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Coastal areas are characterized by high levels of urbanization and also the

most active and highly sensitive to geological activities. Due to the impact of

global climate change, landslides occur frequently in coastal areas, which

have significantly impacted the sustainable socio-economic development of

the region. Therefore, studying the spatial distribution of landslides and the

factors that drive them holds immense practical significance for the

geohazards prevention and mitigation work and optimization of ecological

security patterns in coastal areas. This study takes the southern Liaodong

Peninsula as the study area and analyzes the spatial distribution

characteristics and influence mechanism of landslides. We first applied the

Getis-Ord Gi*, kernel density analysis techniques, and Ripley’s K function to

explore the spatial distribution characteristics of landslides in the study area

at different scales. Then, we employed the information value method to test

for the linkage relationships between the driving factors and landslides.

Finally, we utilized the geographical detector to reveal the potential

impacts and interaction of the driving factors on landslides. The results

showed that: (1) landslides in the Southern Liaodong Peninsula exhibit

strong spatial clustering characteristics, and have a spatial scale effect; (2)

the high susceptibility areas are mainly concentrated in the southern hilly

regions and the mountainous regions in the northern parts of the study area;

(3) The information value method reveals that there is an optimal

combination of factors driving landslides. (4) The factor detector analysis

reveals that the primary driver of landslide spatial distribution is the

geomorphological types (q-value of 39.10%). (5) The interaction detector

indicates that the interplay of all driving factor pairs exhibited an enhanced

effect, which is not a simple superposition effect but bivariate and non-linear.

The collective influence of natural factors and human activities holds a more

substantial influence over landslide development and distribution. The

research offers guidance for the execution of landslide prevention

initiatives and the establishment of preservation policies for the ecological

environment in the southern Liaodong Peninsula region.
KEYWORDS

landslides, spatial distribution, information value model, GeoDetector, southern
Liaodong Peninsula
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1 Introduction

Landslide is a widespread natural disaster. It has the

character is t ics of regional i ty , mult i-causal i ty , s trong

destructiveness, and irremovability (Bozzolan et al., 2023).

According to the GFLD (Global Fatal Landslide Database), 55,997

people have died due to landslides worldwide in the past 50 years

(Dowling and Santi, 2014; Lin et al., 2017; Wu et al., 2023a). The

spatial distribution of landslides is heterogeneous, with Asia

accounting for 75% of the total and occurring mainly in

developing countries (Froude and Petley, 2018; Lin et al., 2021).

China’s geological environment is complex. Due to the extreme

climate and human engineering activities occurring frequently

(Dong et al., 2020; Guo et al., 2023), China has become one of

the most serious landslide countries in the past few decades (Zhang

and Huang, 2018; Huang et al., 2022). Major news websites and

experts’ blogs (https://blogs-agu-org.translate.goog/landslideblog)

show that landslides almost occur every day. It is important and

necessary to find out where the landslide hotspots are and what

factors can drive the occurrence of landslides. Such information

would provide a crucial reference for researchers and decision-

makers with a reliable basis for disaster prevention, mitigation, and

regional planning. It has great significance for early warning of

geological disasters.

In terms of the characteristics of the spatial distribution of

landslides, many researchers have proposed various methods to

research the distribution law of landslides by investigating the

relative relationship between the location of landslides and the

spatial location of factors such as slope, elevation, stratigraphic

lithology, land use, precipitation and so on (Pardeshi et al., 2013;

Bucci et al., 2016; Yang et al., 2021). Zhang and Huang (2018)

analyzed the spatial distribution of landslide disasters by mapping

historical landslide sites on different scales of administrative

districts. Sepúlveda and Petley (2015) analyzed the relationship

between hazard points and stratigraphic lithology as well as the

spatial and temporal distribution of rainfall. Qiu et al. (2019)

explored the spatial distribution characteristics of landslides using

spatial point pattern analysis.

Focusing on the exploration of landslide driving factors

exploring the landslide driving factors, it started in the 1950s and

has since developed various methods, such as physical models,

empirical models, and data models, and has achieved significant

progress in theoretical research and technical methods (Kavzoglu

et al., 2015; Pawluszek and Borkowski, 2017; Piacentini et al., 2018;

Dahim et al., 2023). Pawluszek and Borkowski (2017) used the

Analytic Hierarchy Process (AHP) method to study the

contribution value of factors derived from the digital elevation

model (DEM). Kavzoglu et al. (2015) used genetic algorithms to

select 16 influencing factors and validated the results by the logistic

regression (LR) model, which indicated that lithology and rainfall

were the main controlling factors. Dahim et al. (2023) employed

machine learning methods to filter a subset from the landslide

factors database and to produce a landslide susceptibility map.

Among these statistical analysis methods, the factor weight

allocation process of the model built relying on the experience of

experts is greatly affected by subjectivity (Bahrami et al., 2021). The
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methods based on machine learning offer higher prediction

accuracy, but the modeling process is more complex and requires

a large amount of basic dataset, which is difficult to obtain

accurately on a large scale. Therefore, it also limits the accuracy

of the assessment results and the applicability of the method

(Kavzoglu et al., 2014; Zhu et al., 2018). Nevertheless, the above-

mentioned traditional analysis methods are effective in identifying

the effect of individual driving elements on spatial distribution

characteristics of variables, they are not suitable for revealing the

strength of the driving factors and the magnitude of their

interactions (Sepúlveda and Petley, 2015; Tang et al., 2021).

Therefore, they cannot fully explain the comprehensive impact of

the driving mechanism. Many previous studies have shown that the

development and distribution of landslides are often comprehensive

consequences of the combination and interaction of multiple

factors (Bahrami et al., 2021; Hua et al., 2021).

To address such issues, the geographical detector (GeoDetector)

serves as a statistical model that can reveal the drivers based on spatial

heterogeneity. It can utilize the interaction of influencing factors to

perform correlation analysis on target variables and assess the degree

of these factors impact the target variables (Wang and Xu, 2017). The

major advantage of this approach is that it does not require linear

assumptions for the relationship between the response and

explanatory variables, as well as between the explanatory variable

pairs. This method objectively reveals the spatial correlation between

them (Zhou et al., 2018; Song et al., 2020). Additionally, it can be

applied to various types of explanatory variables and the outputs have

an elegant form and definite physical meaning in the model. The

GeoDetector method has been successfully applied to spatial and

spatiotemporal prediction and decision-making in a wide field of

natural disasters (Wang et al., 2022; Zhang Y. et al., 2023), air

pollution (Bai et al., 2019; Xu et al., 2021), public health (Qiao

et al., 2019), and engineering (Song et al., 2021), etc.

Landslides in various regions exhibit distinct characteristics.

