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Forest roads act as habitat
corridors for Populus
tremuloides in the boreal forest
of eastern Canada
Mathilde Marchais1*, Dominique Arseneault2

and Yves Bergeron1

1Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-
Noranda, QC, Canada, 2Département de biologie, chimie et géographie, Université du Québec à
Rimouski, Rimouski, QC, Canada
Edge habitats resulting from the construction andmaintenance of forest roads favour

pioneer, shade-intolerant and disturbance-adapted plant species. The effect of roads

on the spread of non-native species has been frequently studied, but few studies have

focused upon their effects on native tree species. We studied the effect of forest roads

on the expansion dynamics of trembling aspen (Populus tremuloides Michx.) in a

boreal forest landscape of eastern Canada. We determined whether roads act as a

habitat and dispersal corridor for trembling aspen, and whether populations that

established along roads act as a starting point for aspen expansion into adjacent

stands. We evaluated the effect of forest roads on the distribution of trembling aspen

by surveying the vegetation along 694 km of roads. In 19 stands, we compared the

density and ageof individuals in 100m transects established parallel and perpendicular

to roads, to determine the role of roads. Trembling aspen is abundant along the forest

road network. Forest roads act sometimes as habitat corridors for trembling aspen,

but their effects on its density extend only over a short distance (10m) on each side of

the roads. The forest roads did not act as a starting point for the expansion of

trembling aspen into adjacent stands. Forest roads are particularly favourable habitats

for trembling aspen. Although roads did not act as a starting point for aspen dispersal

away from roads, these habitats would be vulnerable to invasion following a

disturbance that would reduce the thickness of the organic layer.
KEYWORDS

habitat corridors, dispersal corridors, edge habitats, forest roads, road edge effects,
Populus tremuloides, boreal forest
1 Introduction

The global road network has expanded rapidly over the past century, to the point that

roads are currently one of the most widespread forms of natural landscape modification

(Forman et al., 2003). Roads fragment the landscape and create edge effects that affect the

physico-chemical environment and ecological processes, together with the dynamics,
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structure and composition of plant communities (Andrews, 1990;

Murcia, 1995; Forman and Alexander, 1998; Ries et al., 2004). In

forest ecosystems, the effects of road construction and maintenance

include vegetation removal, soil disturbance, and changes in wind

patterns, nutrient availability, and light in response to canopy

opening (Forman et al., 2003; Harper et al., 2005). Edge habitats

resulting from road construction typically differ in their plant

composition compared to adjacent habitats, including a high

abundance of shade-intolerant pioneer, nutrient-demanding and

disturbance-adapted species (Trombulak and Frissell, 2000; Seiler,

2001). Roads can thus act as habitat corridors for these species by

providing them with environments favourable to their establishment

and growth, within a less suitable habitat matrix (Christen and

Matlack, 2006; Huijser and Clevenger, 2006). Subsequently, these

populations established along roads can act as a source of propagules

and facilitate the expansion of some species into adjacent habitats

away from roads, particularly following a disturbance (Tyser and

Worley, 1992; Parendes and Jones, 2000). Road edges can also act as

dispersal corridors for certain plant species, by facilitating their

dispersal along the roads (e.g., Mortensen et al., 2009; Geng et al.,

2017). For example, seeds can be transported preferentially along

roads by anthropogenic (e.g., vehicles, clothing) (Clifford, 1959; Ross,

1986; Pickering et al., 2011; Taylor et al., 2012; Auffret and Cousins,

2013; von der Lippe et al., 2013) or by wildlife vectors (Suárez-

Esteban et al., 2013a; Suárez-Esteban et al., 2013b), or through

modifications of wind patterns within the road corridor

(Damschen et al., 2014).

The effect of roads on the composition of plant communities has

been widely studied in the context of non-native species propagation
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(e.g., Flory and Clay, 2006; Lu and Ma, 2006; Kalwij et al., 2008;

Barnaud et al., 2013; Padmanaba and Sheil, 2014; Manee et al., 2015),

and in the context of native species conservation (e.g., Tikka et al.,

2001; Spooner et al., 2004; Deckers et al., 2005; Fekete et al., 2017).

