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Introduction: Themites belonging to the genus Tropilaelaps are ectoparasites of

honey bees, primarily infesting the larval and pupal stages. Originating from

subtropical regions, these mites can cause brood malformation, bee mortality,

and subsequent decline or absconding of colonies.

Material and methods: During field surveys conducted in Nepal, South Korea,

and Uzbekistan to investigate honey bee pests, several populations of T.

mercedesae were collected. This is the first record of T. mercedesae from

Uzbekistan. The morphological characteristics of the collected populations

were analyzed, and their phylogenetic relationship with other Asian

populations was examined.

Results and discussion: The molecular analysis of cytochrome oxidase I gene

revealed high similarity between Uzbekistan and Pakistan populations, signaling

the potential invasion of subtropical honey bee parasites into the Central Asian

beekeeping sectors. Phylogenetic analysis indicated the presence of four distinct

lineages within the mainland-Indonesian populations of T. mercedesae. Notably,

an evolutionary divergence was observed between the haplotypes from Sri Lanka

and the Philippines compared to the remaining mainland Asian and Indonesian

haplotypes, suggesting the possible existence of subspecies or separate species

in these isolated locations. To gain a deeper understanding of this phenomenon,

it is essential to continue monitoring the spread of this significant honey bee pest

and conduct comprehensive morphological and molecular analyses of samples

collected from these specific localities.
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Introduction

Honey bees are the most important pollinator which have

enormous influence on crop production and with enabling

reproduction of the flowering plants, they are also important in

the diversity of wild flowering plat (Klein et al., 2007). The global

decline in the population of honey bees and other pollinators raised

concern about the sustainability of food production in future and

study the fatal factors is necessary to protect them (Potts et al.,

2010). Tropilaelaps is a genus of ectoparasitic mites which are native

to Asia. They are primarily parasites of wild honey bees such as A.

dorsata, A. laboriosa and A. breviligula (Delfinado-Baker et al.,

1985) however among Tropilaelaps species, T. mercedesae and T.

clareae can infest managed honey bee colonies of A. mellifera

(Kumar et al., 1993). T. mercedesae was initially described from

Hanoi, Vietnam, where it was discovered within a colony of A.

mellifera (Hymenoptera: Apidae) (Anderson and Morgan, 2007).

Subsequently, this species expanded its distribution and is now

recorded in South and Southeast Asia. The threat posed by these

mites is amplified by the Western honey bee’s lack of behavioral

defenses compared to the Asian Eastern honey bee, A. cerana,

making them particularly vulnerable to parasitic infestations

(Wongsiri et al., 1989; Delfinado-Baker, 1982). A survey

conducted in 2005 in South Korea revealed that Varroa mite

infestations were significantly higher than Tropilaelaps mite

infestations (91% versus 25.7% infestation rate) (Lee et al., 2005),

while recent studies indicate an increasing occurrence of

Tropilaelaps mites in honey bees (Jung et al., 2014; Buawangpong

et al., 2015; Truong et al., 2022). Additionally, dual parasitism by

Varroa mites and Tropilaelaps mites can lead to more severe

damage to honey bee colonies (Truong et al., 2022).

Likewise, V. destructor, these mites can only reproduce in the

honey bee brood cells and exclusively feed on immature stages of

honey bees due to their specific mouthpart structure (Anderson and

Roberts, 2013). However, other characteristics such as having a

smaller size, shorter phoretic phase, rapid locomotion and fast

reproductive rate made Tropilaelaps mites an emerging threat for

beekeeping industry (Anderson and Roberts, 2013; Pettis et al.,

2013; Buawangpong et al., 2015; de Guzman et al., 2017).

Furthermore, these ectoparasitic mites are also able to play as a

vector of honey bee viral diseases and their potential in transferring

Deformed Wing Virus (DWV) has been demonstrated (Forsgren

et al., 2009; Wu et al., 2017). The presence of Tropilaelaps mites in

honey bee colonies during the early developmental stage could

potentially increase viral proliferation within the colony. This is due

to the longer exposure to the virus and the increased susceptibility

to viral infections caused by stress (Nazzi and Pennacchio, 2018).

