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Introduction: High-throughput sequencing (HTS) provides an efficient and cost-

effective way to generate large amounts of sequence data, providing a very

powerful tool to analyze biodiversity of soil organisms. However, marker-based

methods and the resulting datasets come with a range of challenges and disputes,

including incomplete reference databases, controversial sequence similarity

thresholds for delimitating taxa, and downstream compositional data analysis.

Methods:Here, we use HTS data from a soil nematode biodiversity experiment to

explore standardized HTS data processing procedures. We compared the

taxonomic assignment performance of two main rDNA reference databases

(SILVA and PR2). We tested whether the same ecological patterns are detected

with Amplicon Sequence Variants (ASV; 100% similarity) versus classical

Operational Taxonomic Units (OTU; 97% similarity). Further, we tested how

different HTS data normalization methods affect the recovery of beta diversity

patterns and the identification of differentially abundant taxa.

Results: At this time, the SILVA 138 eukaryotic database performed better than the

PR2 4.12 database, assigning more reads to family level and providing higher

phylogenetic resolution. ASV- and OTU-based alpha and beta diversity of

nematodes correlated closely, indicating that OTU-based studies represent

useful reference points. For downstream data analyses, our results indicate that

loss of data during subsampling under rarefaction-based methods might reduce

the sensitivity of the method, e.g. underestimate the differences between
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nematode communities under different treatments, while the clr-transformation-

based methods may overestimate effects. The Analysis of Compositions of

Microbiome with Bias Correction approach (ANCOM-BC) retains all data and

accounts for uneven sampling fractions for each sample, suggesting that this is

currently the optimal method to analyze compositional data.

Discussion: Overall, our study highlights the importance of comparing and

selecting taxonomic reference databases before data analyses, and provides solid

evidence for the similarity and comparability between OTU- and ASV-based

nematode studies. Further, the results highlight the potential weakness of

rarefaction-based and clr-transformation-based methods. We recommend future

studies use ASV and that both the taxonomic reference databases and

normalization strategies are carefully tested and selected before analyzing the data.
KEYWORDS

18S rRNA gene, reference database, amplicon sequence variant (ASV), operational
taxonomic unit (OTU), data normalization method
1 Introduction

High-throughput sequencing (HTS) of taxonomically informative

markers (e.g., 16S for prokaryotes and 18S/ITS for eukaryotes) provides

an efficient and cost-effective way to generate large amounts of sequence

data and assign those sequences with high taxonomic resolution. Such

taxonomy-related data can provide the basis for determining functional

groups in the studied ecosystems. This approach is particularly

important for groups that are difficult to identify based on

morphology and for species-rich groups such as nematodes.

Nematodes, considered to be the most abundant animals on

Earth (Bardgett and Van der Putten, 2014), are ubiquitous in soil,

and play essential roles in the provisioning of a number of

ecosystem services, such as carbon and nutrient cycling, and pest

and disease regulation (Ingham et al., 1985; Ferris et al., 2004;

Wilson and Khakouli-Duarte, 2009; Ferris, 2010). Total nematode

diversity is estimated at more than one million species (Lambshead,

1993), but only around 30,000 species have been described so far

(Kiontke and Fitch, 2013). Morphology-based nematode

communities studies are highly constrained by time, money and

morphological identification skills (Griffiths et al., 2018), but

progress in HTS technologies and data analysis methods are

gradually overcoming these limitations (Sapkota and Nicolaisen,

2015; Geisen et al., 2018). However, marker-based methods and the

resulting datasets come with a range of challenges and disputes,

mainly regarding incomplete reference databases for targeted genes,

controversial sequence similarity thresholds for animal taxa

del imitat ion, and crit ical normalization methods for

compositional data analysis (Holovachov, 2016; Callahan et al.,

2017; Gloor et al., 2017; Weiss et al., 2017; Knight et al., 2018).

Traditionally, to reduce the impact of spurious reads created by

sequencing errors, marker sequence reads obtained from HTS have
02
been identity clustered to operational taxonomic units (OTUs),

which use a pre-defined sequence similarity threshold, usually 97%,

for sequences from the same species (Konstantinidis and Tiedje,

2005; Nguyen et al., 2016). New bioinformatics methods now

successfully control sequencing errors, allowing the discrimination

of amplicon sequence variants (ASV) at single nucleotide resolution,

which greatly increase the taxonomic resolution (Eren et al., 2013,

2014; Tikhonov et al., 2015; Callahan et al., 2016; Edgar, 2016; Amir

et al., 2017). Therefore, it has been argued that previous methods

based on OTUs should be replaced by new ASV-based methods

(Callahan et al., 2017; Knight et al., 2018). ASV-based methods are

not only expected to increase taxonomic resolution, but to also

increase the reusability, reproducibility and comprehensiveness of

marker-gene studies (Callahan et al., 2017). This view is supported by

microbial community ecology studies showing that suchmethods can

help explain additional variation among samples (Eren et al., 2014;

Needham et al., 2017) and may outperform OTU clustering if

sufficient sequencing depth is provided (Joos et al., 2020). Even so,

direct comparisons indicate that ASV- and OTU-based methods

often reveal similar ecological patterns, both for bacteria and fungi at

different scales and ecosystems (Botnen et al., 2018; Glassman and

Martiny, 2018; Garcıá-Garcıá et al., 2019). Different sequence

clustering methods have also been tested and compared for protists

(Forster et al., 2019). Unfortunately, studies on sequence clustering

methods are lacking for nematodes, and it is still unclear whether

ASV- and OTU-based methods produce comparable ecological

patterns, and whether OTU-based results can be directly compared

to ASV-based results.