Comparatively few studies have focused upon the effects of roads on

the expansion of native species (but see Buckley et al., 2003; Najafi

et al., 2012; Avon et al., 2013; Gill et al., 2014; Picchio et al., 2018),

especially trees. Nevertheless, populations of trembling aspen

(Populus tremuloides Michx.) (Ackerman and Breen, 2016) and

white spruce (Picea glauca [Moench] Voss) (Elsner and Jorgenson,

2009) have recently been observed along Arctic roads beyond the

current northern limit of these species, thereby highlighting the role

that roads can play in expanding native species distributions. In the

boreal forest east of James Bay (Quebec, Canada), the distribution of

trembling aspen (hereafter, referred to as aspen) appears to be

concentrated near anthropogenic infrastructures, including roads

(Whitbeck et al., 2016). Given that aspen is a shade-intolerant, fast-

growing, disturbance-adapted species, which reproduces both

asexually and sexually (Perala, 1990), it may be particularly effective

in using road-edge habitats (Andrews, 1990). More specifically, forest

roads can: 1) act as habitat for aspen; 2) act as a source of propagules

to allow its expansion into adjacent habitats away from roads, if

habitat conditions are favourable; 3) act as a dispersal corridor to

facilitate its expansion along roads (Figure 1).

The main objective of this study was to assess the effect of forest

roads on the distribution and abundance of aspen in a boreal

landscape of eastern Canada (Quebec). The length of the permanent

forest road network had tripled in the Province of Quebec between

1975 and 1999 (Coulombe et al., 2004). Between 2018 and 2019,
FIGURE 1

Habitat and dispersal corridor functions of roads. The roads can act as habitat corridors, providing a species with favourable edge habitat within an
unfavourable habitat matrix. The roads can act as dispersal corridors, favouring dispersal in the road direction relative to other directions.
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nearly 6 000 new kilometres of forest roads were constructed

(MFFP, 2020), compared to 4 000 to 5 000 km that were built

annually in the early 2000s (Coulombe et al., 2004). Despite the

strong development of the forest road network since the 1970s, few

studies have focussed on their ecological impacts (Bourgeois et al.,

2005). In the study landscape, clay deposits to the south are

particularly favourable for aspen, while the great abundance of

thick organic deposits to the north limits its presence (Blouin and

Berger, 2005; Gewehr et al., 2014; Lafleur et al., 2015). However,

industrial logging that has been carried out since the 1970s was

accompanied by the construction of an extensive network of forest

roads, which may have allowed expansion of aspen to the north (see

Grondin and Cimon, 2003). If aspen is able to form well-established

populations along roads, these may have acted as a starting point for

its dispersal along roads as well as into adjacent stands away from

roads, especially following clear-cutting (see Parendes and Jones,

2000). Aspen has indeed experienced a strong expansion in the

study landscape since the 1970s (Marchais et al., 2022). While clear-

cuts have favoured this expansion (Brumelis and Carleton, 1988;

Carleton and MacLellan, 1994; Laquerre et al., 2009), the particular

role played by forest roads remains unknown. The specific

objectives of the study were thus to assess whether forest roads:

1) are favourable aspen habitats within a less suitable landscape

matrix; 2) are dispersal corridors for aspen; and 3) acted as a

starting point for the expansion of aspen into adjacent stands away

from roads. We hypothesise that forest roads provide favourable

habitat for aspen, and act as habitat corridor notably on organic

deposits. We also hypothesise that aspen populations established

along roads acted as a starting point for its dispersal into

adjacent stands.
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2 Materials and methods

2.1 Study landscape

The study landscape covers an area of 10930 km² (49°-49° 50’N;

78°-79° 30’W) in the Clay Belt of Quebec and Ontario (Figure 2),

which was created during the drainage of proglacial Lake Ojibway,

about 8000 years ago (Veillette, 1994). The main types of surface

deposits are organic material (45%), clays (35%), and till (12%). The

topography is flat and the climate is subpolar, subhumid continental

(Blouin and Berger, 2005). Average annual precipitation is 909 mm,

of which 29% falls as snow. Mean annual temperature is 0° C (± 2.9°

C) (data from the Joutel weather station for the period 1981-2010

(EC, 2023)). The study landscape is located in the bioclimatic

domain of the black spruce-feather moss forest of western

Quebec (MFFP, 2021). The vegetation is largely dominated by

black spruce (Picea mariana [Mill.] BSP.). Jack pine (Pinus

banksiana Lamb.) and aspen are also abundant, forming pure

stands or mixed stands with black spruce.

The forest road network is highly developed, with 10493 km of

roads, including 6971 km that are passable only in winter (i.e.,

winter forest roads) and 3522 km passable all-year-round (i.e.,

forest roads; Figure 2). Considering a right-of-way (i.e., width

deforested during construction of the road) of 20 m for winter

forest roads and 30 m for other forest roads (MFFP, 2021), the

right-of-way of the forest road network extends over a total 245.1

km² and over 105.7 km² off-road in winter. Most of the regional

road network, excluding winter forest roads, is constituted of class 3

forest roads (2174 km). The foundations of these class 3 forest roads

consist of exogenous mineral soil with road surfaces of natural
A B

FIGURE 2

Location of the study landscape (i.e., study area) in the bioclimatic domain of the black spruce-feathermoss forest (A). Study area and location of the
vegetation inventory carried out in 2018 along forest roads and trembling aspen stands sampled in 2019 (B).
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gravel. The planned period of use for class 3 forest roads is 10 to 15

years. The foundations of winter forest roads consist of materials in

place (e.g., mineral soil, organic soil, woody debris) and the road

surfaces are of compacted snow. The planned period of use for the

winter forest roads is three months (MFFP, 2021).
2.2 Inventory of vegetation along
forest roads

