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Investigating the spatio-
temporal pattern evolution
characteristics of vegetation
change in Shendong coal
mining area based on kNDVI
and intensity analysis
Zhichao Chen*, Xufei Zhang, Yiheng Jiao, Yiqiang Cheng,
Zhenyao Zhu, Shidong Wang and Hebing Zhang

School of Surveying and Land Information Engineering, Henan Polytechnic University,
Jiaozuo, China
Alterations in vegetation cover serve as a significant indicator of land ecology.

The Shendong Coal Mining Area, being the largest coal base globally, holds

significant importance for national energy security. Moreover, it has gained

recognition for its environmentally conscious approach to coal mining,

characterized by the simultaneous implementation of mining activities and

effective governance measures. In order to assess the ongoing vegetation

recovery and the temporal changes in vegetation within the Shendong Coal

Mining Area, we initially utilized Landsat TM/ETM+/OLI remote sensing data.

Using the Google Earth Engine (GEE), we developed a novel kernel-

normalized vegetation index (kNDVI) and subsequently generated a

comprehensive kNDVI dataset spanning the years 2000 to 2020. In

addition, the Sen (Theil-Sen median) trend analysis method and MK (Mann-

Kendall) test were utilized to examine the temporal trends over a span of 21

years. Furthermore, the Hurst exponent model was employed to forecast the

persistent changing patterns of kNDVI. The utilization of the intensity analysis

model was ultimately employed to unveil the magnitude of vegetation

dynamics. The findings indicated a notable positive trend in the overall

kNDVI of vegetation within the study area. In relation to the analysis of

changing trends, the vegetation in the region underwent a slight

improvement from 2000 to 2010, followed by a significant improvement

from 2010 to 2020. During this transition period, a total of 289.07 km2, which

represents 32.36% of the overall transition area, experienced a shift in

vegetation. The predictive findings from the Hurst model indicate that

while the majority of areas within the mining region will exhibit an upward

trend in vegetation growth, there will be certain areas that will demonstrate a

decline. These declining areas account for 39.08% of the total transition area.

Furthermore, the intensity analysis results reveal notable disparities in the

characteristics of vegetation growth and evolution between the periods of

2000-2010 and 2010-2020. Throughout the entirety of the transformation

process, the transition from slight improvement to significant improvement

prevails in terms of both relative intensity and absolute intensity, surpassing

alternative transformation processes. Various trend transitions display diverse
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intensity characteristics that adhere to the overarching principles governing

shifts in vegetation growth. Furthermore, the utilization of the intensity

analysis framework and intensity spectrum employed in this study

demonstrates their efficacy in elucidating the temporal dynamics of

vegetation changes. Furthermore, this study plays a pivotal role in the

surveillance and assessment of the efficacy of ecological restoration in

mining regions. It carries substantial implications for comparable land

ecological restoration efforts in mining and reclamation, thereby furnishing

a theoretical foundation.
KEYWORDS

kNDVI (kernel normalized difference vegetation index), vegetation coverage,
spatio-temporal changes, Sen’s + Mann-Kendall trend analysis, intensity analysis,
Shendong coal mine
1 Introduction

According to Zeng et al. (2023), vegetation serves as a reliable

indicator of ecological changes and offers a comprehensive

depiction of land and environmental conditions. The

investigation of vegetation growth and its dynamic fluctuations in

mining regions has consistently been a focal point of scholarly

inquiry (Han et al., 2021b). Hence, the assessment of vegetation

degradation and analysis of spatiotemporal dynamics in mining

regions are of paramount importance in terms of their theoretical

and practical implications for ecological restoration and

enhancement of environmental quality in such areas (Guo et al.,

2019; Jiang et al., 2022).

The Shendong Mining Area, situated in the loess-wind deposit

sand mining region within the middle and upper reaches of the

Yellow River basin, is characterized by an arid climatic condition

(Xu et al., 2021). The area in question holds significant ecological

fragility and serves as a crucial monitoring site for soil and water

erosion in the context of governance in China (Chi et al., 2022). The

ecological environment of the area is significantly impacted by the

extensive coal mining activities (Xiao et al., 2020; Yang et al.,

2022b). The restoration of vegetation in coal mining areas has

gained widespread acceptance among nations (Roy et al., 2022). In

addition, the monitoring of the fluctuating patterns of vegetation in

mining regions is a fundamental aspect of initiatives aimed at

restoring vegetation and holds significant importance in the

planning, execution, and supervision of vegetation-related

activities in mining areas (Liu et al., 2021a; Wang et al., 2021a;

Xu et al., 2023b). Hence, the monitoring of vegetation dynamics and

alterations in the Shendong Coal Mine carries significant

importance. The research findings provide a theoretical basis for

the implementation of vegetation management, soil erosion control,

and ecological restoration efforts within the Shendong Coal Mine.

The production of coal has an undeniable impact on the

ecological environment. Within the context of coal production,
02
monitoring the ecological environment plays a crucial role in

attaining economic sustainability (Burchart-Korol et al., 2016; Li

et al., 2021a). At present, the predominant method for ecological

monitoring in coal mines involves the utilization of remote sensing

methods in conjunction with vegetation indices to evaluate the extent

of vegetation coverage and the prevailing growth conditions on the

terrain (He et al., 2019; Han et al., 2021a; Shang et al., 2022). The

subject of long-term ecological monitoring has gained significant

attention in recent times. Long-term ecological monitoring

predominantly depends on the utilization of Landsat data, which

offers a consistent supply of high-resolution multi-spectral remote

sensing data spanning several decades, starting from the 1970s (Shan

et al., 2019; Jiang et al., 2021; Pei et al., 2023). The utilization of

remote sensing technology enables the temporal monitoring of

vegetation, facilitating the investigation of alterations in the

ecological environment. The Landsat TM/ETM satellite provides

data with a high level of spatial resolution, which has led to its

extensive utilization in the monitoring of land cover and land use

change (Garioud et al., 2021; Pérez-Cabello et al., 2021; Zhou et al.,

2022). The Normalized Difference Vegetation Index (NDVI) has

emerged as the predominant vegetation index employed in long-term

monitoring studies. Extensive research utilizing NDVI has

contributed significantly to the understanding and characterization

of spatiotemporal variations in vegetation cover, both at a national

level within China and on a global scale (Huang et al., 2020; Jimenez

et al., 2022; Martinez and Labib, 2023). Nevertheless, the Normalized

Difference Vegetation Index (NDVI) does possess certain limitations.

The relationship between the subject and green biomass exhibits a

non-linear and saturated pattern (Carlson and Ripley, 1997).