The Liaodong Peninsula region, which is situated amidst the sea on

three sides, has a typical low mountainous and hilly environment

and coastal landform characteristics. Approximately 82.9% of its

total area is covered by mountains and hills, while its coastline spans

about 2211km. It is also the geographical center of the “Northeast

Asia Economic Circle” and an important node of the “Belt and

Road”. The complex engineering geological conditions and rapid

urbanization have significantly impacted the fragile geological and

ecological environment. As a result, the geohazards occur

frequently and have become an important limiting factor for the

socio-economic sustainable development of the area. Several

researchers have completed landslide susceptibility assessment

work in the Southern Liaodong Peninsula area. Liu (2019)

selected 8 evaluation indicators of elevation, elevation difference,

slope, vegetation cover, land type, precipitation, soil erosion, and

soil texture based on AHP and fuzzy comprehensive evaluation

(FCE) method to assess the risk of debris flow in the northern

mountains of the Dalian area. Li (2021) selected 9 indicators, such

as elevation, slope, aspect, lithology, etc., and comprehensively

analyzed the sensitivity of landslides in Zhuanghe using the

information value (InforVal) model. Wang (2022) selected 11

factors, such as DEM data and its derivatives, as well as flood
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season precipitation, and mapped landslide sensitivity zones in

Dalian area with the LR model. These research results can be

used to identify high risk areas and are beneficial to local

landslide prediction and management, but they fail to

quantitatively calculate the degree of influence of specific

geographical environment factors, and can not obtain the

comprehensive influence of both natural and human factors and

their interactions effecting on the spatial distribution of landslides.

In the present study, taking the Southern Liaodong Peninsula

area as the study area, sixteen driving factors were selected to

investigate the spatial variation patterns of landslides and reveal the

landslide driving mechanisms based on the InforVal model and the

GeoDetector method. Firstly, kernel density estimation and Getis-

Ord Gi* were utilized to analyze the spatial distribution

characteristics of landslide hazards and identify high-risk zones

in the study area. Then the InforVal model was employed to analyze

the linkage between landslides and driving factors and determine

the best combination of factors for landslide occurrence. Finally, the

GeoDetector model was used to identify the main driving factors of

landslide distribution in the study area and the interaction patterns

between various influencing factors. This study can provide more

scientific support for local administration to establish effective

disaster prevention and mitigation strategies to safeguard regional

geologic and ecological safety.
2 Study area and data

This section first introduces the study area and the data used for

landslide spatial distribution characteristics analysis, mainly

including data sources and landslide driving factors. Then, it

presents the main analysis methods, namely hot spot analysis,

kernel density and InforVal method, and GeoDetector method, etc.
2.1 Study area

The southern Liaodong Peninsula is located between 120°58'E

to 123°31'E, and 38°43'N to 40°10'N, covering a total area of

12,573.85 km2 and an elevation ranging from 0 to 1,110m above

sea level, as shown in Figure 1. The remaining veins of the Qianshan

Mountain run through the southern Liaodong Peninsula from

northeast to southwest and enter the sea. The terrain gradually

decreases in the southeast and northwest directions along Qianshan

Mountain. Mountains are mainly concentrated in the northern

regions and hills in the southern. The geomorphology types are

various and topographic relief is significant. The southern Liaodong

Peninsula has a warm temperate semi-humid monsoon climate

with maritime features. Approximately 70% of the precipitation is

concentrated from June to September (Wang et al., 2022).

Typhoons in summer and autumn will also bring concentrated

heavy rainfall (http://www.weather.gov.cn). The complex river

networks are formed by the Yellow Sea and Bohai Sea water

systems. Considering the stratigraphic and lithologic conditions,

the Taikonian-Anshan Group and Lower Paleozoic-Liaohe Group,

Mesozoic and Pleistocene strata are exposed in the study area (Liu,
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2019). Meanwhile, there are obvious differences in lithology

distribution, such as granite, diorite, and quartzite are mainly

distributed in the northern mountainous areas, while the

southern hilly areas are dominated by sandstone, conglomerate,

and limestone. The geological structures are characterized by

obvious neotectonic movements, which are mainly controlled by

the Jinzhou Fault, the northern section of the Tanlu Fault, and the

syncline from Heishijiao to Longwangmiao (Liu, 2019). Large

earthquakes are rare, while small earthquakes are frequent within

this area (Li, 2021). In 1861, a Ms6.1 magnitude earthquake

occurred in the Jinzhou area. Recently, on August 23, 2023,

another Ms4.6 shallow earthquake occurred in the Pulandian

area. Strong tectonic activity, complicated topography, and

concentrated rainfall provide a sufficient environment for

landslide disaster breeding in the study area.
2.2 Data used

According to the international landslide classification proposed

by Varnes (1978), there are 726 historical landslides in the study area.

These landslide points are interpreted from high-resolution remote

sensing imagery, field investigations, and historical record data, and

the sources for each landslide driving factor are shown in Table 1.
2.3 Landslide driving factors

Landslide occurrence is primarily caused by the inherent

geological conditions of the slope (such as slope, geomorphology,

and vegetation) and the interaction of external triggering factors

(such as earthquake, precipitation, and human activities) (Chen

et al., 2018; Wu et al., 2023a). Numerous researchers have

conducted investigations considering various environmental

factors. Following Ayalew and Yamagishi (2005), it is crucial to

select landslide driving factors being measurable, complete,

operational, and non-redundant. Several review articles have

provided comprehensive analyses of their factors selection

(Budimir et al., 2015; Reichenbach et al., 2018). In this paper,

after combining the spatial patterns and intrinsic characteristics of

landslides in the southern Liaodong Peninsula and referring to the

relevant literature, 16 factors, including geomorphological types,

aspect, slope, relief amplitude, gully density, lithology, TPI

(topographic position index), soil erosion, distance to roads,

distance to rivers, distance to faults, NDVI (normalized

differential vegetation index), distance to the residence, PGA

(peak ground acceleration), MFSP (mean flood season

precipitation), and land use, were selected to construct a landslide

driving factor system (Pourghasemi et al., 2018; Yu and Gao, 2020;

Zhang J. et al., 2023). These influencing factors are commonly used

in landslides to ensure that the model can be generalized to different

regions (Dou et al., 2019; Chang et al., 2023). Among these factors,

morphometric parameters such as aspect, slope, TPI and Relief

amplitude were derived from 30 meters ASTER GDEM V3 (http://

reverb.echo.nasa.gov) in ArcGIS10.8. Table 1 and Figure 2 describe
frontiersin.org
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the relationship between each factor and landslide. Among these

factors, some of them had categorical values (TPI, soil erosion, land

cover, etc.), whereas the others had continuous values (slope, NDVI,

distance to roads, etc.). For these continuous factors, this paper

reclassifies them according to the unsupervised discretization

methods and the geographic environment of the study area. The

details are shown in Table 2.
3 Methodology

3.1 Spatial distribution characteristics

The spatial distribution of landslides can be regarded as point

events in two-dimensional space. Therefore, the point pattern

analysis method in ecology can be used to study the spatial

distribution of landslide disasters and quantitatively characterize

its distribution pattern (Qiu et al., 2019). This work used the average
Frontiers in Ecology and Evolution 04
nearest neighbor (ANN) method to explore whether landslide

points have spatial aggregation characteristics. Additionally, we

used Getis-Ord Gi* (hotspot analysis) and kernel density

estimation methods to quantitatively analyze the degree of

aggregation of landslide points in different areas. Furthermore,

Ripley’s K function is employed to conduct dynamic quantitative

research on landslide spatial distribution characteristics.

