

intertidal algae in the Southern California Bight (SCB) (Emerson

and Zedler, 1978; Gunnill, 1980; Seapy and Littler, 1982; Littler

et al., 1991).

The Santa Ana Wildfire Index (SAWTI), a model generated

from the climatological data used in this study, indicates that the
Frontiers in Ecology and Evolution 08
monthly and seasonal SAW day counts were variable but mostly

remained near average or below average from 1981 to the early

2000s (see Figure 17 in Rolinski et al., 2019). After 2006, the number

of SAW days per season was significantly elevated for the remainder

of the study period through 2016 (Rolinski et al., 2019). This trend

corresponds with negative changes in Silvetia cover observed at

many study sites in the two regions, Channel Islands (CHA) and

southern California mainland (SOU) which exhibited gradual

declines from the beginning of the study period through around

2015 with the most precipitous losses in percent cover occurring

after 2005 (Figures 3, 4).

Despite rockweeds being very desiccation-resistant for a large

frondose alga (Schonbeck and Norton, 1978), extreme conditions

during warm and dry periods, especially with strong, dry winds, can

be detrimental. During SAW events occurring during low tide

periods, Silvetia is often observed exhibiting severe drying out

with fronds turning crispy. Desiccation stress is known to affect

various physiological processes and conditions in rockweeds and

other fucoids, including oxidative damage (Martins et al., 2021),

reduced net photosynthesis, survival, and growth (Dethier et al.,

2005), increased susceptibility to loss from wave action (Haring

et al., 2002), and limited recruitment success (Dudgeon and

Petraitis, 2001). Over time, these effects are likely to cause

population declines, as observed at our monitoring sites.

SAW activity has been linked with environmental cycles

including the Atlantic multi-decadal oscillation (AMO), the PDO,

and the ENSO, with elevated periods of SAW activity typically

coinciding with cool phases of the PDO (Rolinski et al., 2019) and

ENSO (Raphael, 2003; Rolinski et al., 2019), and the warm phase of

the AMO (Li et al., 2016). Although Guzman-Morales et al. (2016)

found seasonal SAW intensity to increase during the warm phases of

the PDO and ENSO and vice versa. This information is critical for

projecting SAW activity. However, it remains unclear how SAW

events will change under anthropogenic climate warming conditions.
FIGURE 6

Silvetia percent cover plotted on scale of maximum dewpoint depression (°C). Regression slopes are all significant (P = 0). CEN, Central California;
CHA, Channel Islands; SOU, Southern California.
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Projections of SAW activity due to climate change remain mixed

due, in part, to differences in approaches used to distinguish and

downscale the events (e.g., Miller and Schlegel, 2006; Hughes et al.,

2011; Abatzoglou et al., 2013; Guzman-Morales et al., 2016). Some

studies indicate a reduction of SAW events as anthropogenic

warming increases due to a weakening in the temperature gradient

between the ocean and the Great Basin (Hughes et al., 2009; Hughes

et al., 2011; Guzman Morales, 2018). Others suggest that

anthropogenic warming will increase the frequency of strong

SAWs in late fall (Yue et al., 2014), or that more SAW days may

occur at the beginning (September) and end (June) of the SAW

season (Rolinski et al., 2019). Clearly, more research is needed to

increase the accuracy of projecting SAW variability as climate

warms. Based on patterns discussed here, however, any increases

in the frequency or intensity of SAWs are likely to lead to large

declines and possible extirpation of Silvetia, as well as the important

ecological services the species provides.

Our results demonstrate that Silvetia, like many other fucoids

throughout the world (Sagarin et al., 1999; Lamela-Silvarrey et al.,

2012; Martıńez et al., 2012; Nicastro et al., 2013; Riera et al., 2015),

has declined significantly in southern California and the Channel

Islands. This trend corresponds with elevated dewpoint depression,

an indicator of SAW activity, which, in turn, may represent the

phases of environmental cycles such as PDO, ENSO, and AMO that

the data in this study were collected or anthropogenic forcing on

SAW activity. Spatial and temporal patterns in rockweed

populations, however, are complex, varying between sites as well

as across regions. The network of long-term monitoring sites

established by the Multi Agency Rocky Intertidal Monitoring

Network (MARINe) that provided the data for this study is an

ideal milieu for a detailed comparative and experimental program

to elucidate the causes of rockweed declines. This information,

along with more accurate future projections of SAW activity under

climate change, are critical for informing conservation, and

potentially restoration, of this important foundation species and

the rocky intertidal biodiversity it supports.
5 Implications

Population dynamics are influenced by local- to regional-scale

variability in environmental conditions across a broad range of

temporal scales (Oro, 2013; Dallas and Kramer, 2022). Variations

in environmental conditions arise from extensive habitat

heterogeneity common in ecosystems (Tilman and Kareiva, 1997),

including the rocky intertidal, where climatic variables range widely

across regions to individual plots (Helmuth and Hofmann, 2001).

Extreme variability in atmospheric factors such as air temperature,

humidity, and wind, results from both continental scale differences in

topographical landscapes composed of mountains, valleys, and plains

(Keeley et al., 2004; Cao and Fovell, 2013), and microtopographical

differences in substratum orientation, aspect, hue, and rugosity

(Helmuth and Hofmann, 2001; Helmuth et al., 2006; Harley, 2008;

Choi et al., 2019). Similarly, variance in oceanographic conditions

such as temperature, pH, and wave energy, occurs across the large

spatial scales of regional ocean currents and prominent land features
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such as headlands, to local offshore reefs and kelp forests (Harley and

Helmuth, 2003). Temporally, rocky intertidal ecosystems vary as

atmospheric and oceanographic conditions change on short- and

long-term timescales due to tides, local weather patterns, season, and

interannual and decadal climatological cycles such as the El Niño

Southern Oscillation and the Pacific Decadal Oscillation (Wootton

et al., 1996; Thompson et al., 2002; Menge et al., 2008). This

variability presents complex challenges for ecologists testing broad-

scale ecological hypotheses and forecasting population dynamics.

To account for high levels of spatial and temporal variability in

environmental conditions in our study, we used long-term

observational data at multiple spatial scales to test the simple

hypothesis that canopy cover of the foundational rockweed

Silvetia is reduced by dry air events associated with offshore Santa

Ana winds. We found extensive spatial and temporal variability in

Silvetia cover driven by a combination of large- and small-scale

processes. Rockweed cover in all three regions of our study was

significantly and often dramatically reduced by dry air events

associated with Santa Ana winds, but the response of rockweed

varied markedly by region. Rockweed in the southern and central

study regions responded very differently depending on site, whereas

the rockweed in the northern region was more stable and

homogeneous across sites. Including ‘site’ as a random effect

increased the deviance explained by approximately 10%,

suggesting that local processes influence the dynamics of Silvetia

cover, reducing or overriding the effects of regional scale factors

including Santa Anas. Our results underscore the need for

continued long-term monitoring of ecosystems across regions to

capture both local and large-scale variation and effectively inform

the conservation and restoration of important foundation species.
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