Additionally, it is important to consider potential errors that may

arise when working with atmospheric noise, soil background, and

saturation (Liu and Huete, 1995). Despite efforts made by researchers

to address these limitations by integrating data from different spectral

bands, the problem of saturation has yet to be resolved (Andualem

and Berhan, 2021; Huang et al., 2021). In the year 2021, the kernel-
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normalized difference vegetation index (kNDVI) was introduced by

Camps-Valls et al. (2021). The present vegetation index incorporates

the benefits of machine learning principles and employs kernel

methods for the extraction and computation of NDVI, with the

objective of mitigating the constraints associated with the

conventional methodology (Gustavo and Lorenzo 2009; Luis et al.,

2018). Camps-Valls et al. (2021) conducted an evaluation and

comparison of the performance of three vegetation indices, namely

kNDVI, NDVI, and NIRv. Based on the outcomes of their research, it

was observed that kNDVI demonstrated a higher level of effectiveness

compared to NDVI and NIRv in diverse applications, biomes, and

climatic zones. This study highlighted the distinct benefits of utilizing

kNDVI in mitigating saturation effects, managing intricate

phenological cycles, and accounting for seasonal variations. The

suitability of the index for effectively representing the status of

vegetation coverage in both natural and agricultural systems has

been demonstrated in several studies (Liu et al., 2021b; Forzieri et al.,

2022; Gensheimer et al., 2022; Wang et al., 2022b). Furthermore, the

suitability of kNDVI for evaluating the growth conditions and

temporal variations of vegetation in the mining region has been

well-recognized (Wang et al., 2023). Therefore, in the present study,

we opted for kNDVI as the preferred metric for assessing the

condition of the vegetation ecosystem.

Nevertheless, previous research in the field of vegetation

dynamics has predominantly concentrated on the gradual and

uniform alterations within vegetation ecosystems, while

investigations into the magnitude of spatiotemporal patterns have

been relatively scarce. Presently, the main focus of scholarly inquiry

pertaining to vegetation cover in mining regions revolves around the

utilization of extensive time-series remote sensing data. This

approach entails an examination of the effects of coal mining

activities on the surrounding vegetation and broader ecological

landscapes. The objective of this study is to analyze the dynamic

patterns of vegetation cover in response to coal mining disturbances.

The study aims to contribute valuable data and technical assistance

for future restoration and management initiatives in mining regions

(Wang et al., 2021b; Chen et al., 2022; Qi et al., 2023). Nevertheless,

the extent to which vegetation growth is affected in mining areas

remains uncertain. Therefore, the present study aims to introduce the

intensity analysis method proposed by Pontius et al. (2004) for the

purpose of assessing the intensity of vegetation dynamics. The

analysis of intensity and vegetation change shows the extent to

which vegetation change is influenced by factors such as climate

change and human activities. This is accomplished by examining

variables such as vegetation cover, vegetation growth rate, and

vegetation types (Guesewell et al., 2007; Tong et al., 2016; Guo

et al., 2018). In recent years, there has been a significant amount of

scholarly research dedicated to the examination of vegetation change

intensity (Murwira and Skidmore, 2006; Liu and Liu, 2018). One the

one hand, the utilization of remote sensing technology enables

the acquisition of vegetation index data, which in turn facilitates

the examination of fluctuations in vegetation growth. Consequently,

this approach enables the quantitative assessment of the magnitude of

changes in vegetation (Siteur et al., 2014). Alternatively, an avenue for

further exploration lies in examining the variations in response to

climate change across different types of cover, thereby elucidating the
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connection between intensity analysis and vegetation change (Xu

et al., 2013; Sun et al., 2023). This methodology not only examines the

relative stability or dynamics of transitioning vegetation growth trend

types, but also determines the dominant category during the

transition process. Consequently, this enables us to gain

understanding and discern the potential ramifications of ecological

restoration initiatives on the recuperation of vegetation in the area.

In summary, this research employed Landsat TM/ETM+/OLI

data spanning from 2000 to 2020 to construct a kNDVI dataset on

the Google Earth Engine (GEE) platform. The primary objective is

to analyze the spatial and temporal variations in vegetation cover

and the magnitude of its alterations within the Shendong Coal Mine

area. The research utilized Theil-Sen median slope analysis, Mann-

Kendall (MK) test, and Hurst exponent analysis to investigate the

spatiotemporal characteristics of vegetation cover and its future

development trends in Shendong Coal Mine. Furthermore, the

application of the intensity analysis framework is utilized to

examine the evolutionary attributes of various types of vegetation

growth trends during two distinct time periods: 2000-2010 and

2010-2020. The primary objective is to evaluate the current state of

vegetation restoration in the mining region and offer informed

suggestions for the long-term sustainability of Shendong Coal Mine.
2 Materials and methods

2.1 Study area

Shendong mining area (38°52′N–39°41′N, 109°51′E–110°46′E) is
situated in the southeastern part of the Ordos Plateau and the

northern edge of the Loess Plateau. It is situated at the

geographical border between Yulin City in Shaanxi Province and

Ordos City in Inner Mongolia Autonomous Region (as depicted in

Figure 1A). The estimated land area encompasses approximately 900

km2. The region exhibits an average annual temperature of 6.2 °C,

characterized by extreme minimum temperatures of -31.4 °C and

extreme maximum temperatures of 36.6 °C. The annual precipitation

in the region varies between 300 and 400 mm. Additionally, the rate

of evaporation surpasses the amount of rainfall by more than

fourfold, suggesting a characteristic arid to semi-arid continental

climate. The region exhibits variations in topography, characterized

by elevated terrain in the northwestern portion and comparatively

lower terrain in the southeastern part (as depicted in Figure 1B). On

average, the altitude of the area hovers around 1200 meters. The

mining area’s eastern and northeastern regions are comprised of loess

hills and mountains, which are distinguished by a network of gullies.

The region is situated within a transitional ecological zone

characterized by a blend of steppe and forest-steppe ecosystems (as

depicted in Figure 1C). The dominant vegetation types in this area

include grasslands, deciduous broadleaf shrubs, and sand-based

vegetation. These areas display three distinct landforms, namely

ridges, gullies, and loess tablelands. These regions are prone to

erosion and significant soil degradation. The western and

southwestern regions are characterized by the presence of mobile,

semi-fixed, and fixed sand dunes, which provide a suitable

environment for sand-based vegetation communities. These
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communities include sand-based pioneer plant communities and

Artemisia communities. Wetland vegetation is commonly observed

in low-lying areas, adjacent to river courses, and encircling bodies of

water such as lakes.
2.2 Data collection and preprocessing

The remote sensing image data utilized in this investigation

were acquired from the United States Geological Survey (USGS) as

Landsat T1_L2 products encompassing the time period from 2000

to 2020. The data were obtained through the utilization of the

Google Earth Engine (GEE) platform. The resolution of the images

was 30 meters, while the temporal resolution was 16 days. The data

underwent preprocessing techniques, such as atmospheric
Frontiers in Ecology and Evolution 04
correction, radiometric calibration, and cloud removal, specifically

targeting data with cloud cover below 20% within the local

vegetation growth season spanning from July to October. Table 1

presents comprehensive details regarding the data utilized in the

present study. In order to mitigate the problem of data striping

observed in Landsat 7 satellite imagery, a destriping algorithm

provided by the Google Earth Engine (GEE) platform was

utilized. Following that, the computation of the Normalized

Difference Vegetation Index (NDVI) and Kernel Normalized

Difference Vegetation Index (kNDVI) was carried out on the

cloud. The study employed a median composite algorithm to

generate composite images. Additionally, the Quality Mosaic

algorithm available online was employed for image clipping in

order to address the negative impacts of clouds, atmosphere, and

satellite sensor angles on the remote sensing data.
TABLE 1 Sources of data used in this study.

Dataset Type
Image Usability

Analysis
Spatial

Resolution/m
Time Resolution/Year Data Source

Image data

Landsat 5 T1 Raster 73 scenes 30 2000-2011
United States Geological Survey

https://www.usgs.gov/

Landsat 7 T1 Raster 129 scenes 30 2000-2020
United States Geological Survey

https://www.usgs.gov/

Landsat 8 T1 Raster 74 scenes 30 2013-2020
United States Geological Survey

https://www.usgs.gov/
B

C

A

FIGURE 1

The study area in the Shendong Coal Mine (A) location in China, (B) elevation, and (C) land-cover class.
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The present study examines the accessibility of Landsat images

within the Shendong mining area, utilizing the GEE cloud platform.