3.1.1 Average nearest neighbor
The average nearest neighbor index (IANN) is used to analyze

the mutual proximity of the spatial distribution of point elements of

ground objects. It can be obtained by calculating the ratio between

the average observation distance of each nearest point pair and the

nearest neighbor distance assuming a random distribution pattern

(Shafabakhsh et al., 2017). Z-scores were used to test the statistical

significance of the ANN analysis. p-value was used to test the

reliability of the results of the study. The calculation formula of

IANN is as follows Equation 1:
FIGURE 1

Map showing the landslides distribution in the study area.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1339265
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Li et al. 10.3389/fevo.2023.1339265
IANN =
D0

0:5
ffiffiffi
A
n

q (1)

where: D0 is the average distance between a landslide point and

its nearest neighbor; n is the number of landslide points; A is the

area of the study area. When IANN < 1, the feature spatial

distribution tends to be clustered, and the smaller the value, the

higher the aggregation. When   IANN   > 1, the pattern shown tends

to be discrete or competitive.
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3.1.2 Getis-Ord Gi*
If landslides appear to be clustered in space, it means that within

a certain area, there is local spatial autocorrelation between the

landslides and the environmental elements of the area (Shen et al.,

2021). To further explore the local spatial clustering feature, this

paper uses the Getis-Ord Gi* method to generate a statistically

significant Z-score to detect the high-value aggregation areas (hot

spots) and low-value aggregation areas (cold spots) of landslides.

The calculation following Equation 2 (Tsangaratos et al., 2017):
TABLE 1 Classification and description of landslide driving factors.

Data type Factors Description Source Action

Topography

Slope
30 meters
resolution

Extracted by GDEM V3

Stability and development trend
of rock and soil mass, and
convergence of surface and
groundwater flow

Aspect 30 meters resolution Extracted by GDEM V3
Have different solar radiation
intensities and erosion rate

TPI 30 meters resolution Calculated by GDEM V3
Different slope positions have
different steepness and the
stress degree

Relief amplitude 30 meters resolution

The mean change point
method is used to extract the
rectangular neighborhood
with the best analysis window
of 54 × 54.

Affect surface erosion and
material slope movement
potential energy

Gully density 30 meters resolution

Density=L1·V1+L2·V2/area,
where, L1 and L2 represent the
length over the raster, and V1

and V2 are field values.

Characterize the degree of
surface fragmentation

Geomorpho-logical types 1:100000 vector data http://www.resdc.cn/

The breeding basis of geological
disasters, provides dynamic
conditions, material basis, and
airborne conditions.

Geology

Lithology 1: 200000 vector data
Dalian Hydrogeological
Investigation Bureau

Reflect the properties of the
rock itself.

Fault 1: 250000 vector data
Dalian Hydrogeological
Investigation Bureau

Controlling the extension and
scale of disasters

PGA Vector data https://www.gb18306.net
Reflect the intensity
of earthquake

Soil erosion 1000 meters resolution http://www.resdc.cn/
Affect soil hydrology and
soil stability

Hydrology

MFSP
1961 to 2021 years monthly
rainfall from 7 stations

http://data.cma.cn/
Affect the shear strength of the
slope and increases its
own weight

River Vector data
https://
www.openstreetmap.org

Eroding and absorbing
materials at the bottom
of slopes

Surface cover

Land use 30 meters resolution http://www.webmap.cn
Reflecting the human
engineering activities

NDVI Landsat8 OLI https://engine.piesat.cn/
Soil root reinforcement and
surface runoff regulation

Human activities

Residence 1:1000000 Vector data http://www.resdc.cn
Human activities are
closely related.

Road Vector data
https://
www.openstreetmap.org

Blasting and excavation during
road construction
frontiersin.or
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Ii =
(xi − x)

on
i=1(xi − x)2o

n

j=1
wij(xi − x) (2)

where: X is the mean value; wij is the spatial weight matrix. In

this study, the study area is divided into regular 1km × 1km cell

grids with a total number of 12,923, and the number of landslide

points within different grids is calculated as the targets for spatial

hotspot detection.

3.1.3 Kernel density analysis
According to Tobler’s First Law of Geography (Tobler, 1970),

“Everything is related to everything else, but near things are more

related than distant things”. It can be assumed that the probability of

a landslide occurrence at a specific spatial location is caused by the

natural environment or geological environment where it is located.

Therefore, this probability estimate can directly indicate the

susceptibility to landslides. This change in probability density can
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be used to analyze the spatial differentiation characteristics of

landslides (Wang et al., 2020). The KDA method has favorable

visualization, which enables a smooth representation of the

clustering and dispersion of landslides in continuous space. This

method only focuses on the landslide itself to analyze the distribution

patterns of events and does not require any a priori hypothesis (Li

et al., 2020). The kernel density analysis function f(x) is expressed in

Equation 3:

d =
1
r2o

n

i=1

3
p
(1 −

(x − xi)
2 + (y − yi)

2

r2
)

� �2
(3)

where: n is the number of landslide points; r is the search radius

value expressed in Equation 4:

r = 0:9min (DSD ·

ffiffiffiffiffiffiffiffi
1
ln 2

r
· Dm) · n

−0:2 (4)
FIGURE 2

Landslides driving factors.
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where: Dm is the median distance from the weighted average

center; DSD is the standard distance, and n is the number of

landslide points. The higher the kernel density value, the stronger

the degree of clustering of space events and the converse is true.

3.1.4 Ripley’s K function
The spatial distribution pattern of landslide events has a strong

dependence on scale, and various distribution patterns may appear

at different analysis scales (Wang et al., 2020). Ripley’s K function

method reflects the degree of dependence of the landslide spatial

distribution on a scale with the K(t) function. Compared with

traditional methods, Ripley’s K function method not only

overcomes the shortcoming that traditional methods can only

analyze spatial distribution patterns at a single scale but also can

maximize the use of spatial point information to describe the spatial

pattern information at different scales. Ripley’s K function is

subjected to variance correction and linearization to obtain the L

(d) function. The estimation value of the L(d) function can provide a

more intuitive way to determine the spatial distribution type of

landslide events. If L(d) > 0, it means that the landslides exhibit a

clustering distribution on the d scale, and a higher L(d) value shows

a stronger aggregation intensity. When L(d) = 0, it indicates a

random distribution, and when L(d)< 0, it represents a uniform

distribution of landslides. The main calculation formulas are

expressed in Equations 5, 6 (Wang et al., 2020):

K(d) = Ao
n

i=1
o
n

j=1

dij(d)
n2

(i ≠ j) (5)

L(d) =

ffiffiffiffiffiffiffiffiffiffi
K(d)
p

r
− d (6)

where: n is the number of landslide points in the study; A is the

area of the study area; d is the different spatial scales; and dij(d) is the
distance between points i and j within scale d.
3.2 Information value model

The theoretical basis of the information value model is

information theory, which uses the decrease of entropy in the

process of landslides to characterize the possibility of landslide

disaster events. The landslide phenomenon (Y) is affected by many

factors (Xi). The InforVal model converts the measured values of

multiple driving factors into information quantity values. The
Frontiers in Ecology and Evolution 07
information value can evaluate the close relationship between

specific driving factors and landslides (Lin et al., 2021). The

advantage of this method is to be able to comprehensively study

the “optimal combination of factors” that contribute most to

landslides, rather than a single factor (Tan et al., 2015). The

higher the information value, the bigger the possibility of

landslides occurrence. According to the principle that statistical

probability represents a priori probability, according to Equation 7

(Tang et al., 2021), the information value provided by factors x1, x2,

…, xn on landslide disasters in the area is:

I(y, x1x2x3 ⋯ xn) =o
n

i=1
ln

Nn=N
Sn=S

(7)

where I is the value of informativeness; N is the number of

landslides in the study area; Nn is the number of landslides within

the cells graded by the impact factor xi; S is the total area of the cells

in the study area, and Sn is the area of the cells under the grading of

the impact factor xi.
3.3 Geographical detector method

The geographical detector is a statistical model which combines

GIS spatial overlay technology and set theory proposed by Wang

et al. (2010), including factor, ecological, interaction, and risk

detection modules). It has been widely used to identify the spatial

stratified heterogeneity of variables and the driving forces in recent

years (Han et al., 2021; Deng et al., 2022). The GeoDetector does not

need to consider the collinearity problem between landslide driving

factors because it combines spatial variance to quantify the relative

importance of a single factor and its implicit interaction with the

response variable (Wang and Xu, 2017; Jiang et al., 2022), and they

can also quantify the interaction of any two driving factors on

landslides. In this study, we mainly use the factor detection module

and the interactive detection module to conduct a comprehensive

analysis of the spatial relationship between driving factors and

landslides in the study area.