Another key step in HTS analysis is read assignment based on

taxonomically curated reference databases. In the last decade, the

SILVA ribosomal RNA gene database (http://www.arb-silva.de) and

the Protist Ribosomal Reference database (PR2, http://ssu-rrna.org/)
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have been established as the two main rDNA reference databases

offering curated taxonomies for both unicellular eukaryotic and

multicellular eukaryotic SSU rRNA sequences (Guillou et al., 2013;

Quast et al., 2013). The SILVA database provides regularly updated

taxonomic information for Bacteria, Archaea and Eukarya (Quast

et al., 2013), while the PR2 database, formerly dedicated to protists,

also covers eukaryotic sequences from Metazoa, plants, fungi and

certain eukaryotic organelles of ecological interest (Guillou et al.,

2013). However, with the increasing interest in nematode analysis, it

is still unknown whether SILVA and PR2 databases currently provide

sufficient and similar taxonomic information, and how the choice of

reference databases may influence nematode taxonomic classification

and phylogenic results.

Although many studies have found that relative abundance data

from metabarcoding are positively correlated with biomass or

population density (Kelly et al., 2014; Doi et al., 2017; Geisen

et al., 2018; Schenk et al., 2019), overrepresentation of certain

taxa after PCR was also recognized (Geisen et al., 2018; Ahmed

et al., 2019). Further, several characteristics of raw count tables

derived from HTS data, including uneven sampling depth, sparsity

and compositionality, can seriously affect the statistical results in

downstream analyses and represent major challenges for data

interpretation (Gloor et al., 2017; Weiss et al., 2017; Boshuizen

and Te Beest, 2022). Therefore, to reduce the impact of those biases,

it is important to normalize or transform count tables prior to

further analysis. Rarefaction or subsampling of the read counts to

an equal, usually the minimum, library size (or sequencing depth) is

a commonly used normalization method to correct for uneven

sampling depth (Lozupone et al., 2011; Wong et al., 2016).

However, this method was not designed to address the issues of

compositionality, and it can reduce statistical power by removing

vast amounts of valid data (McMurdie and Holmes, 2014; Weiss

et al., 2017). Alternatively, log-ratio based methods can properly

account for the compositional nature of HTS datasets, among which

the centered log-ratio (clr) transformation (Aitchison, 1982) has

been proposed as a valid approach for HTS datasets (Gloor and

Reid, 2016; Gloor et al., 2017; Quinn et al., 2019). In this approach,

pseudo-count methods are applied before the logarithmic

transformation to cope with sparsity of the data (Mandal et al.,

2015). Although adding pseudo-counts and applying the clr-

transformation to HTS datasets take into account the library size

within a sample, the different library sizes across samples are

ignored, and pseudo-counts will cause additional bias (Kaul et al.,

2017). To remedy these deficiencies, Kaul et al. (2017) proposed the

ANCOM-II method to identify and accommodate different types of

zeros in HTS datasets, and simultaneously account for differences in

library size across samples. Recently, Lin and Peddada (2020a)

defined “sampling fraction” as the ratio of the expected absolute

abundance of a taxon to its absolute abundance in a unit volume of

the studied system, and pointed out that the bias introduced by

differences in the sampling fractions across samples is a major

obstacle when analyzing HTS datasets. Thus, Lin and Peddada

(2020a) developed the ANCOM-BC (Analysis of Compositions of

Microbiome with Bias Correction) tool and corresponding data

normalization method to address the problem of unequal sampling

fractions in HTS datasets. However, different normalization
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methods applied to HTS datasets might have different sensitivities

and outputs, potentially causing misleading or conflicting results

(Weiss et al., 2015; Gloor et al., 2017), thus it remains necessary to

compare the performance of the different normalization methods

on community composition analysis and evaluate the consistency of

downstream differential abundance analysis (Lin and Peddada,

2020b; Swift et al., 2023).