A vegetation inventory along forest roads was carried out in the

summer of 2018, to quantify the distribution of aspen. Winter forest

roads were not included in the inventory, given that they are not

passable in summer with heavy vehicles. Portions of 5 km of roads

(i.e., transects) were inventoried every 10 km in the northern part of

the study landscape. In the southern part, given the more complex

structure of the road network, points that were spaced at least 6 km

apart were randomly placed to indicate the starting points of the

transects. Given that we had no information on the accessibility of

the road network, we initially selected a large number of transects to

ensure that we had enough observations to have a representative

image of the vegetation along the road edges. During the fieldwork,

many roads became inaccessible (i.e., partially closed) or impassable

(e.g., collapsed, flooded). Some transects were therefore partially or

totally moved during the fieldwork, while others were inventoried

over less than 5 km or were completely abandoned. Of the 130

transects of 5 km that had been planned at the start, 54 transects

were completely inventoried, 36 were partially inventoried (length

ranging from 100 m to 4600 m) and 40 had to be abandoned

(Figure 2). In total, 347.2 km of transects were inventoried.

Vegetation inventories were conducted by a single observer, from

a vehicle travelling at reduced speed (≈ 10 km/h). Only tree species

were inventoried. The composition was noted for the road-edge and

for the adjacent stand, on both sides of the roads (i.e., 694.4 km of

vegetation observations in total).
2.3 Selection and sampling of aspen stands

As aspen is naturally present in the study landscape, its presence

in stands adjacent to roads may predate and be independent of their

construction. However, the date of road construction is not

available in our study landscape. As industrial logging began in

the 1970s, most of the forest roads were built since this decade.

Consequently, in order to limit the risk of sampling aspen stems

established prior to road construction, buffer zones of 1 km were

placed around each observation of vegetation carried out during the

summer of 2018, and all observations containing aspen in these

buffer zones on the forest map that had been produced by the

Quebec government in the 1970s were excluded. Of the remaining

observations from the 2018 summer, 19 aspen stands were

randomly selected for sampling during the summer of 2019

(Figure 2). In each of these stands, a 100 m x 10 m transect was

placed parallel to the forest road, along with a second that ran

perpendicular to the first. The starting point of the two transects

corresponds to the centre of the stand (i.e., L-shaped transects).
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Each transect was subdivided into 10 plots of 10 x 10 m in which the

stems of each tree species were counted as saplings (DBH ≤ 8 cm) or

trees (DBH > 8cm). In addition, the aspen with the largest DBH in

each plot was selected for dendrochronological analysis, assuming

that this tree was the oldest individual in the plot. Two core samples

taken perpendicularly to one another, were collected at 30 cm from

the ground surface on each selected individual. The samples were

prepared and dated using standard dendrochronology methods

(Payette and Filion, 2010).
2.4 Data analyses

To assess the effect of forest roads on aspen abundance at the

landscape scale, we compared stem density (number of stems/ha) at

different distances from roads using Friedman tests. Analyzes were

performed separately for trees (DBH > 8cm) and saplings (DBH ≤ 8

cm) using the rstatix library (version 0.7.2) of R software (version

4.3.1, R Foundation for Statistical Computing, Vienna, AT). For

both analyses, aspen density data were grouped into a single

distance class for transects parallel to roads (0 m), while data

from perpendicular transects were divided into four distance

classes (10 m, 20 m, 30 m and more than 30 m from roads).

These classes were considered because the right-of-way (i.e., area

deforested during road construction) in the study landscape is

generally 30 m, with cleared strips along the roadbed which are

generally 11 m wide, but can vary between 0 and 27 m wide if the

roadbed is off-centre due to operational or safety constraints (see

MFFP, 2021). The use of a single distance class of 0-10 m

corresponding to the common width of the cleared strips (i.e., 11

m), could therefore have prevented us from detecting situations

where the cleared strips are wider (e.g., 20 m). Conversely, the use of

a distance class of 0-30 m could have masked the effect of the right-

of-way on aspen density, by including plots not located in the right-

of-way if the latter is 11m wide.

Post hoc analyses were then carried out to identify between

which pairs of distance classes aspen density differed significantly.