3.3.1 Factor detection
The core idea of the GeoDetector model is based on the

assumption that if an independent variable has a significant effect

on a dependent variable, then the spatial distribution of the

independent and dependent variables should be similar. This

similarity can be expressed by calculating the q-statistic as the

influencing factors’ explanatory power on the landslide distribution

according to Equation 8 (Wang and Xu, 2017).

q = 1 −
1

ns 2 o
m

k=1

nks
2
k (8)

Where, k=1,2,3…m, indicates the classification of the landslides

or factors; nh and n denote the number of elements on class k and

the whole study area;  s 2
k   and s

2 are the variance of the class k and

the total variance, respectively. Generally, the range of q is [0, 1]. A

larger q value indicates a stronger power of the driving factor to

explain the distribution of landslides. The q value of 1 represents
TABLE 2 Types of the interaction results.

Description Interaction types

q(Xi ∩ Xj) < Min(q(Xi), q(Xj)) Weakened, nonlinear

Min(q(Xi), q(Xj)) < q(Xi ∩ Xj)<Max(q(Xi), q(Xj)) Weakened, unique

q(Xi ∩ Xj) > Max(q(Xi), q(Xj)) Enhanced, bilinear

q(Xi ∩ Xj) = q(Xi)+q(Xj) Independent

q(Xi ∩ Xj) > q(Xi)+q(Xj) Enhanced, nonlinear
frontiersin.org

https://doi.org/10.3389/fevo.2023.1339265
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Li et al. 10.3389/fevo.2023.1339265
that the spatial heterogeneity of the landslide in the study area can

be fully explained.

3.3.2 Interaction detection
Interaction detection identifies the interaction patterns between

different driving factors by assessing whether the combination between

two drivers (Xi and Xj) will increase or decrease the contribution to the

spatial distribution of landslides, or whether driving factors will work

independently of each other (Zhang Y. et al., 2023). The overlaying of

factor layers Xi and Xj can generate a new factor layer and multiple

subregions, and then the q-value of the interaction can be obtained,

denoting q(Xi ∩ Xj). Finally, by comparing q(Xi ∩ Xj) with q(Xi) and q

(Xj), there are five types of interactions between the two factors (Wang

and Hu, 2012), as illustrated in Table 2.

4 Results and analysis

4.1 Landslides spatial
distribution characteristics

In this paper, the IANN was calculated using CrimeState 3.3. The

results showed that the value of IANN, the Z-score, and the p-value

are 0.397, -28.478 and 0.001, respectively. It indicated that the

landslide points exhibited a strong spatial clustering trend in the

study area. In addition, the Getis-Ord Gi* and kernel density

analysis technology based on the ArcGis10.8 spatial statistics

module was employed to explore the local spatial clustering of

landslides in the study area. The purpose is to answer the two

questions “where” and “how”, i.e., where is the landslide disasters

clustering zone? and how much it clustered.

According to the Getis-Ord Gi* method, the Gi* Z-score of the

landslides in the southern Liaodong Peninsula was calculated, and the
Frontiers in Ecology and Evolution 08
Z-score was divided into five classes using the natural break method,

and then the cold/hot spot map of landslide distribution in the

southern Liaodong Peninsula was obtained (Figure 3). As shown in

Figure 3, the landslides are generally show a feature of “small

dispersion and large concentration” in the study area. Considering

the 99% confidence interval, hot spots are mainly concentrated in the

southern hills areas and northern mountainous areas in the study

area, which indicates that there are multiple continuous units with a

high number of disasters in the above areas. These hotspot areas are

highly sensitive to landslide disasters. It is mainly attributed to the

larger topographic relief and stronger tectonic activities in the region,

resulting in structurally fragmented rocks with weak weathering

resistance providing material conditions for landslides, meanwhile,

the higher elevation and steep slope provide dynamic conditions for

the landslides occurrence. In our study area, the Ganjingzi, Shahekou,

Xigang, Zhongshan, and Jinzhou districts have significant hotspot

areas that account for a larger proportion of the total area. This is due

to the southern region is also an area with frequent human

engineering activities, which destroys the balance of the original

geological environment and induces landslides. On the other hand,

the cold spots are distributed in the eastern and western parts of the

study area, demonstrating a large-scale and continuous distribution

trend. Specifically, the eastern areas of Zhuanghe, the western sector

of Wafangdian, and the southern region of the Pulandian district

have significant cold spots that cover a larger proportion of the total

study area (Figure 3).

To reveal the spatial aggregation of landslides at a smaller

geographical scale in the southern Liaodong Peninsula, the

kernel density analysis method was employed. The analysis

pixel size was set at 500 m and the optimal search radius was

determined to be 2 km after several verifications. The landslide

spatial distribution characteristics are visualized and divided
FIGURE 3

Hot spot map of historical landslide points distribution in the study area. ①Shahekou district; ② Xigang district; ③ Zhongshan district.
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into five levels using the natural break method, namely very low,

lower, moderate, higher, and very high areas. Subsequently, we

obtained the landslides kernel density distribution map for the

study area (Figure 4). From Figure 4, it is evident that the Dalian

Binhai North Road area exhibits the highest kernel density value,

surpassing 1.3, indicating a dense distribution of landslides in

this region. Multiple agglomeration areas have been examined in

Jinzhou District, and their distribution is irregular. These areas

are primarily located in the hilly region on the west side of the

Jinzhou Fault, the Xiaoyaowan Karst Area, and the Jinshitan

Tourist Area in the east. In Zhuanghe City and Pulandian

District, landslides are mainly found along Qianshan and other

veins in the northeast-southwest direction. Additionally, a few

clusters are present in the northern mountainous areas of

Wafangdian City, even most of these areas have a low density

of landslides.

In summary, the results demonstrate that there is a strong spatial

clustering and variability in the distribution of landslides in the study

area, as indicated by both the Getis-Ord Gi* detection and kernel

density estimation methods.Moreover, these findings suggest that the

two methods can be effectively cross-validated by employing an

appropriate search radius.