A comprehensive analysis yielded a total of 276 images that were

deemed suitable for further investigation. Figure 2 illustrates the

temporal distribution of satellite images from the years 2000 to

2020, as depicted in Figure 2A, along with the corresponding

number of available images, as shown in Figure 2B.
2.3 Research methods

As illustrated in Figure 3, this study acquired a dataset of kNDVI

spanning 21 years, from 2000 to 2020, specifically from the Shendong

Coal Mine. The dataset was partitioned into two distinct periods,
Frontiers in Ecology and Evolution 05
namely 2000-2010 and 2010-2020, in order to investigate the patterns

of vegetation change. The Theil-Sen Median slope estimation and

Mann-Kendall trend test methods were utilized to discern patterns of

vegetation change. The Hurst exponent was employed to assess the

long-term persistence of vegetation dynamics in the studied area. We

employed the intensity analysis framework model to evaluate the

intensity of transition trends in vegetation changes during the two

periods. This assessment took into account both absolute and relative

intensity perspectives.

2.3.1 kNDVI vegetation index calculation
The kNDVI is a normalized vegetation index that utilizes kernel

functions, which are a type of machine learning techniques. The

proposed approach represents an advancement of the conventional
BA

FIGURE 2

Availability of Landsat images of a time series of the reserve from 2000 to 2020, (A) Landsat image time distribution, (B) total number of sensor
image (Landsat5/7/8).
FIGURE 3

Flow chart of the research.
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NDVI index, with the primary objective of addressing the

challenges related to scale transformation and nonlinearity.

According to Camps-Valls et al., 2021), the integration of kernel

technology enables kNDVI to offer enhanced vegetation

information that is both dependable and precise, even in

scenarios involving nonlinear variations and across various scales.

The calculation formula is as follows (Equation 1):

kNDVI = tanh NIR−Red
2s

� �2� �
= tanh NDVI

2t
� �2� �

(1)

Where s represents a length scale directly proportional to the

mean values of near-infrared and red reflectance obtained from the

remote sensing image. A t =0.5 strikes a favorable compromise

between accuracy and simplicity (Wang et al., 2023). Using s =

t(NIR+Red). The calculation formulas are as follows : (Equations 2, 3)

dkNDVI
dNDVI = 1

2t 2 (1 − kNDVI2)NDVI (2)

kNDVI = tanh(NDVI2) (3)
2.3.2 Sen+Mann-Kendall vegetation
trend analysis

The Theil-Sen median trend analysis, also referred to as Sen

trend analysis, is a resilient non-parametric statistical technique

employed to compute trends. In contrast to linear regression trend

analysis, the Sen trend analysis method has the ability to mitigate

the influence of missing time series data and the shape of the data

distribution. Additionally, it effectively eliminates the interference

caused by outliers in the time series data (Gocic and Trajkovic,

2013). The mathematical expression denoted as Equation 4

provides the formula for determining the magnitude of the Sen

trend.

bkNDVI = median
kNDVIj−kNDVIi

j−i

� �
,∀ i (4)

Where kNDVIi and kNDVIj represent kNDVI time series. A

bkNDVI > 0.0005 indicates an improved kNDVI trend. Conversely, a

bkNDVI < 0.0005 implies a degraded kNDVI trend.

The Mann-Kendall test, also known as the MK test, is frequently

employed in conjunction with Sen trend analysis. The

aforementioned approach is a non-parametric statistical test that

exhibits robustness in the presence of missing values and outliers.

Additionally, it does not make any assumptions regarding the

underlying data distribution (Yue and Wang, 2004). The

statistical test procedure is demonstrated in (Equations 5–8).

Z =

S−1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p   (S > 0)

0   (S = 0)

S−1ffiffiffiffiffiffiffiffiffiffi
Var(S)

p   (S < 0)

8>>><
>>>:

(5)

S = o
n=1

j=1
o
n

i=j+1
sign(kNDVIj − kNDVIi) (6)
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Var(S) =
n(n − 1)(2n + 5)

18
(7)

sign(q) =

1   (q > 0)

0   (q = 0)

−1   (q < 0)

8>><
>>:

(8)

Where kNDVIj and kNDVIi refer to kNDVI time series; sign

represents the sign function; S denotes the test statistic; Z is the

standardized test statistic; n is the number of data points. At a given

significance level a, if | Z | > Z1−a=2, it suggests the presence of a

significant trend change. In this study, a is set as to 0.05, implying

the evaluation of the significance of kNDVI time series changes at a

0.05 significance level.

2.3.3 Analysis of vegetation change sustainability
The calculation of the Hurst exponent is derived from the

application of the rescaled range (R/S) analysis method. This

exponent is utilized as a metric to discern whether a given set of

time series data adheres to a random walk or a biased random walk

process. The description of time series patterns is a widely employed

approach in the fields of hydrology, geology, and climate studies

(Sioris et al., 2016). This study employs the Hurst exponent to

characterize the future temporal evolution of pixel values within the

study area. The computation method is as follows:

For a given time series { kNDVI ( t ), 1, 2,..., n }, the mean

sequence is defined by Formula (Equation 9):

kNDVI(T) =
1
To

T

t=1
kNDVI(T)  T = 1, 2,⋯, n (9)

The cumulative deviation formula is (Equation 10) :

X(t,T) =o
t

t=1
(kNDVI(t) − kNDVI(T))   1 ≤ t ≤ T (10)

The value range formula of and is (Equation 11) :

R(T) = maxX(t,T) −minX(t,T)  T = 1, 2,⋯, n (11)

The standard deviation formula is (Equation 12) :

S(T) =
1
To

T

t
(kNDVI(t) − kNDVI(T))

2
� �1

2

 T = 1, 2⋯, n (12)

And using the above formula, we can get Formula (Equation 13)

:

R(T)

S(T)
≅ R

S (13)

A R=S ∝ TH indicates the presence of the Hurst phenomenon

in the analyzed sequence. Here, H represents the Hurst exponent,

which can be obtained by fitting log (R=S)n = R=S( )n = a +

H*log(n), using the least squares method. A 0< H< 0.5 indicates

anti-persistent kNDVI in the time series, implying that the future

trend is opposite to the past. As H gets closer to 0, the degree of anti-

persistence increases. Similarly, a 0.5 < H < 1 suggests positive

correlation in the kNDVI time series, meaning that the future trend

is consistent with the past. As H approaches 1, the degree of positive
frontiersin.org

https://doi.org/10.3389/fevo.2023.1344664
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Chen et al. 10.3389/fevo.2023.1344664
correlation strengthens. A H = 0.5 signifies that the variation trend

of kNDVI in the time series is a random sequence with no

significant correlation.

2.3.4 Intensity analysis framework model
The analysis of intensity focuses on the quantitative assessment

of vegetation change trends, which occur at various time intervals.