Recent studies by de Guzman et al. (2020) have shown that bee

pupae infested with either Varroa or Tropilaelaps mites had higher

levels of DWV variants compared to uninfected pupae (de Guzman

et al., 2020). Additionally, Tropilaelaps mite feeding can trigger a

cellular immune response in worker broods, which may be a result

of mite-induced injuries, viral infections, or a combination of both

factors (Khongphinitbunjong et al., 2015). Studying the genetic

variation of the populations of Tropilaelaps species is necessary to

understand their intraspecific genetic diversity, population
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structure, and evolutionary history. Furthermore, this information

is crucial for accurately identifying different species through

barcode gap analysis of the molecular markers. In addition, these

studies not only provide invaluable information about the level of

genetic divergence among the populations of this species, showing

the level of the species plasticity to the adverse biotic and abiotic

environmental factors, but it also provides valuable information on

the movement and spread of alien species (Arca et al., 2015;

Mohamadzade Namin et al., 2019). By analyzing the genetic

markers of different mite populations, researchers can determine

their origins, routes of transmission and patterns of dispersal. This

can help in understanding the dynamics of mite infestations,

predicting their potential spread to new areas, and designing

effective management strategies to control their expansion

(Mohamadzade Namin et al., 2019). While Tropilaelaps mites

currently have their primary distribution in Asia, their potential

to spread to other continents, primarily through the trade of honey

bees and bee products, raises significant concerns. This pattern of

potential dissemination mirrors the global spread of honey bee

pests, such as Varroa destructor and Vairimorpha ceranae, which

have often been unintentionally transported across borders due to

the international exchange of honey bees and their related products

(Higes et al., 2010; Rosenkranz et al., 2010). As a result, the risk of

inadvertent introduction to new regions has become a pressing

issue, given the extensive global trade and travel networks.

Our study delves into the genetic variation and relationships

among T. mercedesae populations in Asia. To achieve this, we have

collected samples from South Korea, conducted two expeditions to

Nepal and Uzbekistan, and integrated previously archived

cytochrome oxidase I sequences from GenBank. Additionally, our

research aims to uncover the potential route of the recent invasion

of this pest into Uzbekistan, shedding light on how it might have

been introduced to this region. Furthermore, we aim to deepen our

understanding of the phylogenetic relationships among the various

populations of this species in Asia. This research is essential not

only for academic purposes but also for practical implications in the

context of global beekeeping and pollinator health. By

understanding the genetic diversity and spread of Tropilaelaps

mites, we can develop more effective strategies for their

management and containment, as well as contribute to the

broader understanding of the threat these mites pose to the

health of beekeeping and pollinator populations on a global scale.
Materials and methods

Sample collection and
morphological examination

The specimens of T. mercedesae were collected from the body of

honey bee workers in infested A. mellifera colonies in Nepal (one

locality), South Korea (four localities) and Uzbekistan (one locality)

(Table 1). Specimens were cleared in lactic acid solution and

mounted in Hoyer’s medium (Walter and Krantz, 2009).

Photomicrographs were captured using a DP22 Olympus camera

(Japan). The anatomical structures follow Evans and Till (1979). All
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examined specimens deposited at the acarology collection of

Andong National University (South Korea). The rest of samples

were stored in absolute ethanol at -20˚C prior to DNA isolation.

Although several samples from one hive were available, only a single

sample from each infested colony was used for molecular analysis.