Here, we use soil nematode sequencing data based on the 18S

rRNA gene, the most widely used gene region for nematode

metabarcoding due to its broad taxonomic coverage and good

phylogenetic resolution, from three land-use systems in Indonesia

(tropical rainforest, rubber and oil palm plantations), to compare

standardized HTS data analysis processes. The tropical rainforest

and two monoculture plantation systems have totally different tree

species, understory vegetation and soil properties, which are

expected to host different nematode assemblages, and therefore

provide a suitable case study to test the power of different statistical

approaches. Our aims were to (1) determine whether the choice of

reference database has a significant effect on nematode HTS data

analysis by comparing the taxonomic assignment performance of

the two main reference sequence databases, SILVA and PR2, (2) test

whether the use of ASVs versus 97% OTUs affects detection of

ecological patterns, including alpha and beta diversity, in nematode

HTS datasets, and (3) compare the impact of different

normalization methods of HTS datasets, including the classic

rarefaction, the centered log-ratio (clr) transformation and the

data normalization method proposed in the ANCOM-BC tool, on

the recovery of beta diversity patterns in ordination analysis and

identification of differentially abundant taxa. We hypothesized that

(1) SILVA and PR2 databases generate comparable taxonomic

information and phylogenetic diversity with few differences, e.g.,

in taxonomic assignments, (2) alpha and beta diversity based on

ASV and OTU datasets are similar in their biological signal, and (3)

outputs of clr-transformation and ANCOM-BC tool based HTS

data analyses are similar, but rarefaction-based analysis is more

likely to underestimate or not detect effects due to the loss of data

during subsampling, which reduces the sensitivity of this method.
2 Materials and methods

2.1 Samples

Soil samples from the tropical lowlands in Bukit Duabelas

region, Jambi Province of southwest Sumatra, Indonesia, were

taken in October – November 2016 for three land-use systems:

secondary lowland rainforests, and rubber and oil palm plantations.

Each land-use system was replicated four times, with three subplots

in each replicated plot (3 land-use systems × 4 plots × 3 subplots),

resulting in a total of 36 samples. For more details of the study site,

see Drescher et al. (2016). Sampling and treatment of soil samples

have been described previously (Ballauff et al., 2021). Briefly, we

established three 5 m × 5 m subplots in each plot, with 15 m

between subplots. Surface leaf litter was removed before soil

samples were taken; five soil cores (15 cm depth, 4 cm diameter)

were taken at random from each subplot and pooled, resulting in a
frontiersin.org
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total of three samples per plot, and stored in zip-lock bags at 4°C

until they could be homogenized and sieved through 5 mmmesh to

remove roots and stones. Soil samples were immediately freeze-

dried (VirTis Bench Top K, SP Industries, Warminster, USA) and

exported to the University of Göttingen (Germany) for

molecular analysis.
2.2 DNA extraction and amplification

For each freeze-dried, ground and homogenized soil sample,

250 mg of soil was used for DNA extraction using the MoBio

PowerSoil isolation kit (Dianova, Hamburg, Germany) following

the manufacturer’s protocol. The hypervariable V4 region of the

18S rRNA gene was targeted, as described by Sapkota and

Nicolaisen (2015). In brief, primers NemF (5′-GGGGAAG
TATGGTTGCAAA- 3′) (Sapkota and Nicolaisen, 2015) and

18Sr2b (5′-TACAAAGGGCAGGGACGTAAT- 3′) (Porazinska

et al., 2009) were used in a pre-amplification step followed by

amplification with primers NF1 (5′-GGTGGTGCATGG

CCGTTCTTAGTT- 3′) (Porazinska et al., 2009) and 18Sr2b in a

semi-nested procedure. NF1 and 18Sr2b were paired with MiSeq-

Adapter Forward overhang (5′-TCGTCGGCAGCGTCAGA

TGTGTATAAGAGACAG- 3′) and Reverse overhang (5′-
TCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3′). This
strategy has been reported to be highly specific to nematodes,

with nearly two-third (64.4%) of the total number of sequences

classified as Nematoda in previous studies (Sapkota and Nicolaisen,

2015). All amplicon PCRs (both the pre-amplification step and the

second PCR step) were performed in triplicate and pooled in

equimolar ratios for sequencing. Detailed descriptions of the

methodology are provided in the Supporting Information

Additional File S1. Amplicon length was approximately 420 bp.

The sequences of the 18S amplicons were sequenced using Illumina

MiSeq at the Institute for Microbiology and Genetics of the

University of Göttingen. Raw 18S rRNA gene sequence data are

available through the project PRJEB54886 on the European

Nucleotide Archive, www.ebi.ac.uk/ena.
2.3 Bioinformatic analysis of 18S rRNA
gene sequences

Raw paired-end sequences from the Illumina MiSeq were

quality-filtered with fastp v0.20.0 (Chen et al., 2018) using default

settings with the addition of a minimum base phred score of 20,

overlapping base pair correction, sliding windows of 4 bp, a mean

minimum quality of 20 and sequence minimum length of 50 bp.

After quality control, the paired-end reads were merged using

PEAR v0.9.11 (Zhang et al., 2014) and additional primer clipping

was performed with cutadapt v1.16 (Martin, 2011) using default

settings. High-quality sequences were further processed with

VSEARCH (v2.14.1) (Rognes et al., 2016), which included sorting

and size-filtering of the reads to ≥250 bp (–sortbylength –

minseqlength 250), and dereplication (–derep_fulllength) to

exclude potential artificial 18S rRNA gene fragments (i.e., too
Frontiers in Ecology and Evolution 04
short for the target region). Dereplicated amplicon sequence