This examination is conducted from two distinct viewpoints:

absolute intensity and relative intensity. The concept of absolute

intensity pertains to the absolute number of trend conversions

occurring within a specific time frame. This measure can be

examined from two perspectives: the conversion from a particular

trend type to different trend types, and the conversion from other

trend types to the specified trend type. The calculation formulas for

each intensity pattern are specified as follows:

The absonorlute transition intensity, denoted as AIij, represents

the conversion of the initial vegetation trend level i to a specific final

vegetation trend level jwithin the time interval [Tn,Tn+1] (where i≠j).

Its calculation formula is as follows (Equation 14):

AIij =
j ij=(Tn+1 − Tn)

oI
i=1j ij

(14)

The mean absolute transition intensity (MAIj) for the

conversion of all vegetation trend grades except j to grade j

within the time interval [Tn,Tn+1]; Its calculation formula is as

follows (Equation 15):

MAIj =
oI

i=1j ij

� �
− j jj

	 

=(I − 1)

� �
=(Tn+1 − Tn)

oI
i=1j ij

(15)

The absolute transition intensity, denoted as AOxy, represents the

conversion of the initial vegetation trend grade x to a specific final

vegetation trend y within the time interval [Tn,Tn+1] (where x≠y). Its

calculation formula is as follows (Equation 16):

AOxy =
jxy=(Tn+1 − Tn)

oY
y=1jxy

(16)

The average absolute transition intensity (MAOx) is calculated for

all vegetation trend grades except x within a specific time interval [Tn,

Tn+1]; Its calculation formula is as follows (Equation 17):

MAOx =
oY

y=1jxy

� �
− jxx

h i
=(Y − 1)

n o
=(Tn+1 − Tn)

oY
y=1jxy

(17)

Where i and y represent the initial and final vegetation trend grades,

while j and x represent the transition-in and transition-out vegetation

trend grades. jij and jxy represent the area of the transition from grade i

to grade j and the transition from grade x to grade y, respectively, within

the given time interval. jjj and jxx represent the area in which the grade
remains unchanged within the time interval. I and Y denote the number

of initial and final vegetation trend grades, respectively.

The concept of absolute intensity pertains to the absolute

number of trend type conversions, encompassing both the

process of transitioning into a trend type and the process of

transitioning out of it. Relative intensity, in continuation of this

foundational analysis, conducts a further examination of the
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influence of the intensity of land cover conversion on the

structure of vegetation change trends in the study area.

The transition intensity, denoted as RIij, represents the

conversion of the initial vegetation trend grade i to a specific final

vegetation trend grade j within the time interval [Tn,Tn+1] (where

i≠j), as: Its calculation formula is as follows (Equation 18):

RIij =
j ij=(Tn+1 − Tn)

oY
y=1j iy

(18)

The average relative transition intensity, denoted asMRIj, is the

conversion of all other vegetation trend grades except j to grade j

within the time interval [Tn,Tn+1], as: Its calculation formula is as

follows (Equation 19):

MRIj =
oI

i=1j ij

� �
− j jj

	 

=(I − 1)

� �
=(Tn+1 − Tn)

oY
y=1½(oI

i=1j iy) − j jy�
(19)

The relative transfer strength ROxy (x≠y) represents the

conversion of the initial vegetation trend level x to a final

vegetation trend level y within the time interval [Tn,Tn+1], as: Its

calculation formula is as follows (Equation 20):

ROxy =
jxy=(Tn+1 − Tn)

oI
i=1j iy

(20)

The average relative transfer strength MROx represents the

conversion of vegetation trend level x within the time interval

[Tn,Tn+1] to all other vegetation trend levels except x, as: Its

calculation formula is as follows (Equation 21):

MROx =
oY

y=1jxy

� �
− jxx

h i
÷ (Y − 1)

n o
÷ (Tn+1 − Tn)

oI
i=1 oY

y=1j iy

� �
− j ix

h i
:

(21)

In the equation above, jix represents the area where the initial

vegetation trend level i transitions to level x, and jiy represents the

area within the time interval [Tn,Tn+1] where the initial vegetation

trend level i transitions to the final levely.
3 Results

3.1 Temporal and spatial variations of
vegetation coverage

3.1.1 Temporal dynamics of vegetation coverage
The representative kNDVI values for each year between 2000

and 2020 were obtained by utilizing the median value of kNDVI

pixels in the images from 2000 to 2020, which serves as a

comprehensive indicator of vegetation conditions. The annual

kNDVI values were utilized in order to generate a fitted curve

that illustrates the fluctuations in kNDVI, as depicted in Figure 4. As

depicted in Figure 3, there exists a notable disparity in kNDVI

values over the course of multiple years. Between the years 2000 and

2020, as depicted by the red line, the normalized difference

vegetation index (kNDVI) exhibited an upward trajectory from

0.040 to 0.185. This corresponds to an annual growth rate of 0.0065,

suggesting a notable and swift enhancement in vegetation coverage.
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A model was developed to analyze the spatiotemporal variation

of vegetation coverage within the protected area. This model

utilized the pixel-based intermediate approach. The findings of

the study indicate a statistically significant rise in the mean

annual vegetation coverage within the mining region between

2000 and 2020 (p< 0.05). The Mann-Kendall mutation test was

utilized to construct a map depicting the annual mutation of

vegetation coverage in the mining area. The analysis revealed that

this mutation occurred in the year 2010, as illustrated in Figure 5.

Given the clear presence of discernible mutation points in both the

UF and UB curves in the year 2010, the present study opted to

partition the time series data pertaining to vegetation coverage

within the protected area into two distinct stages: the period

spanning from 2000 to 2010, and the subsequent interval from

2010 to 2020. Figure 4 illustrates the kNDVI trends from 2000 to

2010, as represented by the blue line. During this time frame, a

gradual growth phase is observed, characterized by an increment
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from 0.04 to 0.079 in kNDVI values. The corresponding growth rate

is calculated to be 0.0041 per annum. In contrast, the time span

from 2010 to 2020 (represented by the green line) exhibited a

notable period of expansion, as indicated by the increase in kNDVI

from 0.079 to 0.185 and a growth rate of 0.013 per annum. During

the period from 2000 to 2010, the Shendong Coal Mine undertook

extensive afforestation initiatives and implemented diverse

ecological and environmental comprehensive management

approaches throughout its development and construction

endeavors. Nevertheless, the challenging conditions of the mining

region posed significant obstacles to the process of vegetation

reconstruction and restoration, thereby impeding the rate of

growth in comparison to the timeframe spanning from 2010 to

2020. Between the years 2010 and 2020, there was a notable

establishment of a foundation for vegetation coverage,

accompanied by intensified efforts towards vegetation recovery.

Consequently, there was a significant and rapid augmentation in
FIGURE 5

Mann-Kendall mutation test.
FIGURE 4

Time variation of median kNDVI in the Shendong Coal Mine, 2000—2020.
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vegetation coverage. From the year 2000 to 2020, there was a

noticeable pattern of substantial vegetation expansion within the

mining region.

3.1.2 Spatial distribution characteristics of
vegetation coverage

Figure 6 illustrates the distribution characteristics of median

values of kNDVI during various stages of the 21-year duration of

Shendong Coal Mine. The calculation of the overall vegetation for

the time periods of 2000-2010, 2010-2020, and 2000-2020 was

conducted using the median values of the annual kNDVI. The

selection of median values was made to serve as a representation of

the vegetation coverage across the three stages in question. The

findings demonstrated a strong correlation between the extent of

vegetation coverage and the corresponding rates of vegetation

growth observed at each stage. The vegetation coverage during

the time frame of 2010-2020 exhibited the highest value of 0.149,

indicating the most favorable conditions. Subsequently, the periods

of 2000-2020 and 2000-2010 displayed values of 0.087 and 0.065,

respectively, suggesting relatively lower levels of vegetation

coverage. Based on the analysis of Figure 6, it is evident that the

three stages (Figures 6A–C) exhibit a notable concentration of

elevated kNDVI values in the eastern and western regions of the

Shendong mining area. Additionally, these high values are also

observed in the mountainous areas flanking the town, as well as in

the southern sections of the Huojitu and Daliuta mining areas.