In total forty-eight specimens of T. mercedesae were subjected to

molecular analysis.
DNA extraction, primer, PCR,
and sequencing

Total DNA was extracted using DNeasy Blood and Tissue kit

(Qiagen, Seoul, Korea). A single specimen was crashed using

sterilized pestle and used for DNA extraction. The mitochondrial

COI gene was analyzed for species identification and the

construction of phylogenetic evolution among T. mercedesae

populations in Asia. COI has gained widespread use in

evolutionary studies owing to its maternal inheritance, ease of

amplification (Gupta et al., 2015), and, notably, the abundance of

information available in molecular databases. This wealth of data

facilitates comprehensive evolutionary analyses and enables the

tracing of species movements across their distributional ranges

(Mohamadzade Namin et al., 2019). The mitochondrial COI gene

was amplified by the Polymerase Chain Reaction (PCR) using

AccuPower PCR PreMix (Bioneer, Daejeon, Korea) with the

primer set TCF1 (5’-CTATCCTCAATTATTGAAATAGGAAC-

3’) and a TCR2 (5’-TAGCGGCTGTGAAATAGGCTCG-3’)

(Anderson and Morgan, 2007). Amplifications were conducted

with 5 min initial denaturation at 95°C followed by 35 cycles of

30 s denaturation at 95°C, 30 s annealing at 50°C, 60 s extension at

72°C, and a final extension for 5 min at 72°C. Sequencing was

performed commercially by Macrogen (Deajan, South Korea). All

sequences were generated in both directions. The COI sequence

data obtained in this study were deposited in GenBank databases

under accessions OR165740- OR165787.
Phylogenetic analysis and
network construction

Sequence reads were assembled using the Bioedit v7.0.5.2 (Hall,

1999). Sixty-four previously-reported COI sequences of T.

mercedesae were retrieved from NCBI database (September 2022)
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and incorporated in the analysis (Appendix 1). The sequences were

aligned, using Clustal X version 1.8 (Thompson et al., 1997). The

number of haplotypes was defined using DNAsp v5 (Librado and

Rozas, 2009) and the pairwise genetic divergence among the

haplotypes were estimated in MEGA7. The maximum likelihood

phylogenetic relationship among haplotypes were conducted in

MEGA7 (Huelsenbeck and Ronquist, 2001), using the Tamura-

Nei mutation model (TN93+G+I). The jModelTest (version 2.1.3)

program was used to select the best nucleotide substitution model

using the default parameters (Darriba et al., 2012). Tropilaelaps

clareae (EF025464) was used as an outgroup to root the tree. A

haplotype network was constructed using median-joining method

(Bandelt et al., 1999) in Network software version 10 to infer the

relationships among haplotypes and their geographical distribution.
Result

Sequence analysis and pairwise
genetic divergence

COI sequences were generated for 48 samples of T. mercedesae

collected from Nepal, South Korea and Uzbekistan. The generated

sequences had a consistent length of 538 base pairs. No insertions or

deletions were identified in the examined sequences. Notably,

BLAST comparisons between our sequence dataset and T.

mercedesae sequence entries in the NCBI GenBank database

revealed a high degree of similarity, ranging from 99.81% to

100%. Four distinct haplotypes were retrieved from analyzed

sequences. The genetic divergence observed between the

generated sequences of T. mercedesae and other congeneric

species revealed significant differences. Specifically, the divergence

was within the range of 11.7-11.9 when compared to T. thai, 11.9-

12.27 in comparison with T. clareae, and 14.5–14.68 when

contrasted with T. koenigerum.

Among Korean populations, three distinct haplotypes were

found. A single haplotype (H19) was found from all populations

(Andong, Daegu-A, Daegu-B, Jeju) and all three Korean haplotypes

were found in Daegu-B population, although the H19 were also

dominant in this population (Table 1). Only one haplotype was

retrieved from the analyzed sequences from Nepal and Uzbekistan

(Table 1). The genetic distance among analyzed sequences were

varied from 0 to 0.37.In addition, we compared the sequences

generated in this research with Sixty-four previously-reported COI
TABLE 1 Sampling information and the GenBank accession numbers and haplotype information of each population of T. mercedesae.