The Ripley’s K function is used to dynamically test the

spatial scale dependence of landslide distribution in this

study. The method involves conducting 199 Monte Carlo

simulat ion tests with a 95% confidence interval and

constructing an envelope line. If the observed values fall

within the envelope line, it suggests that landslide events in

the study area follow a random distribution. When the observed

values exceed the upper envelope line, it indicates a significant

spatial aggregation distribution. Conversely, if the observed
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values are lower than the lower envelope line, it suggests a

significant uniform distribution of landslides. The difference

between the observed value and the expected value curve

represents the strength of the relevant aggregation or

dispersion. Figure 5 shows that within the spatial range of 0

to 70km in the study area, the landslide points exhibit

significant spatial aggregation distribution between 0 and

63km with 10km step increments. The degree of aggregation

follows a pattern of initially increasing and then weakening, and

the peak at 30.13km. This suggests that this spatial distance

scale represents the maximum value of landslide agglomeration

intensity. Upon exceeding 63km, the features are not obvious. In

conclusion, the analysis using Ripley’s K function confirms the

presence of spatial scale effects in the landslide point pattern in

the study area, which aligns with the ANN analysis results.
4.2 Driving factors analysis

4.2.1 InforVal model analysis
The InforVal model was used to measure the contribution value

of the 16 selected driving factors to the landslide distribution in the

study area under the graded state. The generated information

quantity index and its ranking are listed in Table 3. We can see

that the best combination of key factors with greater contributions

to landslide occurrence in the Southern Liaodong Peninsula area is

the geomorphological type being Mid-altitude mesorelief

mountains, slope being > 25°, aspect of the southeast, NDVI of

0.2 - 0.4, soft rock, building site, heavy hydraulic erosion, PGA of

0.2, lower slope, MFSP being > 460mm, relief amplitude of 200 -

500m, gully density of 0.56 - 1.84, and distance to residence being
FIGURE 4

Kernel density estimation map of historical landslide points distribution in the study area.
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1500 - 3000m, to rivers being 100 - 200m, to faults being < 200m, to

roads being < 100m.

4.2.2 GeoDetector model analysis
Although the InforVal model can measure how the driving

factors are linked to landslides, it cannot quantitatively measure the

specific action patterns and degree of influence of driving factors

based on the heterogeneity of landslide spatial distribution.

Therefore, to overcome these shortcomings, we present the results

of the GeoDetector model analysis in this subsection. The study area

is divided into 1km grid cells as the basic analysis scale. The center

point of each grid is taken as the sampling point with a total number

of 12,923. The landslide susceptibility results of each evaluation cell,

assessed by the InforVal model, are used as the target variables of

the GeoDetector model.

Factor detection was used to calculate the explanatory power (q-

value) of each selected factor for the landslide distribution. The

corresponding results and the ranking of q-values are shown in

Table 4. The results indicate that all 16 driving factors passed the

significance level test at 0.05, suggesting that all factors contribute to

controlling the occurrence of landslides in the study area, and

topographic factors and geological factors have a stronger

explanatory power of the landslide distribution. Furthermore, there

is variability in different driving factors on the landslides distribution.

The explanatory powers of geomorphological types, relief amplitude,

and slope, distance to faults, and land use on the landslide were

39.10%, 38.41%, 31.52%, 22.10% and19.81%, respectively, making

them the main driving factors. Whereas the explanatory powers of

TPI, PGA, aspect, and lithology were 19.41%, 15.09%, 14.13%, and

10.39%, respectively, indicating lower influences on the landslide in the

investigation region. However, the remaining factors were relatively

weak due to the explanatory power of them being less than 10 %.

Low-altitude mountains and high hills are mainly distributed

in the northern and southern regions in the study area. In

mountainous areas, geological internal and external forces are

active, resulting strong erosion and tectonic forces. As a result,
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the terrain has large differences in elevation and broken surface,

as well as slope is steep, which is prone to landslide occurrence

owing to slope instability. The slope determines the gravity effect

on loose accumulations and broken rocks on the landslide

surface, which reflects the initiating effect of gravity on

landslides. The findings show that the greater the slope in the

study area, the stronger the initiation of landslides by gravity,

which is consistent with many previous research conclusions

(Kavzoglu et al., 2014; Zhu et al., 2018). In view of land use types,

the artificial surfaces are the areas where human activities are

most frequent and the geographic environment is the most

intensely transformed. There is a negative correlation between

the density of landslides and the distance to faults. In other

words, the closer the distance to the fault, the higher the

probability of landslide occurrence, and the distribution is

more concentrated. From the perspective of the mechanism of

landslides, the active faults can induce seismic activity and form

sliding surfaces, leading to slope instability. On the other hand,

inactive faults may not trigger seismic activity, but they can

gradually evolve into sliding surfaces. The rock along the fault

tectonic zones becomes fractured and has low weather

resistance, which induces landslides of varying scales (Zhang

and Huang, 2018).

The interaction detection module can evaluate the increase or

decrease in the explanatory power of the landslide distribution when

two driving factors collaborate. Among the 16 driving factors, a total

of 120 pairs of interaction effects are obtained using the interaction

factor, as summarized in Table 5. From Table 5, each factor pair is

shown to be larger than the q values of each factor, and smaller than

the sum of the two factors’ q values. Hence, the interplay of all driving

factor pairs exhibited an enhancement effect on landslide

distribution. In the interaction results, bivariate and non-linear

enhancements accounted for 57.50% and 42.50%, respectively. It

indicated that there are no single-factor effects on the landslide in the

southern Liaodong Peninsula region.

The five most important interactive effects were associated with

geomorphological types ∩ distance to faults (q = 0.572), relief
FIGURE 5

K-function spatial distribution of landslide points in the study area.
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TABLE 3 Information value of each evaluation index.

Index
Classified
method

Class
Infor-
value

Order Index
Classified
method

Class
Infor-
value

Order

Aspect Equal interval

Flat -1.106 89

Slope (°C) Manual

<2 -0.401 79

north 0.003 52 2 - 6 -0.289 77

northeast 0.116 36 6 -15 0.257 22

east 0.049 44 15 - 25 0.501 10

southeast 0.184 30 25 - 90 0.79 5

south 0.094 39

PGA (g)
Intrinsic
Properties

0.05 -0.879 88

southwest 0.174 32 0 1 -0.033 60

west -0.228 73 0.15 0.254 23

northwest 0.15 33 0.2 0.363 17

TPI
Intrinsic
properties

Ridge 0.149 34

Lithology
Intrinsic
properties

Very hard rock 0.065 42

upper slope 0.178 31 harder rock -0.031 59

middle slope -0.192 72 softer rock -0.149 69

flat slope -0.064 63 soft rock 0.396 14

lower slope 0.221 26 very soft rock -0.525 85

valleys 0.04 45 reservoirs 0 54

Land use
Supervised
classified

Farmland -0.499 83

Distance to
residence (m)

Manual

<500 0.064 43

forest 0.369 16 500-1500 -0.157 70

grass -0.332 78 1500-3000 0.268 21

water 0 53 3000-5000 -0.134 67

building site 0.531 8 5000-10000 0 55

bare -0.049 61 >10000 0 56

Gully density Natural break

<0.56 0.011 50

NDVI
Equal interval
interval

0–0.2 0.208 28

0.56-1.84 0.244 24 0.2 –0.4 0.482 11

1.64-4.72 0.038 46 0.4 – 0.6 0.215 27

4.72-11.18 -0.242 75 0.6 – 0.8 -0.140 68

>11.18 -0.44 82 0.8 – 1.0 -0.403 80

Distance to
roads (m)

Equal interval

<100 0.461 12

Distance to
rivers (m)

Equal interval

<100 0.11 37

100-200 0.32 18 100-200 0.295 19

200-300 -0.024 57 200-300 -0.084 65

300-400 -0.05 62 300-400 0.075 41

400-500 -0.242 76 400-500 -0.024 58

>500 -0.52 84 >500 -0.101 66

Distance to
faults (m)

Manual

<200 0.668 6

Relief
amplitude (m)