Conversely, the diminished values primarily manifest in the urban

regions of the mining vicinity and adjacent areas that experience

substantial anthropogenic impact, such as the Ulan Mulun and

Shigetai coal mining regions. In general, the spatial distribution of

kNDVI in the Shendong mining area demonstrates a consistent

pattern. The vegetation coverage within the entirety of the

Shendong mining area exhibits minimal fluctuations. The

vegetation coverage in certain mining regions, such as Da Lita

and Ulan Mulun Mine, exhibited a lower extent. In general, the

vegetation coverage along the eastern and western boundaries of the

Shendong Coal Mine exhibited superior characteristics. Moreover,
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this geographical area serves as a crucial site for the execution of

ecological conservation initiatives in China, including afforestation

and reforestation schemes. These endeavors have yielded

noteworthy benefits in terms of enhancing vegetation coverage as

a result of human interventions.

3.1.3 Spatial variation characteristics of
vegetation coverage

In order to accurately capture the patterns of vegetation changes

and spatial distribution characteristics in the area, this research

integrates Sen’s trend analysis with the Mann-Kendall test. The

Sen’s values can be categorized into three distinct groups. The first

group consists of values falling within the range of -0.0005 to

0.0005, which are considered as indicative of a stable condition. The

second group includes regions with Sen’s values equal to or greater

than 0.0005, which are classified as areas showing improvement.

Lastly, the third group comprises regions with Sen’s values less than

-0.0005, which are identified as areas experiencing degradation. The

outcomes of the Mann-Kendall test are categorized into two groups:

statistically significant changes (Z > 1.96 or Z< -1.96) and

statistically insignificant changes (-1.96 ≤ Z ≤ 1.96), with a

confidence level of 0.05. The vegetation change trend map for the

entire region is derived by aggregating the results at each pixel scale.

Based on the aforementioned classification criteria, the entire region

can be categorized into five distinct groups, as illustrated in Table 2.

Based on the analysis of the annual inter-annual variation trend

of kNDVI in the Shendong Coal Mine spanning from 2000 to 2020

(Figure 7), it is evident that the vegetation growth within the region

has exhibited a notable enhancement, encompassing approximately

89.47% of the entire mining area. The proportion of the total area

that is classified as degraded is 2.74%. The degraded areas primarily

exist within different open-pit mining sites, specifically the northern

section of Huojitu Mine and the southern section of Shigetai Mine.

The mining region has adopted strategies for concurrent mining

and restoration, with each individual mine making efforts to

mitigate environmental harm and engage in active restoration of

impacted areas. Consequently, the areas exhibiting slight
B CA

FIGURE 6

Spatial distribution characteristics of vegetation cover (A) 2000—2010, (B) 2000—2020, (C) 2010—2020.
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improvements are primarily localized along the perimeters of the

open-pit regions of each mine, constituting approximately 4.65% of

the overall land area. The Shendong Coal Mine holds significant

importance as a focal region for the implementation of ecological

conservation initiatives within China. From the year 2000 to 2020,

there was a notable increase in vegetation coverage within the

mining area.

To provide a comprehensive depiction of vegetation dynamics

from 2000 to 2020 and elucidate patterns of vegetation change, the

temporal span is partitioned into two distinct stages: 2000-2010 and

2010-2020. This division is predicated on the growth rate of

vegetation coverage, as illustrated in Figure 8. The examination of

the trend in vegetation growth during two distinct stages provides

insight into the intensity of vegetation restoration and the mode of

transition observed in the mining area at different points in time.

According to the data presented in Figure 8, the period from 2000 to

2010 witnessed a discernible but modest upward trajectory in the

Shendong Coal Mine. This particular phase accounted for 54.83% of

the overall area. The trend of significant improvement represents
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the second largest proportion, comprising 31.47% of the total area.

In contrast, the period from 2010 to 2020 witnessed a notable

upward trend in the dominance of the mining sector, with its share

increasing from 31.47% in the 2000-2010 period to 61.16% in the

2010-2020 period. The percentage of the area exhibiting a slight

improvement trend decreases from 54.83% to 32.39%. In general,

the trajectory of vegetation dynamics progresses from a slight

improvement to a significant improvement pattern.
3.2 The spatial distribution and future
development trend of the Hurst exponent
for vegetation coverage

3.2.1 Spatial distribution of Hurst exponent for
vegetation coverage

According to the data presented in Figure 9, the average Hurst

exponent for kNDVI in the Shendong Coal Mine is 0.521. The

regions exhibiting Hurst values below 0.5 are primarily

concentrated in the northwestern section of the mining area,

encompassing the Cuncaota and Buertai Mines. These regions

account for approximately 40.12% of the total area. Conversely, it

can be observed that regions exhibiting Hurst values exceeding 0.5

are predominantly situated in the southeastern portion of the

mining area, encompassing Bulianta, Shanwan, and Daliuta

Mines. These specific regions account for approximately 59.88%

of the overall area. The comprehensive examination of the mining

region reveals that the kNDVI in Shendong Coal Mine

demonstrates a spatial pattern characterized by clustering,

accompanied by a certain level of variability.
FIGURE 7

Trends of inter-annual kNDVI change in the Shendong Coal Mine from 2000 to 2020.
TABLE 2 Statistical analysis results of kNDVI trends.

Sen’s Z value Trend of kNDVI

≥0.0005 ≥1.96 Significantly Improved

≥0.0005 -1.96-1.96 Slightly Improved

-0.0005-0.0005 -1.96-1.96 Stable

≤-0.0005 -1.96-1.96 Slightly Degraded

≤-0.0005 ≤-1.96 Severely Degraded
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3.2.2 Future development trend of
vegetation coverage

To enhance comprehension regarding the trajectory and long-

term viability of vegetation, an examination is conducted on the

kNDVI trend, which is subsequently juxtaposed with the Hurst

exponent. This integration yields interconnected insights, as

depicted in Figure 10. The findings can be categorized into four
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distinct groups: a consistent downward trend, a consistent upward

trend, a decline in the present with an anticipated increase in the

future, and an increase in the present with an expected decrease in

the future. The persistent decline in vegetation levels within the

region signifies a sustained and pronounced downward trajectory.

A continuous increase denotes a persistent and consistent upward

trajectory in vegetation. The present reduction and forthcoming
FIGURE 9

Spatial distribution of Hurst exponent in vegetation coverage.
BA

FIGURE 8

Trends of inter-annual kNDVI change in the Shendong coalfield: (A) 2000—2010, (B) 2010—2020.
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improvement signify a contemporary pattern of diminishing

vegetation, with a prospective shift towards an ascending

trajectory. The present improvement and forthcoming diminution

signify a prevailing positive trajectory in vegetation, yet a

prospective shift towards a negative trajectory.