Locality Coordination No. of samples Accession NO. Number of haplotypes

Korea – Daegu-A (KO-A1 – KO-A10) 35°55ʹN 128°30ʹE 10 OR165745-OR165754 1 (H19)

Koera – Daegu-B (KO-B1 – KO-B10) 35°56ʹN 128°26ʹE 10 OR165755-OR165764 3 (H19 [8], H32 [1], H39 [1])

Korea – Andong (KO-C1 – KO-C10) 36°32ʹN 128°48ʹE 10 OR165775-OR165784 1 (H19)

Korea – Jeju (KO-J1 – KO-J10) 33°29ʹN 126°33ʹE 10 OR165765-OR165774 1 (H19)

Uzbekistan – Tashkent (UZ-TC01 – UZ-TC03) 41°24ʹN 69°81ʹE 3 OR165785-OR165787 1 (H1)

Nepal – Kathmandu (MINE01, MINE03 - MINE06) 27°59ʹN 85°32ʹE 5 OR165740-OR165744 1 (H19)
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sequences of T. mercedesae available in the NCBI database. A total

of 112 COI sequences of T. mercedesae were analyzed, and 39

distinct haplotypes were retrieved from the analyzed sequences.

Fifteen haplotypes were identified from China while the number of

haplotypes from Indonesia was twelve. Three haplotypes were

recognized from South Korea and Vietnam and two haplotypes

form Thailand, Malaysia and Sri Lanka. Only one haplotype

retrieved from the studied sequences from the rest of countries

(India, Nepal, Pakistan, Papua, Philippines and Uzbekistan). The

highest genetic divergence was observed between the H21 from

Indonesia and H28 from Sri Lanka (0.074) (Figure 1; Appendix 2).

The within country genetic divergence varied between 0.002 – 0.017

among Chinese haplotypes and 0.002 – 0.022 among Indonesian

haplotypes. The highest genetic divergence in Korean and Thailand

was 0.004 while in Sri Lanka, Malasia and Vietnam it was 0.002,

0.002 and 0.007 respectively (Figure 1; Appendix 2).
Phylogenetic analysis and
network construction

Phylogenetic analysis was conducted to determine the

relationships among populations of T. mercedesae based on the

sequences obtained from samples collected in this study and the

previously reported sequences which are available in the databases.

The maximum likelihood phylogenetic tree demonstrated the

occurrence of two major clades in studied populations of T.
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mercedesae. The genetic divergence between these two clades varied

between 0.058 (between H27 from Sri Lanka and H21 from

Indonesia) and 0.074 (between H28 from Sri Lanka and H23 from

Malaysia). The Clade II included three haplotypes from Sri Lanka and

Philippines (Palawan), however, other haplotypes from all other

Asian countries are grouped in the Clade II of the phylogenetic

tree. Among haplotypes of the clade I, haplotypes from Malaysia

grouped in a well-supported Malay subclade (Bootstrap value [BV]

=91) while other haplotypes divided into three different subclades.

The Indonesian subclade (BV=50) included almost all haplotypes

from Indonesia, however, H2 which is shared between Indonesia and

Vietnam is grouped with other Asian mainland subclade. In this

subclade, haplotypes from Borneo grouped together in a well-

supported clade, while three haplotypes from Southern Indonesia

islands (Java, Bali, Lombok, Sumbawa, New Guinea) are closely

related to each other. Among the two haplotypes found in

Sumatra, one is closely related to the haplotypes from Belitung

(Figure 2). The mainland subclade (BV=74) included all haplotypes

from mainland Asia except Malay and Tibet subclades. Among

mainland subclade, H20 from India is distantly related with the

group of other mainland haplotypes. All haplotypes which are

recognized from Nepal, South Korea and Uzbekistan are also

located in the mainland subclade. Among 15 Chinese haplotypes,

H16 and H17 from Yunnan, are distantly related with the rest and

made another Tibet subclade (BV=52).