variants were further denoised by UNOISE3 (Edgar, 2016) using

default settings (–cluster_unoise –minsize 8) and chimeric

amplicons were removed (–uchime3_denovo). An additional

reference-based chimeric amplicon removal was performed

(–uchime_ref against the PR2 4.12 database and the SILVA 138

eukaryotic database). After chimera removal, filtered reads were

stored as ASVs (100% sequence identity) for use in gene database

comparisons, and then clustered to OTUs (–usearch_global–id

0 .97) at 97% sequence ident i ty for fur ther ident i ty

threshold comparison.
2.4 Reference database selection

To select a suitable reference database for taxonomy

assignment, the taxonomy of all ASVs was assigned using BLAST

2.9.0+ (Camacho et al., 2009) against two databases, the PR2 4.12

database (Guillou et al., 2013) and the SILVA 138 database (Quast

et al., 2013); Taxonomic assignment for both reference databases

was based on the best match. For all nematode ASVs, the percentage

identity was greater than 90% (in about 80% of the ASVs the

percentage identity was > 95%), and in more than 90% of the ASVs

the query coverage was equal to 100%. We removed the taxonomic

assignment for blast hits if dividing in half the sum of percentage

identity and percent query coverage resulted in ≤ 93% as

recommended (Quast et al., 2013). The implied “family”

information based on the provided taxonomic information of

“orders”, “genera” and “species” by each database were fulfilled

(mainly according to http://nemaplex.ucdavis.edu). We specifically

checked the dominant family Thelastomatidae (41.4%) assigned by

SILVA, which was not identified by PR2, the values for all genera in

this family were ≥ 96% (Blattophila = 100%, Cephalobellus ≥ 96%,

Hammerschmidtiella ≥ 98.8%, Severianoia ≥ 99.8%, Thelastoma ≥

99.5%). The blast hits with low expect-values (the range of e-value

in the whole datasets was from 0 to 9.68e-95) ensure that only

significant blast hits were used. The nematode data handling and

calculation was done with the packages ampivs2 v2.6.8 (Andersen

et al., 2018) and dplyr v1.0.3 (Wickham et al., 2017) in R v3.6.0 (R

Core Team, 2014) with R studio interface (Team, 2016), and the

final tables were loaded and combined using knitr v1.31 (Xie, 2014)

(Supplementary Tables S1, S2). For database comparison and

selection, the total nematode ASVs and family numbers, numbers

and frequency of reads as well as ASVs for each identified nematode

family and for unidentified (family level) nematodes were checked

for both reference databases.

For phylogenetic analysis, nematode ASVs with less than five

sequences for the whole dataset was removed (87.9% ASVs

remained for SILVA and 86.9% for PR2). The remaining sets of

ASV sequences were aligned using MAFFT v7 (Katoh et al., 2019)

and checked visually using MEGA v6.0 (Tamura et al., 2013). The

best evolutionary model was selected using PartitionFinder v2

(Lanfear et al., 2017) by employing linked branch lengths, greedy

search and BIC model selection. GTR+I+G was selected as the best

model for both SILVA and PR2 alignments. A sequence of Capitella

teleta (GenBank accession number: LC208027.1) was added as
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outgroup. Maximum likelihood analyses for each multiple sequence

alignment were performed separately using IQ-TREE v1.5.5

(Nguyen et al., 2015), with the nucleotide substitution model set

to GTR, base frequencies set to empirical and the site heterogeneity

model set to Gamma + Invariant Sites. Nodal support was obtained

with 1,000 rapid bootstraps (-bb 1,000) submitted to Cipres

Platform (Miller et al., 2010). Tip annotations were conducted

using Figtree v1.4.4 (Drummond et al., 2012) and ITol v4

(Letunic and Bork, 2019). Phylogenetic diversity of each species-

tree inference was estimated using the PD index (Faith, 1992) in the

package Picante v1.8.2 (Kembel et al., 2010) in R v3.6.0 (R Core

Team, 2014), and differences between the PD indexes were tested

using the Wilcoxon signed rank test.
2.5 ASV vs. 97% OTU comparison

The following analyses and that described in section 2.6 were all

performed in R v4.0.3 (R Core Team, 2020) with R studio interface

(RStudio, Inc.), and all nematode ASVs or OTUs were kept in read

count tables for further analysis. For alpha diversity comparison

between ASV and OTU data, samples were first rarefied to the

minimum library size (2,941 reads for ASVs and 2,859 reads for

OTUs). Alpha diversity indices (Observed Richness, Shannon,

Simpson, Chao1) for both ASV and OTU data tables were

calculated using the “amp_alphadiv” function in ampivs2 v2.6.8.