Based on the data presented in Figure 10, it is evident that the

majority of regions exhibit an increasing trend in vegetation, with

certain areas projected to undergo a decline in the future. These

declining areas encompass a total land area of 349.22 km²,

constituting approximately 39.10% of the overall region. The

aforementioned regions primarily encompass the Cuncaota and

Buertai coal mine areas. Nevertheless, it is important to

acknowledge that the observed decrease in vegetation in Buertai

coal mine and similar regions may not provide an accurate

representation of the true state of vegetation on the terrain. Based

on field investigations, it has been discovered that the Cuncaota and

Buertai coal mines have adopted an “ecological restoration and

utilization model” that aligns with the local ecological conditions.

This model involves the establishment of ecological restoration

bases in areas affected by coal subsidence, as well as the

implementation of photovoltaic-assisted planting techniques

across a designated land area spanning 42,000 acres. As a result,

the utilization of photovoltaic panels has made remote sensing

techniques insufficient for accurately monitoring the current state of

ground vegetation. The areas in question exhibit a consistent

pattern of growth, encompassing a total land area of 510.87 km²,

which corresponds to 57.20% of the overall territory. These areas

hold significant influence within the context of the Shendong Coal

Mine. Only a small proportion, specifically 2.85%, of the entire

region exhibits a persistent decline, predominantly concentrated

within the open-pit areas of diverse mining operations.
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3.3 Analysis of the intensity of vegetation
change in Shendong coal mine

3.3.1 Analysis of vegetation growth trend
changes in Shendong coal mine

The vegetation growth trend observed in Shendong Coal Mine

can be divided into two stages: 2000-2010 and 2010-2020. During the

first stage, there was a slight improvement in vegetation growth, while

during the second stage, there was a significant improvement. The

combined area percentage of vegetation growth during the 2000-2010

period was 95%, whereas it was 86.30% during the 2010-2020 period.

A transition matrix (Table 3) is utilized to conduct a more

comprehensive examination of the change characteristics of various

vegetation trend types in Shendong Coal Mine. During the transition

from the 2000-2020 period to the 2010-2020 period, the prevailing

pattern of vegetation change predominantly exhibits a modest

improvement, as evidenced by an area measuring 489.75 km²

transitioning away from this particular category. The predominant

form of vegetation change that occurs during the transition process is

characterized by a substantial improvement, encompassing a total

area of 546.29 square kilometers. Among the diverse categories of

vegetation trend transitions, the transition from a slight to a

significant improvement stands out as the most notable. This

transition encompasses an area of 289.07 km², constituting

approximately 58.02% of the total area undergoing a transition

away from the slight improvement category. In general, the

vegetation trends observed in Shendong Coal Mine during the two

stages exhibit a consistent and stable pattern of cross-transition. This

pattern primarily involves a shift between slight improvement and

significant improvement types, indicating the favorable influence of

local ecological restoration initiatives on the recovery of vegetation.
FIGURE 10

Future trends in vegetation coverage.
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The existing research primarily emphasizes the direct utilization

of area change information from the transition matrix, without

considering the underlying relationship between the structure of

vegetation trend and its transformation. To fully harness the

information contained in the transition matrix, this study

proposes an intensity analysis model. This model aims to delve

into the deeper-level information within the transition matrix and

comprehensively analyze the characteristics of vegetation trend

transitions in the region.

Figure 11 displays the chart depicting the intensity of change in

vegetation growth trends. The chart comprises units that symbolize

the reciprocal transformation between the initial vegetation growth

trend (i) and the final vegetation growth trend (j) within a specific

time interval. The x-axis is indicative of the initial trend in vegetation

growth, whereas the y-axis represents the final trend in vegetation

growth. The intensity chart comprises four components for each unit:

absolute inflow intensity, absolute outflow intensity, relative inflow

intensity, and relative outflow intensity. The filling rules can be

described as follows: the color light green is used to represent a

tendency, while the color orange is used to represent an inhibition.

Specifically, when all units in the chart are horizontally filled with

light green, it signifies a transformation process from the initial
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vegetation growth trend i to the final vegetation growth trend j. This

transformation is characterized by both the absolute inflow intensity

and absolute outflow intensity exhibiting a tendency, which reflects

an overall absolute tendency in the transformation. When all units

are occupied by the color orange, it signifies a relative inclination

within the process of transformation. When a collection of entities is

populated exclusively with either light green or orange, it signifies the

presence of a systematic tendency or inhibition.

The intensity analysis framework offers a comprehensive

examination of the transfer matrix data, thereby enhancing the

availability of decision-making information for local ecological

restoration efforts. Figure 11 illustrates discernible attributes in

the alteration of vegetation growth patterns during two distinct

time periods: 2000-2010 and 2010-2020. There exist four primary

forms of intensity conversion, with the relative tendency emerging

as the prevailing type. Furthermore, there is a relatively balanced

distribution of tendencies and inhibitions in general. The shift from

significant improvement to slight improvement signifies a complete

transformation in trend. This suggests that the vegetation within the

mining region exhibits a propensity for degradation in terms of

absolute intensity, yet demonstrates an increasing trend in terms of

relative intensity. For instance, the transitions observed between
FIGURE 11

Atlas of vegetation change intensity from 2000—2010 to 2010—2020.
TABLE 3 Transition matrix of vegetation growth trends from the period of 2000-2010 to the period of 2010-2020.

2000—2010/km²

2010—2020/km²

TotalSeverely
Degraded

Slightly
Degraded

Stable
Slightly

Improved
Significantly
Improved

Severely Degraded 0.03 0.18 0.81 1.48 2.20 4.70

Slightly Degraded 0.66 2.75 3.24 25.10 37.33 69.08

Stable 0.33 1.80 5.33 15.44 25.72 48.61

Slightly Improved 3.33 17.90 5.59 173.86 289.07 489.75

Significantly Improved 1.77 10.50 3.37 73.42 191.97 281.02

Total 6.11 33.13 18.32 289.30 546.29 893.16
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significant degradation and slight degradation, significant

degradation and stability, and slight degradation and stability

demonstrate inherent tendencies that are relative in nature. The

observed shift from slight to significant improvement indicates a

consistent pattern, providing additional evidence for the positive

impact of ecological restoration initiatives on vegetation in the

mining region. The observed results are consistent with the patterns

of local vegetation evolution. The intensity spectrum encompasses

the fundamental principles governing vegetation growth trends as

well as the dynamic variations in vegetation growth characteristics.

The transition from slight to significant improvement aligns with

the overarching principles governing alterations in vegetation

growth patterns, thus affirming the viability of the intensity

analysis framework and visualization spectrum employed in this

research. The forthcoming analysis will concentrate on conducting

a comprehensive examination of these patterns of change.

3.3.2 Analysis of the transformation pattern from
slight improvement to significant improvement

The primary analysis was centered on examining the

transitional region and variations in the intensity of various types

of vegetation growth trends. In the examination of the intensity

chart pertaining to the transition from slight improvement to
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significant improvement (Figure 12), the dashed line denotes the

uniform transitional intensity expressed as a percentage. When the

transitional intensity surpasses the uniform intensity, it signifies a

preferential focus on gains and losses within a specific growth trend

category. The analysis reveals that the significant improvement

trend type demonstrates a notable expansion in its coverage area,

exhibiting an intensity that surpasses the average level by a

significant margin (0.016%). This is in contrast to the slight

improvement trend type, as depicted in Figure 12A. These

findings suggest a propensity for transitioning from the slight

improvement trend type to the significant improvement trend

type. Furthermore, this transition appears to impede the shift

from the slight degradation trend type and the remaining four

types. In a similar vein, the slight improvement trend type

demonstrates a heightened intensity surpassing the average level

(0.016%) during the transition to the significant improvement trend

type. This suggests a propensity towards transitioning to the

significant improvement, while inhibiting transitions to the

significant degradation trend type and other types (see

Figure 12C). When considering the relative intensity, if each type

transitions to the significant improvement trend type in proportion

to its initial area, the inflow intensities of each type should be equal.