The haplotype network also shows a large genetic distance

between haplotypes from Sri Lanka and Palawan with the other
FIGURE 1

Median-joining haplotype network of the COI gene of the T. mercedesae. Each circle represents one haplotype. Small red dots represent median
vectors and the dashes on the connectors represent the number of substitutions. The number under each circle indicates the haplotype number.
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recognized haplotypes of T. mercedesae in Asia. H19 which is

reported from China, Nepal, South Korea, Laos and Vietnam is

located in the center of the star-shaped haplotype network of

mainland group and it is probably the main haplotype in East

Asia, while haplotype 20 from India connected other haplotype

groups to the mainland group of haplotypes (Figure 1).
Morphological variations and intraspecific
differences of T. mercedesae

Following specimens were morphologically examined: South

Korea: 6 females, Andong, beekeeping apiary of Andong National

University, 2020.IX.15. Nepal: 2 females, Chapagaon, 2019.IX.27; 2

females, Chapagaon, 2019.IX.25. Uzbekistan: 3 females, Tashkent,

Kirgiz, 2022.VIII.26. This is the first report of this species from

Central Asia, Uzbekistan.

Morphological Variation: Given the absence of distinctive

characteristics for distinguishing T. mercedesae from other

congeneric species within the genus Tropilaelaps, a comparative

analysis of specimens from Korea, Nepal, and Uzbekistan reveals

significant variations across several traits. Notably, we observed

variations in the degree of ventral shield sclerotization, with Korean

and Nepalese populations exhibiting a higher degree of sclerotization

compared to specimens from Uzbekistan. Moreover, the density of
Frontiers in Ecology and Evolution 05
opisthogastric setae in the studied samples from Korea and Nepal was

notably greater than in the Uzbekistani samples (see Figures 3A, C).

Additionally, Uzbekistani specimens displayed the presence of a small

ventral mucro, resembling a spin-like process, near the apex of the

cheliceral movable digit, a feature absent in Korean and Nepalese

specimens (see Figures 3B, D). These observed morphological

distinctions may be indicative of intraspecific variations occurring

in distinct geographical regions.
Discussion

In this study, we conducted an analysis of intraspecific genetic

divergence within populations of T. mercedesae. Our research

utilized sequences derived from samples collected in South Korea,

Nepal, and Uzbekistan, in addition to previously archived

sequences from various Asian countries available in GenBank. It’s

important to note that while the samples from Nepal and

Uzbekistan were obtained from single localities, those from South

Korea were gathered from four different areas. Surprisingly, despite

the geographical spread, samples from Daegu-A, Andong, and the

isolated Jeju population all shared a common H19 haplotype. In

contrast, the Daegu-B population displayed three distinct

haplotypes, including the unexpected presence of H32, previously

reported in Thailand, highlighting an intriguing genetic connection.
FIGURE 2

Maximum Likelihood phylogenetic tree of 538-bp part of COI sequences from 112 T. mercedesae sequences. The haplotypes and the localities in
which the haplotypes are collected are listed in the tree. The accession numbers for the analyzed sequences are provided in Appendix 1. *:
Haplotypes derived exclusively from sequences collected in this study; **: Haplotypes derived from sequences originating from both this study
and GenBank.
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All five samples from Nepal exhibited a singular haplotype, H19,

which is recognized as “Mainland Asia” according to Anderson and

Morgan (2007). This haplotype had previously been reported in

China, Laos, Thailand, and Vietnam, making our observation of this

haplotype in South Korea and Nepal noteworthy.

In the phylogenetic analysis, the relationship among Indonesian

haplotypes is complex, and the identification of a main haplotype has

proven challenging, likely due to the presence of isolated populations

on Indonesian islands that are separated by geographical barriers. Our

analysis suggests a common ancestry of Indonesian, Malay, and Tibet

haplotypes, all tracing back to haplotype H20 from India (Bangalore).