Manual

<30 -0.59 87

200-500 0.504 9 30-70 0.086 40

500-1000 0.278 20 70-200 0.381 15

1000-1500 0.1 38 200-500 0.547 7

1500-2000 0.037 47 >500 -1.336 90

2000-2500 -0.404 81
Geomoph-

ological types
Intrinsic
properties

0.136 35

(Continued)
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amplitude ∩ distance to faults (q = 0.535), geomorphological types

∩ slope (q = 0.533), relief amplitude ∩ geomorphological types (q =

0.0.528), and geomorphological types ∩ land use (q = 0.495). Based

on the findings from interaction detection, both natural and human

factors exhibited obvious enhancement effects. It is noteworthy that

the outcomes of the interaction detection analysis provided further

evidence for the significant influence of human factors and the

MFSP factors on the spatial distribution of landslides in the study

region. In specifical analysis, the explanatory power of distance to

residence, distance to roads, and MFSP, when independently
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affecting the landslide distribution is 0.001, 0.017, and 0.067,

respectively. However, the outputs from the interaction probes

reveal a nonlinear enhancement relationship between these

factors and other factors. For instance, distance to residence ∩
land use (q = 0.406), distance to roads ∩ relief amplitude (q = 0.475),

and MFSP ∩ slope (q = 0.384), respectively. In a word, the

interaction of natural and human factors exhibited great effects

on the landslides spatial distribution in the research area. The two-

factor interactions are not simple superposition effects but bivariate

and nonlinear enhancement effects.
TABLE 3 Continued

Index
Classified
method

Class
Infor-
value

Order Index
Classified
method

Class
Infor-
value

Order

Mid-altitude
mesorelief
mountains

>2500 -0.566 86

MFSP (mm) Equal interval

<380 0.849 3 low-altitude hills 0.441 13

380-400 -0.066 64 low-altitude
mesorelief
mountains

0.911 2
400-420 0.006 51

420-440 -0.228 74
low-
altitude alluvial

-1.485 92

440-460 0.024 48 low-altitude
small
relief
mountainous

-1.403 91
>460 1.397 1

Soil erosion
Intrinsic
properties

Slight
hydraulic
erosion

-0.169 71
marine
deposition plain

0.022 49

mild
hydraulic
erosion

0.232 25
submarine
constructional
plain

-2.682 93
moderate
hydraulic
erosion

0.198 29

heavy
hydraulic
erosion

0.821 4 off-shore slope -3.461 94
fron
TABLE 4 The results by factor detector.

Index q-value p-value Index q-value p-value

Geomorphological
types

0.391 0.000 Lithology 0.104 0.000

Relief amplitude 0.384 0.000 MFSP 0.068 0.000

Slope 0.315 0.000 Soil erosion 0.067 0.000

Land use 0.211 0.000 NDVI 0.064 0.000

Distance to faults 0.198 0.000 Gully density 0.021 0.000

TPI 0.194 0.000 Distance to roads 0.017 0.000

PGA 0.151 0.000 Distance to rivers 0.016 0.000

Aspect 0.141 0.000
Distance
to residence

0.001 0.009
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5 Discussion

Landslide risk management plays an important role in natural

disaster prevention and mitigation. As the research keeps growing,

lots of methods evaluating and analyzing the occurrence and spatial

distribution of landslides have been proposed and have matured in

practice. In the last four decades, statistical analysis models have

been extensively utilized (Youssef et al., 2014; Das and Lepcha,

2019; Nohani et al., 2019; Liu et al., 2020; Wu et al., 2023b).

Different scholars have chosen appropriate methods according to

the characteristics of their fields. However, there are still two main

challenges in methods to explore the occurrence and spatial

distribution of landslides. On the one hand, there are difficulties

in determining the influence mechanisms between driving factors

and landslides spatial distribution, which should be able to more

realistically reveal the comprehensive effects of natural and human

factors on landslides; on the other hand, machine learning models

have been wildly used in recent years with high accuracy, while the

modelling process is complex and the selection of negative samples

is uncertain, which restricts the accuracy of the results of the

evaluation and analysis (Peng et al., 2014; Huang et al., 2017; Ali

et al., 2021).

This article utilizes an InforVal model to examine the optimal

factor combination of driving factors on landslides, rather than

focusing on a single factor (Chen et al., 2013; Lin et al., 2021). The

study takes into account the objective effect of environmental

factors on landslides spatial distribution and avoids subjective

randomness in determining causal relationships. By combining

the GeoDetector model, this research aims to identify the

contribution value of various driving factors influencing the

spatial patterns of landslide distributions and evaluate

the explanatory power of driving factors in the distribution of

landslides. This technique addresses the limitation of a single

model that can only evaluate landslide susceptibility and

effectively quantify single-factor and interactive impacts degree

on landslide development (Du et al., 2022), thereby providing

comprehensive causal relationship analysis and a more scientific

basis for analyzing the development and distribution of landslides

in a specific region.
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The Liaodong Peninsula plays a crucial role in the development

of Northeast China’s economy, while it is located in a low mountain

and coastal geological environment. In recent decades, landslides

occurred frequently, and there are many hidden danger points of

landslides, posing a serious threat to the local socio-economic and

life and property safety. Therefore, several researchers have

conducted landslide risk assessments based on various evaluation

models (Liu, 2019; Li, 2021; Yan et al., 2021; Wang, 2022).

Compared with previous studies, this study first focuses on

conducting a quantitative analysis of the spatial distribution

pattern of landslides in the Liaodong Peninsula and then selects

16 environmental factors to construct a landslide driving factors

system. By employing the coupling method of InforVal and

geographic detectors, the optimal combination of factors and the

main driving factors that contribute the most to landslide

distribution in the region was explored and identified.

Additionally, the study reveals that the interaction and synergy

among the selected nature and human factors in the study area have

a much greater impact on landslides than any single factor alone.

The southern Liaodong Peninsula is located in a composite zone

of primitive geological subsidence and uplift. In the Quaternary

period, significant marine invasions and regressions have played a

crucial role in shaping the current coastal landscape (Shan et al.,

2022). It is located in the rising area of the Liaodong Plateau, with

obvious vertical movement of fault blocks. The tilted movement from

the Yellow Sea coast to the Bohai Sea coast continues to strengthen

the deformation of the coastal zone (Zhang, 2008). As a result, a

widespread mountainous and hilly coastal landform has formed,

which has become a favorable condition for the creation stage of

landslides. Highly active structural faults can lead to frequent small

earthquakes, making the dangerous rock mass loose. Under long-

term external actions such as waves and storm surges, the coastal

bedrock of the Liaodong Peninsula erodes and wears away the

bottom of the coastal slope. It results in the formation of high-risk

slopes suspended at the bottom, as shown in Figure 6). Additionally,

the Liaodong Peninsula is situated in the northern temperate

monsoon climate zone, experiencing significant seasonal

temperature differences. The long-term freeze-thaw cycle further

increases the cracking rate of the slope surface and top.
A B

FIGURE 6

The effect of coast slope failure on infrastructure. (A) Slope cracks under surcharge and waves; (B) Potential effect on the upper bridge from
longterm wave scouring.
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TABLE 5 Results of interactive probe.