The data reveals that the slight improvement trend type experiences
B

C D

A

FIGURE 12

Intensity analysis of Slightly Improved to Significantly Improved, (A) Transitions to significantly improved absolute intensity, (B) Transitions to significantly
improved relative intensity, (C) Transitions from slightly improved absolute intensity, (D) Transitions from slightly improved relative intensity.
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a relatively higher inflow intensity (0.058%) towards the significant

improvement trend type (Figure 12B). This suggests that there is a

tendency for the slight improvement type to transition into the

significant improvement type with a larger proportion of its area,

resulting in a more substantial impact on the percentage of the

significant improvement type in the study area. In a similar vein, the

type characterized by a slight improvement trend demonstrates a

relatively higher outflow intensity (0.052%) towards the slight

degradation and significant improvement types (Figure 12D).

This suggests a greater increase in the proportions transitioning

to other types, as opposed to the inhibited transition to the stable

type. This implies that the process of transformation has a

substantial influence on the proportion of the significant

improvement category within the study region.

3.3.3 Analysis of the transformation pattern from
stable to slight degradation

The examination of the intensity chart depicting the transition

from stable to slight degradation (Figure 13) reveals that Shendong

Coal Mine exhibits a discernible inclination in the progression from

the stable vegetation growth category to the slight degradation

category. Regarding absolute intensity, it is observed that both the
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inflow from stable to slight degradation and the outflow from stable

to slight degradation exhibit values that are below the average

absolute intensity, specifically 0.023% and 0.022% respectively. This

observation suggests that the size of the transition zone between

stable and slightly degraded types is relatively limited when

compared to other types. This implies that there is an inhibitory

effect in terms of the overall quantity, as depicted in Figures 13A, C.

However, in terms of relative intensity, the slight degradation type

demonstrates a greater inflow from both the stable and significant

degradation types compared to the average level (0.0037%). In a

similar vein, the stable type demonstrates a greater outflow towards

the slight degradation type from both the stable and significant

degradation types compared to the average level of 0.005% (as

depicted in Figures 13B, D). The aforementioned findings

demonstrate a notable inclination towards transitions from the

stable category to the slightly degraded category. It is important to

acknowledge that the inhibitory behavior observed in absolute

intensity does not directly constrain the relative tendency in

terms of intensity. Although the transition area between the stable

type and the slight degradation type is small, it can still exert a

notable influence on the distribution of these types within

the region.
B
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FIGURE 13

Intensity analysis of Stable to Slightly Degraded, (A) Transitions to slightly degraded absolute intensity, (B) Transitions to slightly degraded relative
intensity, (C) Transitions from stable absolute intensity, (D) Transitions from stable absolute intensity.
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4 Discussion

4.1 The kNDVI index and
spatiotemporal changes

This study provides a comprehensive examination of the spatial

distribution, inter-annual variability, and intensity transitions of the

kNDVI (kernel Normalized Difference Vegetation Index) in the

Shendong Coal Mine area from 2000 to 2020. The analysis is

conducted using the Google Earth Engine (GEE) platform. In

contrast to prior research, the primary emphasis of this paper lies

in the enhancement of vegetation indices and the examination of

spatiotemporal variations in vegetation. The current body of

research primarily relies on NDVI products, primarily derived

from MODIS data, which may not provide an accurate

representation of vegetation changes in mining areas (Li et al.,

2020; Li et al., 2021b; Xu et al., 2022). Nevertheless, the utilization of

kNDVI in this research significantly deviates from the conventional

NDVI approach by effectively addressing the challenge of mixed

pixels. Both the kNDVI and NIRv indices operate within the near-

infrared spectrum. Pixels exhibiting high vegetation coverage

demonstrate a robust association between kNDVI and variables

such as chlorophyll fluorescence. However, this correlation

diminishes as vegetation coverage declines (Zhang et al., 2022;

Ma et al., 2023b; Wang et al., 2023). Yet, the reduction in

correlation observed for kNDVI is comparatively less pronounced

than that observed for NDVI, suggesting that the kNDVI index

exhibits a notable capability in distinguishing reflectance across

various vegetation levels (Ding et al., 2022; Qiu et al., 2022).

Furthermore, the kNDVI metric possesses a robust theoretical

foundation, rendering it straightforward to compute and

implement. Moreover, it holds significant utility in the

examination of both natural and agricultural systems. The index

demonstrates a strong association with GPP and SIF in grasslands,

farmland, mixed forests, and arid areas. This suggests that the index

effectively addresses saturation and mixed pixel challenges that are

commonly encountered by conventional indices (Deng et al., 2020;

Wang et al., 2022a). Moreover, the scope of its application extends

beyond the monitoring of vegetation, encompassing change and

anomaly detection, phenology, and greening research. Furthermore,

this exemplifies the viability and significance of utilizing this index

as a means of monitoring alterations in vegetation restoration

within the Shendong mining area. A comprehensive analysis of

vegetation spatiotemporal changes over a period of 21 years in the

Shendong mining area has been conducted, focusing on the

utilization of the kNDVI index to address saturation effects in

vegetation analysis. The current body of literature predominantly

centers on the examination of spatiotemporal variations in

vegetation within a specific geographic area over an extended

duration (Zhang et al., 2021; Guo et al., 2023). However, there is

a dearth of research investigating vegetation dynamics across

distinct time periods within the same region, as well as the

evolving nature of these changes over time. The Shendong Coal

Mine is situated in a region that serves as a transitional zone

between the Loess Plateau and the Mu Us Desert. This location

renders it a representative mining area of significant importance for
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ecological restoration efforts (Yang et al., 2022a). In order to

evaluate the efficacy of vegetation restoration and elucidate the

temporal evolution of vegetation recovery in Shendong Coal Mine

over a span of 21 years, this study undertakes a comprehensive

analysis of the spatial and temporal patterns as well as the

magnitude of changes in vegetation. Drawing upon prior

research, the objective of this study is to enhance the breadth of

knowledge regarding the fluctuations in vegetation within the

Shendong Coal Mine. By doing so, it aims to contribute valuable

insights that can inform ecological and environmental restoration

endeavors in the area.
4.2 Analysis of factors influencing kNDVI
spatiotemporal changes