Pearson correlations and linear regressions were applied to

determine the relationship between alpha diversity indices of the

ASV- and OTU-based data. For beta diversity comparison of ASV

and OTU data, Bray-Curtis and Jaccard dissimilarity matrices were

calculated in the R package vegan v2.5-7 (Oksanen et al., 2019)

using the “avgdist” function (https://github.com/vegandevs/vegan/

blob/master/man/avgdist.Rd), and the correlation of beta diversity

metrics between ASV and OTU methods was then tested using

Mantel correlations. The correlations between both methods were

plotted using the package ggplot2 v3.3.3 (Wickham, 2011).
2.6 Comparison of normalization methods

For compositional marker-gene analysis, the nematode ASV

table was used, and the performance of the rarefaction, clr-

transformation (Aitchison, 1982; Pawlowsky-Glahn and Egozcue,

2006; Gloor and Reid, 2016; Quinn et al., 2019) and ANCOM-BC-

based methods (Lin and Peddada, 2020a) was compared. For the

rarefaction method, rarefaction curves of alpha diversity indices

were plotted (R v4.0.3, ggplot2 v3.3.3) to check whether the

diversity of samples had been fully characterized at the minimum

library size of all samples (2,941 reads). In order to apply clr-

transformation to our data, we first used count zero multiplicative

(czm) replacement to impute zeros in the raw read counts using the

“cmultRepl” function in the package zCompositions v1.3.4

(Palarea-Albaladejo and Martıń-Fernández, 2015), and then the

“clr” function from the package compositions v2.0-1 was applied

(Van den Boogaart et al., 2014). The ANCOM-BC-based

normalization method was also implemented based on the raw
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counts community matrix using the R functions described in Lin

and Peddada (2020a).

The performance of these methods was then compared by

testing the ability of each dataset to discriminate different land-

use systems using ordination and visualization methods. To avoid

bias caused by a “Procrustean bed” (e.g., forcibly applying one

unified multivariate analysis on all normalization techniques),

different ordination and visualization strategies were applied

based on the standard or recommended technique for each

normalization method. Principal Coordinates Analysis (PCoA)

was based on a Bray-Curtis distance matrix of rarefied ASV data

(Weiss et al., 2015). For clr-transformed data, the Euclidean

distance is superior to other dissimilarity metrics and the

Principal Components Analysis (PCA) can be substantially more

reproducible and stable for plotting (Aitchison et al., 2000; Gloor

and Reid, 2016) and therefore was applied for the clr-transformed

data. Non-metric multidimensional scaling (NMDS) was used on

the Bray-Curtis distance matrix derived from ANCOM-BC

normalized ASV data since it is proven to perform very well in

visualizing this kind of transformed dataset (Lin and Peddada,

2020a). Squared Mahalanobis distances (MD2) between group

centroids (rainforest, rubber and oil palm plantations) and

pairwise Hotelling’s T-squared tests were applied separately to

each ordination to identify significant differences among land-use

systems. All distance matrices were calculated using the vegan v2.5-

7 package (Oksanen et al., 2019) and all figures were plotted using

ggplot2 v3.3.3 (Wickham, 2011). Differentially abundant ASVs and

genera among the three land-use systems were also tested and

compared using methods appropriate for the transformation. For

the rarefaction- and clr-transformation-based methods, the “envfit”

function in the vegan v2.5-7 package (Oksanen et al., 2019) was

applied to the respective distance matrices to identify their

differentially abundant ASVs and genera. While for the ANCOM-

BC-based method, the “ancombc” function from ANCOM-BC

v1.0.3 was applied to the raw count table to identify the

differentially abundant ASVs and genera. Venn diagrams, plotted

using VennDiagram v1.6.20, were used to represent consistency of

differentially abundant ASVs/genera identified by rarefaction, clr-

transformation, and ANCOM-BC-based methods.
3 Results

3.1 Comparison of reference databases

SILVA v138 and PR2 v4.12 successfully assigned 615,313 and

621,984 reads to nematodes, respectively. Similar total numbers of

nematode ASVs and families were also obtained for SILVA (779

ASVs and 64 families) and PR2 (853 ASVs and 64 families).

However, SILVA assigned a much higher number of nematode

reads and ASVs (567,585 reads, accounting for 92.3% of total reads,

and 677 ASVs, accounting for 86.9% of total ASVs) to family level

than PR2 (350,734 reads, accounting for 56.4% of total reads, and

672 ASVs, accounting for 78.8% of total ASVs). SILVA assigned the

highest proportion of total reads to the nematode family

Thelastomatidae (41.4%), followed by unidentified families
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(7.7%), Criconematidae (7.4%), Tylenchidae (5.5%), Rhabditidae

(3.5%), and Mydonomidae (3.2%) (Supplementary Table S1). PR2

was unable to assign taxanomy to 43.6% of reads; the highest

proportion of assigned reads were to the nematode family

Criconematidae (7.4%), followed by Tylenchidae (4.0%),

Cephalobidae (3.9%), Rhabditidae (3.4%), and Anguinidae (3.2%)

(Supplementary Table S2). For the most abundant nematode family

Thelastomatidae in SILVA (41.4%), five genera (Cephalobellus,

Blattophila, Thelastoma, Hammerschmidtiella, Severianoia) were

identified, but none of them were recognized by PR2 database.