The distant relationship observed between Malay haplotypes and those

from the mainland can be attributed to geographical barriers such as

the Bilauktaung subrange and the Isthmus of Kra (Parnell, 2013). Our

study also revealed that haplotypes from the Philippines and Sri Lanka
Frontiers in Ecology and Evolution 06
are distinctly related to other Asian haplotypes. Although they fall into

clade II of the phylogenetic tree, significant genetic divergence was

observed between Sri Lankan haplotypes and a single Palawan

haplotype (H26). This divergence suggests the potential for these

mite populations to be classified as subspecies or even separate

species, depending on the level of morphological differences in

key characteristics.

In our investigation of the phylogenetic relationships among T.

mercedesae populations in Asia, we utilized the COI gene, a widely

employed mitochondrial marker with inherent advantages,

including maternal inheritance and ease of amplification (Gupta

et al., 2015). While COI has demonstrated its value in deciphering

evolutionary relationships, it does come with the potential

oversimplification of the intricate evolutionary history of T.

mercedesae, particularly when considering a sequence length of
FIGURE 3

Tropilaelaps mercedesae female: ventral region of Idiosoma (showing different shields) and Chelicerae. (A, B) Specimen from Uzbekistan; (C, D)
Specimen from Republic of Korea. The arrow indicates the spin-like process on cheliceral movable digit.
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approximately 500bp. To address these challenges and enhance the

depth of our analysis, forthcoming studies should consider

integrating both nuclear and mitochondrial genes (Fisher-Reid

and Wiens, 2011) to trace the phylogenetic evolution of

T. mercedesae.

The examination of detailed morphological characteristics in

collected samples of T. mercedesae from South Korea, Nepal, and

Uzbekistan has unveiled notable variations within their populations.

Despite geographical divergence and barriers, samples from South

Korea and Nepal exhibit similarities, whereas distinct morphological

differences emerge when comparing Uzbekistani specimens with

those from Korea and Nepal. Understanding these intraspecific

morphological variations is pivotal for accurate species

identification. Regrettably, the initial description of T. mercedesae

by Anderson and Morgan (2007) is concise and lacks crucial details,

such as the chaetotaxy of the legs, necessary for morphologically

based identification. Consequently, the provided information,

including both description and illustrations, proves inadequate for

precise and consistent species identification. A more comprehensive

and detailed morphological study of diverse T. mercedesae

populations is essential. The species is closely related to the type

species of the genus, T. clareae Delfinado and Baker, 1961. However,

due to the absence of distinctive key characters, differentiation

between these two species is impossible without knowledge of the

locality and host bee of the collected sample, as highlighted by

Anderson and Roberts (2013). This underscores the urgent need for

a comprehensive revision to establish a robust framework for accurate

identification and classification. Such a revision should encompass a

thorough examination of morphological traits, including those

previously overlooked, to provide a more nuanced understanding of

the intricate variations within T. mercedesae populations.

Furthermore, this study also serves as the first documented

presence of T. mercedesae in Uzbekistan. The samples from

Uzbekistan shared a single haplotype with Pakistan, indicating

this haplotype’s prevalence in Central Asia. Given the expanding

global climate conditions and the potential for Tropilaelaps mites

to spread, early warning systems and surveillance programs are

vital to detect and monitor infestations (Pettis et al., 2013; Cont

et al., 2021). Such efforts aim to enable timely interventions and

control measures to protect honey bee populations. This

expansion could extend beyond Asia and pose substantial

threats to the apiculture industry in Europe and North America.

Therefore, vigilance and preventive measures are essential.

Collaborative efforts involving research institutions, beekeeping

associations, and regulatory bodies are required to develop

effective strategies for mitigating this threat and safeguarding

honey bee populations worldwide. Raising awareness among

beekeepers and promoting best hive management practices are

crucial steps in this endeavor (Chantawannakul et al., 2018).

Addressing the challenges posed by T. mercedesae necessitates a

global, coordinated approach that combines knowledge, resources,

and cooperative action.
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