The study utilized Sen’s and Mann-Kendall trend analysis to

examine the spatiotemporal variation trend of vegetation coverage

in the research area. The findings of the study revealed a statistically

significant alteration in the extent of vegetation coverage when

implementing the concurrent mining and restoration approach in

the Shendong East mining region. The study area exhibited a

consistent upward trajectory in vegetation coverage from 2000 to

2010, followed by a substantial acceleration in growth from 2010 to

2020. Consequently, there was a notable enhancement in the overall

vegetation coverage. This discovery is consistent with the research

findings of Wu et al. (2023). The recovery of vegetation in the

mining area can be attributed to the successful implementation of

various strategies such as reforestation, grassland enclosure, and

rotational grazing policies in the Shendong East mining area since

2000. These measures have had a positive impact on the restoration

of grassland ecology. The Shendong East mining area is

characterized by its geographical location within a semi-arid and

arid climate zone, which contributes to the presence of a delicate

natural environment and challenging climatic conditions. The

degradation of the ecological environment in this mining area has

been intensified by the large-scale, high-intensity, and multi-layered

mining activities that have been repeatedly conducted. The

intensive mining activities in the region have initiated a cascade

of interconnected consequences, encompassing diverse

environmental and societal concerns. Among these, the

degradation of soil and vegetation has been identified as the most

profoundly affected aspect (Xu et al., 2021). In the Shendong East

mining area, the simultaneous mining and remediation model has

been implemented, incorporating vegetation restoration practices

since the initiation of production in 1985. In light of the recurrent

sandstorms and significant soil erosion observed in the mining

region, early-stage efforts in vegetation restoration involved the

implementation of measures such as grid fixation and sand flow

improvement. These measures were aimed at stabilizing the areas

characterized by mobile sand. Water storage and soil conservation

were accomplished utilizing techniques such as “horizontal ditches”

and “fish-scale pits.” Following this, various models for vegetation

restoration were developed, taking into account the varied

ecological conditions found in different regions (Song et al.,

2022). Liu et al. (2021a) have classified the vegetation restoration
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models in the Shendong East mining area as economic forest,

ecological forest, photovoltaic grassland, and sand control models.

Subsequently, crops and vegetation have been cultivated in

accordance with these models. Following an extensive period of

ecological restoration, the Shendong East mining area has witnessed

a substantial augmentation in vegetation coverage, surging from a

mere 3% to an impressive figure exceeding 64%. The plant

community has undergone a transition from an herbaceous

community primarily governed by Artemisia ordosica to a shrub-

grass community predominantly governed by Hippophae

rhamnoides. The plant species have experienced a substantial

increase in their numbers, expanding from the initial count of 16

to approximately 100. This notable growth has had a significant

impact on the populations of microorganisms and animals. The

enhancement of the existing delicate ecological environment has

been observed (Xu et al., 2023a). Nevertheless, the notable

augmentation in vegetation coverage within the mining region

cannot be exclusively ascribed to artificial ecological restoration

initiatives. Temperature and precipitation are significant factors

that contribute to the promotion of vegetation growth in mining

areas (Yu et al., 2020). In brief, the notable reestablishment of

vegetation within the mining region can be attributed to the

collaborative endeavors of local afforestation initiatives and

climatic influences.
4.3 Limitations and future work

Moreover, this study employs intensity analysis as a means to

further investigate the transformation characteristics exhibited by

various types of vegetation growth trends within the designated

study area. The intensity analysis method was employed to visually

represent the transition patterns of vegetation growth trends in the

region. This analysis revealed distinct tendencies and inhibitions in

the transformation processes of different types of vegetation growth

trends. For example, the trend types of significant improvement and

slight improvement demonstrate an absolute tendency in their

transformations, whereas the trend types of slight and significant

improvement exhibit a relative tendency in their transformations.

The results of this study further confirm the efficacy of the intensity

analysis approach employed, while also offering additional insights

into the comprehension of alterations in vegetation growth within

the research site. Furthermore, through the integration of the

kNDVI trend and the Hurst exponent, this investigation unveils

the long-term viability of alterations in vegetation. The findings

indicate the existence of four distinct sustainability patterns: a

consistent decline, a consistent growth, a decline in the present

with projected growth in the future, and growth in the present with

projected decline in the future. These findings provide additional

evidence of the lack of sustainability and the existence of a positive

correlation between vegetation changes in the study area. Moreover,

they contribute to enhancing our comprehension of the dynamic

processes associated with vegetation changes.

Nevertheless, this study exhibits specific constraints and

deficiencies. The scope of this study was limited to the Shendong

East mining area, which may restrict the generalizability and
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applicability of the research findings. Furthermore, the present

study exclusively utilized remote sensing data for analysis,

without taking into account field data and other relevant factors.

In addition, there was a lack of investigation into the influence of

meteorological factors on the spatial and temporal variations of

local vegetation, as well as a failure to explore the underlying

mechanisms driving these changes. The specific contributions of

human activities and meteorological conditions to the observed

substantial increase in vegetation coverage remain uncertain.

Furthermore, the long-term dynamics of vegetation coverage are

subject to various non-climatic influences, including urban

expansion, construction projects, grazing, and land use changes

(Ma et al., 2023a). Hence, it is imperative for future studies to

integrate field surveys and other pertinent data sources in order to

holistically and precisely elucidate the mechanisms by which coal

mining activities affect vegetation coverage. In addition, it is

imperative to integrate human activities and meteorological

factors into the analysis in order to enhance comprehension of

the spatial distribution of diverse climatic and non-climatic driving

factors. This will ultimately enable a more profound exploration of

the correlation between coal mining activities and vegetation

ecological environments.
5 Conclusions

The analysis focused on the spatiotemporal pattern of

vegetation kNDVI in the Shendong mining area from 2000 to

2020, utilizing Landsat kNDVI data. This examination provided

insights into the sustainability and intensity of evolution in

vegetation change trends. The findings indicated a consistent

upward trajectory in kNDVI values throughout the span of 21

years. The implementation of ecological restoration initiatives

resulted in a significant improvement of kNDVI throughout the

entire region. Specifically, during the period from 2010 to 2020,

there was a notable and swift growth rate of 0.013 per annum. The

analysis of vegetation coverage in the mining area using the Theil-

Sen median trend and Mann-Kendall tests demonstrated a

noteworthy enhancement in vegetation growth over the course of

the previous two decades. Specifically, the vegetation now

encompasses 89.47% of the total area, while only 2.74% of the

area has experienced degradation. In general, there was a notable

upward trajectory observed in the vegetation coverage within the

mining region. The examination of various stages indicated that

during the period from 2000 to 2010, there was primarily a marginal

enhancement trend, constituting approximately 54.83% of the

observed data. Conversely, from 2010 to 2020, a substantial

improvement trend emerged as the prevailing pattern,

encompassing approximately 61.16% of the analyzed data. In

general, there was a transition in the vegetation dynamic trend

from a slight improvement to a significant improvement.

Despite observing a general improvement and notable

enhancement in vegetation within the mining region, analysis of

the Hurst index distribution reveals that approximately 40.12% of

the area is projected to experience unsustainable vegetation growth

in the coming years. Consequently, the vegetation in these regions
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will experience a distinct transformation from its initial state of

growth. Upon analyzing the vegetation growth patterns, a majority

of the studied regions displayed an upward trajectory. However,

certain areas that exhibited an initial increase in vegetation are

projected to experience a decline in the future. These areas

encompass a landmass of 349.22 km2, accounting for

approximately 39.10% of the overall mining area. Moreover, the

transformation characteristics and transition intensities of

vegetation growth trends in the Shendong mining area during the

periods of 2000-2010 and 2010-2020 were visually depicted within

the framework of intensity analysis. As an illustration, the shift from

a slight to a significant increase demonstrated a consistent pattern,

whereas the shift from a substantial increase to a slight increase

displayed an unequivocal pattern. The observed characteristics

suggest that the vegetation within the mining site exhibits a

degree of adherence to the principles of ecological restoration

during the mining process.
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