The topology of the trees based on PR2 and SILVA annotation

was similar (Figure 1), and phylogenetic diversity did not vary

between species-tree inferences assigned by the two databases (p <

0.0978, Wilcoxon signed rank test). More monophyletic clades were

displayed by the tree annotated with the SILVA database

(Dorylaimida, Mermithida, Plectida and Trichocephalida)

compared to that using the PR2 annotations (Diplogasterida and

Trichinellida), and only the SILVA assignments identified the

dominant nematode order Oxyurida, which accounted for about

40% of the total reads (Supplementary Table S1). Incoherencies in

taxonomic classifications of the databases were also detected by

divergent order assignments to similar families (e.g., Trichuridae

was assigned as Trichinellida by PR2, and to Trichocephalida

by SILVA).
3.2 Comparison of ASV- and 97% OTU-
based indices

Sample-wise comparison of all four diversity indices

(taxonomic unit Richness, Shannon, Inverse Simpson and Chao1)

found strong correlations between ASV- and OTU-based

calculations (mean Pearson’s R = 0.89; all p-values are < 0.001).

For the Shannon index, the ASV and OTU approaches were not
Frontiers in Ecology and Evolution 06
only highly correlated (Figure 2B, Pearson’s R = 0.95), but also

similar in their values (mean slope = 0.89, Supplementary Table S3).

For both taxonomic unit richness and Chao1 index, ASV- and

OTU-based results were strongly correlated (Figures 2A–D,

Pearson’s R = 0.94 and 0.73), but the values for richness and

Chao1 index based on ASVs were approximately two times

higher than those based on OTUs for the same sample

(Supplementary Table S3, slope = 2.15 and 2.32). Inverse

Simpson index values for ASV and OTU approaches were also

highly correlated (Figure 2C, Pearson’s R = 0.93), but the Inverse

Simpson index based on ASVs was approximately one and a half

times higher than that of the corresponding OTU-based value

(Supplementary Table S3, slope = 1.41).

Beta diversity metrics were also highly correlated across samples

between ASV- and OTU-based datasets (Bray-Curtis average

Mantel’s R = 0.95; p values < 0.001; Figure 3), and their values

were similar between ASV and OTU methods (slopes = 0.79).
3.3 Comparison of normalization methods

Differences in nematode communities between the three land-

use systems were found by all downstream marker-gene data

analysis methods, including rarefaction (Figure 4), clr-

transformation (Figure 5) and ANCOM-BC normalization based

methods (Figure 6). Rarefaction curves of alpha diversity indices

(Shannon [Supplementary Figure S1] and Inverse Simpson index

[Supplementary Figure S2]) showed that diversity of the samples

had been fully characterized at the minimum library size (2,941

reads) of all samples after rarefaction. PCoA based on rarefied ASV

data (Figure 4) clearly separated the nematode community of

rainforests from the nematode community of rubber plantations

(MD2 = 1.3, p = 0.007; Table 1), but less distinctly from that of oil

palm plantations (MD2 = 0.8, p = 0.059; Table 1); there was no
FIGURE 1

Comparison of phylogenetic trees of nematodes (18S rRNA gene) based on taxonomic assignment with PR2 (left) and SILVA (right) databases. Tip
annotations depict family assignments using the respective database. Colors correspond to orders as encoded in the legend. Numbers represent the
number of families assigned to each order by each database.
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significant difference between rubber and oil palm plantations

(MD2 = 1.2, p = 0.229; Table 1).

PCA based on clr-transformed data (Figure 5) showed a similar

pattern as the rarefaction-based results, but the nematode

communities of the three land-use systems were all significantly

different from each other: rainforests clearly separated from rubber

(MD2 = 2.7, p < 0.001; Table 1) and oil palm plantations

(MD2 = 1.9, p < 0.001; Table 1), and rubber plantations also

separated from oil palm plantations (MD2 = 3.1, p = 0.012; Table 1).
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NMDS based on ANCOM-BC normalized ASVs (Figure 6) found

similar patterns as the other two methods, but the significance of the

nematode community separation was intermediate to that of the

rarefaction- and clr-transformation-based methods. Nematode

community composition in rainforests clearly separated from that in

rubber (MD2 = 2.4, p < 0.001; Table 1) and oil palm plantations

(MD2 = 0.5, p = 0.002; Table 1), but there was no significant difference

between nematode communities of rubber and oil palm plantations

(MD2 = 1.5, p = 0.159; Table 1).
FIGURE 3

Comparison of beta diversity (Bray-Curtis dissimilarity) based on different data-identity thresholds: ASV 100% (y-axis) or OTU 97% (x-axis).
A B

DC

FIGURE 2

Comparison of alpha-diversity indices based on different data identity thresholds: ASV 100% (y-axis) or OTU 97% (x-axis). (A) Taxa unit richness,
(B) Shannon index, (C) Inverse Simpson index, and (D) Chao1 index.
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Clr-transformation-based methods recovered the most

differentially abundant taxa (74) among the three land-use

systems, followed by the ANCOM-BC-based (57) and rarefaction-

based (36) methods (Supplementary Table S2; Figure 7). A core

group of 30 differentially abundant taxa were recovered by all

methods, representing 83%, 41%, and 53% of the total taxa

recovered from rarefaction-, clr-transformation- and ANCOM-

BC-based strategies, respectively, and nearly 40% (30/82) of the

sum total (Figure 7). Only 1 of the 36 (3%) differentially abundant

taxa recovered with the rarefaction method was unique, while 11%

(6/57) of those recovered from ANCOM-BC and 26% (20/76) of

those from clr-transformed data were unique (Figure 7).
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4 Discussion

Over the last decade, cost-effective HTS technology has become an

essential tool for assessing microbial and microfaunal communities.