x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

0.384

0.387# 0.016

0.535# 0.212# 0.198

0.475* 0.059* 0.213* 0.017

0.427# 0.113# 0.286# 0.146* 0.104

0.469* 0.086* 0.244* 0.095* 0.177* 0.067

0.488# 0.170* 0.319# 0.182* 0.257* 0.264* 0.151

0.454* 0.081* 0.272* 0.141* 0.165# 0.147* 0.207# 0.064

0.393# 0.078# 0.253# 0.096* 0.156# 0.143* 0.236* 0.127# 0.067

0.393# 0.029# 0.222* 0.055* 0.121# 0.091* 0.176* 0.084# 0.083# 0.21

5: land use, x6: distance to residence, x7: relief amplitude, x8: distance to rivers, x9: distance to faults, x10: distance to roads, x11: lithology, x12: MFSP, x13:
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Factors x1 x2 x3 x4 x5 x6

x1 0.391

x2 0.478# 0.194

x3 0.460# 0.253# 0.141

x4 0.533# 0.351# 0.368# 0.315

x5 0.495# 0.327# 0.281# 0.411# 0.211

x6 0.409* 0.222* 0.162* 0.344* 0.239* 0.001

x7 0.528# 0.431# 0.453# 0.446# 0.473# 0.406*

x8 0.410# 0.200# 0.155# 0.319# 0.224# 0.033*

x9 0.572# 0.362# 0.320# 0.465# 0.368# 0.223*

x10 0.440* 0.232* 0.167* 0.375* 0.244* 0.044*

x11 0.459# 0.254# 0.220# 0.356# 0.271# 0.133*

x12 0.478* 0.263* 0.208* 0.384* 0.285* 0.081*

x13 0.482# 0.324# 0.286# 0.438# 0.353# 0.156*

x14 0.437# 0.245# 0.168# 0.391* 0.264# 0.081*

x15 0.431# 0.236# 0.192# 0.339# 0.250# 0.076*

x16 0.411# 0.206# 0.156# 0.325# 0.221# 0.039*

# is bivariate enhancement, * is non-linear enhancement. (x1: geomorphological types, x2: TPI, x3: aspect, x4: slope, x
PGA, x14: NDVI, x15: soil erosion, x16: gully density)5.
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Over the past two decades, the rapid development of the

coastal economic zone has led to slope cutting, loading, blasting

vibration, and other activities during the urbanization process.

These processes have disrupted the equilibrium state of the

original geological stress of the slope, increased the amount of

loose solid matter, and expanded the free face of high steep slopes

(Wang, 2022). Once the rainy season begins, it causes rainwater to

seep into the rock and soil, increasing their weight (Nhu et al.,

2020). This process also washes away the cemented minerals

inside, leading to crack expansion and softening of the rock and

soil, ultimately resulting in a weak surface and widespread

landslides, which in turn evolve into chain disaster reactions

(Nian et al., 2012). Therefore, it can be concluded that the

southern Liaodong Peninsula, under the combined effects of

long-term geological internal and external forces, and increasing

human activities, constitutes an extreme environmental effect with

multiple driving factors. These multiple driving factors have

created an extremely vulnerable environment, increasing the

risk of geological disasters. The combination of InforVal and the

geographical detector model enables the identification of the main

driving factors behind landslide development and distribution, as

well as the assessment of the interaction between two

environmental factors in landsl ide development and

distribution. This approach can be applied to the spatial feature

distribution and susceptibility analysis of landslides.
6 Conclusions
Fron
(1) Landslides in the southern Liaodong Peninsula exhibit

strong clustering characteristics, with a heterogeneous

spatial distribution that shows a pattern of small

dispersion and large aggregation. Within the 0-63 km

range, there is a significant spatial aggregation of

landslides, with the degree of aggregation initially

increasing and then decreasing. The largest spatial scale

of intensity for the gathering of landslides is observed at a

distance of 30.13km.

(2) The best combination of factors causing landslides in the

study area as follows: geomorphology types of mid-altitude

mesorelief mountains, slope being > 25°, aspect of

southeast, NDVI of 0.2 ~ 0.4, soft rock, building site,

heave hydraulic erosion, PGA of 0.2, lower slope, MFSP >

460mm, relief amplitude of 200 ~ 500m, gully density of

0.56~1.84, distance to residence being 1500 ~ 3000m,

distance to rivers of 100 ~ 200m, distance to faults being<

200m, and distance to roads being< 100m.

(3) The coupled InforVal-GeoDetector model was utilized to

investigate the impact of driving factors on landslide spatial

distribution in the study area. The factor detection reveals

that the main driving factors for the landslide spatial

distribution were geomorphological types, relief

amplitude, slope, land use, and distance to faults. With

the q-value 39.10%, 38.41%, 31.52%, 22.10% and

19.81%, respectively.
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(4) The interaction detection further revealed that the interplay

of all driving pair factors exhibited an enhanced effect on

landslide distribution. Bivariate and non-linear

enhancements accounted for 57.50% and 42.50%,

respectively. Therefore, it can be concluded that the

development and distribution of landslides in the

southern Liaodong Peninsula region are influenced by

both natural conditions and human activities.
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Ali, S. A., Parvin, F., Vojteková, J., Costache, R., Linh, N. T. T., Pham, Q. B., et al.
(2021). GIS-based landslide susceptibility modeling: a comparison between fuzzy
multi-criteria and machine learning algorithms. Geosci. Front. 12, 857–876. doi:
10.1016/j.gsf.2020.09.004

Ayalew, L., and Yamagishi, H. (2005). The application of GIS-based logistic
regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains,
Central Japan. Geomorphology. 65, 15–31. doi: 10.1016/j.geomorph.2004.06.010

Bahrami, Y., Hassani, H., and Maghsoudi, A. (2021). Landslide susceptibility map**
using AHP and fuzzy methods in the Gilan Province, Iran. Acta Geol. Pol. 86, 1797–
1816. doi: 10.1007/s10708-020-10162-y

Bai, L., Jiang, L., Yang, D., and Liu, Y. (2019). Quantifying the spatial heterogeneity
influences of natural and socioeconomic factors and their interactions on air pollution
using the geographical detector method: a case study of the Yangtze River Economic
Belt, China. J. Cleaner Prod. 232, 692–704. doi: 10.1016/j.jclepro.2019.05.342

Bozzolan, E., Holcombe, E. A., Pianosi, F., Marchesini, I., Alvioli, M., and Wagener,
T. (2023). A mechanistic approach to include climate change and unplanned urban
sprawl in landslide susceptibility maps. Sci. Total Environ. 858, 159412. doi: 10.1016/
j.scitotenv.2022.159412

Bucci, F., Santangelo, M., Cardinali, M., Fiorucci, F., and Guzzetti, F. (2016).
Landslide distribution and size in response to quaternary fault activity: the cardinali
m. peloritani range, NE sicily, italy. J. Earth Surf. Process Landf. 41 (5), 711–720.

Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G. (2015). A systematic review of
landslide probability mapping using logistic regression. Landslides. 12 (3), 419–436.
doi: 10.1007/s10346-014-0550-5

Chang, Z., Catani, F., Huang, F., Liu, G., Meena, S. R., and Huang, J. (2023).
Landslide susceptibility prediction using slope unit-based machine learning models
considering the heterogeneity of conditioning factors. J. Rock. Mech. Geotech. 15 (5),
1127–1143. doi: 10.1016/j.jrmge.2022.07.009

Chen, W., Zhang, S., Li, R. W., and Shahabi, H. (2018). Performance evaluation of the
GIS-based data mining techniques of best-first decision tree, random forest, and naïve
Bayes tree for landslide susceptibility modeling. Sci. Total Environ. 644, 1006–1018. doi:
10.1016/j.scitotenv.2018.06.389

Chen, Y., Guo, H. D., and Wang, Q. J. (2013). Geological disaster susceptibility
assessment of the Lushan earthquake based on RS and GIS. Chinese. Sci. Bull. 58 (36),
3859–3866. doi: 10.1360/972013-665

Dahim, M., Alqadhi, S., and Mallick, J. (2023). Enhancing landslide management
with hyper-tuned machine learning and deep learning models: Predicting susceptibility
and analyzing sensitivity and uncertainty. Front. Ecol. Evol. 11, 1108924. doi: 10.3389/
fevo.2023.1108924
Das, G., and Lepcha, K. (2019). Application of logistic regression (LR) and frequency

ratio (FR) models for landslide susceptibility mapping in Relli Khola river basin of
Darjeeling Himalaya, India. SN. Appl. Sci. 1, 1453. doi: 10.1007/s42452-019-1499-8

Deng, X., Hu, S., and Zhan, C. (2022). Attribution of vegetation coverage change to
climate change and human activities based on the geographic detectors in the yellow
river basin, China. Environ. Sci. pollut. Res. Int. 29 (29), 44693–44708. doi: 10.1007/
s11356-022-18744-8

Dong, J. D., Chen, X. L., Cai, X. B., Xu, Q. Q., Guan, Y. Y., Li, T., et al (2020). Analysis
of the temporal and spatial variation of atmospheric quality from 2015 to 2019 based on
China Atmospheric Environment Monitoring Station. J. Geo-inform. Sci. 22 (10),
1983–1995.

Dou, J., Yunus, A. P., Bui, D. T., Merghadi, A., Sahana, M., Zhu, Z., et al. (2019).
Improved landslide assessment using support vector machine with bagging, boosting,
and stacking ensemble machine learning framework in a mountainous watershed,
Japan. Landslides. 17, 641–658. doi: 10.1007/s10346-019-01286-5
Dowling, C. A., and Santi, P. M. (2014). Debris flows and their toll on human life: a

global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards. 71, 203–227.
doi: 10.1007/s11069-013-0907-4
Du, Y. C., Ge, Y. G., Liang, X. Y., Sun, Q. M., and Chen, P. (2022). Research of debris

flow susceptibility based on the coupling of certainty factor method and geo detector
model in anning river basin. J. Disaster Prev. Mitig. Eng. 42 (4), 664–674. doi: 10.13409/
j.cnki.jdpme.20210112002

Froude, M. J., and Petley, D. N. (2018). Global fatal landslide occurrence from 2004
to 2016. Nat. Hazard. Earth. Sys. 18 (8), 2161–2181. doi: 10.5194/nhess-18-2161-2018

Guo, Z., Ferrer, J. V., Hürlimann, M., Medina, V., Puig-Polo, C., Yin, K., et al. (2023).
Shallow landslide susceptibility assessment under future climate and land cover
changes: a case study from southwest China. Geosci. Front. 14, 101542. doi: 10.1016/
j.gsf.2023.101542
Han, J., Wang, J., Chen, L., Xiang, J., Ling, Z., Li, Q., et al. (2021). Driving factors of

desertification in Qaidam basin, China: an 18-year analysis using the geographic
detector model. Ecol. Ind. 124, 107404. doi: 10.1016/j.ecolind.2021.107404
Hua, Y., Wang, X., Li, Y., Xu, P., and Xia, W. (2021). Dynamic development of

landslide susceptibility based on slope unit and deep neural networks. Landslides. 18
(1), 281–302. doi: 10.1007/s10346-020-01444-0
Huang, F., Yan, J., Fan, X., Yao, C., Huang, J., Chen, W., et al. (2022). Uncertainty

pattern in landslide susceptibility prediction modelling: Effects of different landslide
Frontiers in Ecology and Evolution 16
boundaries and spatial shape expressions. Geosci Front. 13 (2), 101317. doi: 10.1016/
j.gsf.2021.101317

Huang, F., Yin, K., Huang, J., Gui, L., and Wang, P. (2017). Landslide susceptibility
map** based on self-organizing-map network and extreme learning machine. Eng.
Geol. 223, 11–22. doi: 10.1016/j.enggeo.2017.04.013

Jiang, R., Wu, P., Song, Y., Wu, C., Wang, P., and Zhong, Y. (2022). Factors
influencing the adoption of renewable energy in the U.S. residential sector: An optimal
parameters-based geographical detector approach. Renewable. Energy. 201, 450–461.
doi: 10.1016/j.renene.2022.09.084

Kavzoglu, T., Sahin, E. K., and Colkesen, I. (2014). Landslide susceptibility map**
using GIS-based multi-criteria decision analysis, support vector machines, and logistic
regression. Landslides. 11, 425–439. doi: 10.1007/s10346-013-0391-7

Kavzoglu, T., Sahin, E. K., and Colkesen, I. (2015). Selecting optimal conditioning
factors in shallow translational landslide susceptibility map** using genetic algorithm.
Eng. Geol. 192, 101–112. doi: 10.1016/j.enggeo.2015.04.004

Li, Q. (2021). Risk assessment of geological hazards in zhuanghe based on GIS (Dalian:
Liaoning Normal University).

Li, M., Jiao, Y., Xu, B., Zhang, C., Xue, Y., and Ren, Y. (2020). Spatial analyses of the
influence of autocorrelation on seasonal diet composition of a marine fish species. Fish.
Res. 228, 105563. doi: 10.1016/j.fishres.2020.105563

Lin, J., Chen, W., Qi, X., and Hou, H. (2021). Risk assessment and its influencing
factors analysis of geological hazards in typical mountain environment. J. Cleaner Prod.
309, 127077. doi: 10.1016/j.jclepro.2021.127077

Lin, L., Lin, Q., and Wang, Y. (2017). Landslide susceptibility map** on a global scale
using the method of logistic regression. Nat. Hazard. Earth. Sys. 17 (8), 1411–1424. doi:
10.5194/nhess-17-1411-2017

Liu, J. (2019). Risk assessment of debris flow in northern mountainous areas of Dalian
(Dalian: Liaoning Normal University).

Liu, H., Li, X., Meng, T., and Liu, Y. (2020). Susceptibility mapping of damming
landslide based on slope unit using frequency ratio model. Arabian J. Geosci. 13, 790.
doi: 10.1007/s12517-020-05689-w

Nhu, V. H., Shirzadi, A., Shahabi, H., Singh, S. K., Al-Ansari, N., Clague, J. J., et al. (2020).
Shallow landslide susceptibility map**: A comparison between logistic model tree, logistic
regression, naïve bayes tree, artificial neural network, and support vectormachine algorithms.
Int. J. Environ. Res. Public Health 17 (8), 2749. doi: 10.3390/ijerph17082749

Nian, T. K., Zheng, D. F., and Chen, G. Q. (2012). Investigation of coastal rock slope
geohazard and protection of geological relics. J. Eng. Geol. 2012, 7.

Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., et al.
(2019). Landslide susceptibility mapping using different GIS-based bivariate models.
Water. 11, 1402. doi: 10.3390/w11071402

Pardeshi, S. D., Autade, S. E., and Pardeshi, S. S. (2013). Landslide hazard assessment:
recent trends and techniques. SpringerPlus. 2, 1–11. doi: 10.1186/2193-1801-2-523

Pawluszek, K., and Borkowski, A. (2017). Impact of DEM-derived factors and
analytical hierarchy process on landslide susceptibility map** in the region of
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