However, marker-based techniques and the resulting datasets come

with the challenge of appropriate reference database selection, taxa

delimitation and compositional data analysis (Gloor et al., 2017; Weiss

et al., 2017; Boshuizen and Te Beest, 2022). The present study explores

the potential effects of using different taxonomic reference databases,

identity thresholds and data normalization methods. Our results

showed that the choice of different identity thresholds (ASV 100%

vs. OTU 97%) does not affect the detection of nematode diversity.

However, the selection of a taxonomic reference database does affect

the assignment rates and putative identifications of nematode taxa.

Further, the selection of data normalization methods affected the

detection of compositional differences in nematode communities and

of differentially abundant taxa among land-use systems, which might

lead to different biological interpretations.
4.1 Comparison of reference databases

Recently, SILVA and PR2 databases have been successfully used in

a number of nematode studies (Sapkota and Nicolaisen, 2015; Kerfahi

et al., 2016; Geisen et al., 2018; Schuelke et al., 2018; Bongiorno et al.,

2019; Wilschut et al., 2019; Sikder et al., 2020; Gong et al., 2021).

However, studies on how the choice of reference database may

influence nematode taxonomic classification and phylogenic results

are lacking entirely. Our results showed that although nematode

phylogenetic diversity based on the two databases was similar, the

SILVA database assigned more reads and ASVs to the family level,

performing better than PR2 at this time. This partially supports our

first hypothesis, as the two reference databases generated comparable

phylogenetic outputs. Taxonomic assignment was more complete with
FIGURE 5

Principal Component Analysis (PCA) plot based on Euclidean
distances calculated from clr-transformed ASV-based nematode
communities of three land-use systems. Rainforest: green; Rubber:
blue; Oil palm: red. Ellipses were drawn at the 95% confidence
interval for visualization of the respective land-use systems;
centroids for each system are represented by larger circles.
FIGURE 6

Non-metric Multidimensional Scaling (NMDS) plot based on Bray-
Curtis distances calculated from ANCOM-BC normalized ASV-based
nematode communities of three land-use systems (K = X, Stress =
0.1088). Rainforest: green; Rubber: blue; Oil palm: red. Ellipses were
drawn at the 95% confidence interval for visualization of the
respective land-use systems; centroids for each system are
represented by larger circles.
FIGURE 4

Principal Coordinate Analysis (PCoA) based on Bray-Curtis distances
derived from rarefied (depth = 2,941) nematode ASV-based
communities of three land-use systems. Rainforest: green; Rubber:
blue; Oil palm: red. Ellipses were drawn at 95% confidence intervals
for visualization of the respective land-use systems; centroids for
each system are represented by larger circles.
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SILVA, but cases were found in which the taxonomy was not accurate

in either database. We found some differences in the output that can be

linked to differences in the historical foci of these two databases. SILVA

database has long offered taxonomic information for Bacteria, Archaea

and Eukarya (Quast et al., 2013), while the PR2 database was formerly

dedicated to protists (Guillou et al., 2013). It should be noted that there

are also other databases that can be used for nematodes, e.g. the NCBI

NT database (www.ncbi.nlm.nih.gov). Further, our results do not

indicate that the SILVA database is better than the PR2 database for

studying nematodes, but rather emphasize the importance of

comparing and choosing the appropriate taxonomic reference

database as part of the analysis pipeline. All reference databases are

dynamic and differ in their taxonomic coverage, therefore a database

that is optimal now for one group of organisms may not be the first

choice in the future. Thus, the importance of database selection should

be extended to all marker-based studies, regardless of target organism.
4.2 Comparison of ASV- and 97% OTU-
based indices

The 18S rRNA gene is commonly used for molecular studies of

nematodes and other eukaryotes because of the availability of
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universal primers and its phylogenetic resolution at high taxonomic

levels (De Ley et al., 2005). Several studies have evaluated the

taxonomic accuracy of this gene region for terrestrial, freshwater

and marine nematodes, and found that it allows identification at

family-, but also even at species-level (Meldal et al., 2007;

Holovachov, 2014; Holovachov et al., 2017). Previous research

indicates that 97% nucleotide identity similarity of the 16S rRNA

gene approximates a species-level discrimination for bacteria

(Stackebrandt and Goebel, 1994). Extended thresholds of the 18S

rRNA gene were also applied to nematodes (Holovachov, 2016;

Holovachov et al., 2017).

Supporting our second hypothesis, soil nematode alpha and beta

diversity were similar for ASV and OTU datasets. Although the

correlation of the Chao1 index between ASV and OTU datasets was

less strong (larger p-values and smaller Pearson’s R value) than for

other alpha-diversity indices (taxonomic unit Richness, Shannon,

Inverse Simpson), the correlation was still statistically significant. The

lower correlation can be explained by the high weight of singletons in

calculating the Chao1 index (Chao, 1987); this increases the difference

between the two datasets, as the number of singletons in the high

resolution ASV data will generally be higher than in OTU data. The

strongly correlated alpha- and beta-diversity metrics indicate that

biological conclusions based on these metrics are likely to be similar.
TABLE 1 Pairwise discrimination of nematode communities by land-use system, normalized using rarefaction, clr-transformation, and ANCOM-BC
based methods.

Rarefaction Clr-transformation ANCOM-BC normalization

df1 df2
F-

value
p-

value MD2
F-

value
p-

value MD2
F-

value
p-

value MD2

rainforest - rubber 2 21 6.243 0.007 1.323 36.720 0.001 2.704 14.760 0.001 2.432

rainforest - oil palm 2 21 3.250 0.059 0.755 10.270 0.001 1.910 8.533 0.002 0.503

rubber - oil palm 2 21 1.582 0.229 1.225 5.466 0.012 3.124 2.013 0.159 1.502
fr
F- and p-values for each method are based on Hotelling’s T-squared tests; p- values > 0.05 shown in bold. Mahalanobis distances (MD2) were calculated for each land-use comparison.
FIGURE 7

Venn diagram of differentially abundant nematode genera recovered by rarefaction, clr-transformation, and ANCOM-BC based methods. Taxonomic
classification at genus level based on 18S rRNA gene sequences identified using the SILVA reference database.
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Therefore, our results suggest that, for nematodes, OTU-based studies

can provide useful reference points and their results are likely

comparable with ASV-based studies, even though ASVs are

preferred to OTUs because they may increase taxonomic resolution,

and increase the reusability, reproducibility and comprehensiveness of

marker-gene studies (Callahan et al., 2017; Knight et al., 2018). Similar

to the present study on nematodes, comparisons of ASV and OTU

methods in fungi and bacteria have found that both methods reveal

similar ecological patterns across different scales and ecosystems

(Botnen et al., 2018; Glassman and Martiny, 2018; Garcıá-Garcıá

et al., 2019). However, this may not apply to all groups, e.g. Forster

et al. (2019) showed that different sequence grouping methods

produced similar results for beta diversity in protists, but different

results for alpha diversity or for the identification of certain key species.

Therefore, comparisons between OTU- and ASV-based studies should

be made with caution because different organisms may show different

ecological patterns under different identity thresholds.
4.3 Comparison of normalization methods

Results obtained using rarefaction, clr-transformation, and

ANCOM-BC count data normalization methods partly support our

third hypothesis that all three strategies detect similar patterns in

separating nematode communities under different land-use systems.

The clr-transformation-based methods were most sensitive, providing

the strongest separation of land-use systems and the highest number of

differentially abundant taxa, followed by ANCOM-BC-based and

rarefaction-based methods. These results suggest that loss of data

during subsampling under rarefaction-based methods might reduce

the sensitivity of the method. On the other hand, the clr-

transformation-based methods might overestimate effects: these

methods do not account for uneven library size across samples (Kaul

et al., 2017), potentially magnifying differences between samples. Log-

transformation-based methods are likely to exaggerate the importance

of rare taxa, while rarefaction or proportion basedmethods, which fully

normalize read depths across samples, may be superior to log-

transformation-based methods for comparing ecological

communities (McKnight et al., 2019). Although developed for

differential abundance testing, ANCOM-BC methods outperformed

other normalization methods, including the proportion-based method

proposed by McKnight et al. (2019) for the visualization of separate

samples from different populations (Lin and Peddada, 2020a). It is

beyond the scope of the present study to statistically demonstrate the

superiority of ANCOM-BC-based methods, but our results do

highlight the impacts of analyzing marker-gene data using different

data normalization methods, as well as the potential weaknesses of

rarefaction- and log-transformation-based methods for analyzing

nematode HTS data.
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Our results show that the SILVA database performed better

than the PR2 database, with more nematode reads and ASVs

assigned to family level. This indicates that the choice of reference

database may significantly influence taxonomic classification even

though the taxonomic coverage of the databases may only differ

slightly. OTU- and ASV-based nematode data provided strongly

correlated alpha- and beta-diversity results. This indicates that

OTU-based studies may be used as reference points and their

results are likely to be similar to ASV-based studies. All

normalization strategies applied in this study detected similar

patterns between nematode communities from different land-use

systems, but clr-transformation-based methods were most sensitive,

followed by ANCOM-BC-based and rarefaction-based methods.

Rarefaction- and clr-transformation-based methods may under- or

over-estimate effects, respectively. As ANCOM-BC retains all data

and accounts for uneven library sizes between samples, it appears

more suitable to analyze nematode community data. Patterns of

nematode community composition correspond to those recovered

by clr-transformation- and ANCOM-BC-based methods,

suggesting that statistically significant findings of rarefaction-

based studies may well be used for comparison. Differentially

abundant taxa identified by rarefaction-based methods

represented a subset of those detected by the other two methods,

providing a more conservative picture of differences in nematode

diversity. Overall, our study highlights the importance of analytical

decisions for marker-gene data. While future studies might prefer

ASV over OTU to achieve higher resolution of target organisms and

increase reusability of the data, both the taxonomic reference

database and normalization strategy should be carefully

considered before data analysis.
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