Given that cleared strips along the roadbed never extend beyond 27

m, the >30 m distance class was used as “control” in post hoc tests, to

increase tests power by minimising the number of pairwise

comparisons. Aspen densities in all other distance classes were

compared to aspen density in the >30 m distance class using

Desmar’s post hoc tests in the R PMCMRplus library (version

1.9.7). Desmar’s tests were preferred to exact tests (Eisinga et al.,

2017) and Nemenyi’s tests, as they allow both one-tailed testing and

the use of the Benjamini-Hochberg correction method for multiple

comparisons, thus increasing the power of the tests. One-tailed tests

were preferred to two-tailed tests because we suppose that aspen

density is higher near roads than far from them.

We used the method developed by Christen and Matlack (2006)

to determine if forest roads are habitat corridor and if they are

dispersal corridor for aspen in the study landscape. The relationship

between the number of aspen stems and the distance to the centre of

the stand was plotted for each sampled transect. If the number of

aspen stems decreases at a lower rate (i.e., lower slope) along the

transect parallel to the forest road compared to the perpendicular
frontiersin.org
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transect, this indicates facilitated dispersal along the forest road (i.e.,

dispersal corridor). If the Y-intercept is larger for the transect

parallel compared to the transect perpendicular to the road, this

indicates better habitat quality along the road (i.e., habitat corridor).

For the analyses, the number of aspen stems was transformed using

a logarithmic function and plotted in the R Stats library

(version 4.0.0).

Finally, in order to determine if the forest roads acted as a

starting point for the dispersal of aspen into adjacent stands, we

used a linear mixed model followed by ANOVA to compare the

maximum age of aspen stems at different distances from the roads.

If aspen stems established along the forest roads before dispersing

into adjacent stands, then individuals should be older near roads

than far from them. For this analysis, the perpendicular transects

were divided into four distance classes (10 m, 20 m, 30 m and more

than 30 m from the forest road) to distinguish the effect of the right-

of-way, while parallel transects form a single distance class (0 m).

Homogeneity of the variance was checked using Levene’s test, while

normality of the residuals was tested using a Shapiro-Wilk test. A

Tukey’s post hoc test was used to identify pairs of distance classes in

which the maximum age of aspen differed significantly. Only stands

that had been severely disturbed after road construction, allowing

the potential dispersal of aspen into adjacent stands, were included

in this analysis (13 stands). The analyses were carried out in the R

lme4, car and emmeans libraries (respectively, version 1.1-34, 3.1-2

and 1.8.8).
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3 Results

3.1 Distribution of aspen along forest roads

Forest roads seem to influence the distribution and abundance

of aspen in the study landscape, acting as dispersal and habitat

corridors. Of the 694.4 km of vegetation observations made in 2018,

aspen was present on 525.7 km (75.7%). Aspen was present only on

the road-edges (≈ 5 m) along 312.1 km (45.0%), present on the

road-edges plus the adjacent stand on 75.8 km (10.9%), and present

only in the adjacent stands on 137.8 km (19.8%).
3.2 Role of forest roads

The 2019 survey confirms that distribution and abundance of

aspen trees and saplings are influenced by forest roads. The density

of trees (DBH > 8 cm) and saplings (DBH ≤ 8 cm) differ

significantly between distance classes (Friedman tests; X² = 18.8,

df = 4, p = 8.66 x 10-4 vs. X² = 27.7, df = 4, p = 1.43 x 10-5,

respectively). The density of trees is significantly higher at 0 and 10

m from roads than at more than 30 m (Figure 3A). The median

density of trees at 0 and 10 m is 400 stems/ha, compared to 0, 0 and

57 stems/ha at 20, 30 and more than 30 m from roads, respectively.

The density of saplings is higher at 0 m than more than 30 m from

roads (Figure 3B). However, saplings density is not higher at 10 m,
A

B

FIGURE 3

Trembling aspen density according to distance from forest roads for trees (DBH > 8 cm) (A), and saplings (DBH ≤ 8 cm) (B). The x-axis scale varies
between graphs. Friedman test results are shown for trees and saplings. The transects parallel to forest roads form a single distance class (0 m). The
transects perpendicular to the forest roads are divided into four classes of distance: 10 m, 20 m, 30 m and more than 30 m from the roads (>30).
The symbol * indicates a statistically significant difference between the distance class and the control (> 30 m) at a threshold of a = 0.05, according
to the results of Desmar’s post-hoc test with Benjamini-Hochberg correction. The symbol ** indicates a statistically significant difference at a
threshold of a = 0.01.
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indicating that the distribution of aspen saplings is more restricted

in the immediate vicinity of forest roads than that of trees. The

median density of saplings at 0 m is 100 stems/ha, compared to 0

stems/ha for all other distance classes.

The number of aspen stems according to the distance to the

stand centres indicate that forest roads sometimes act as habitat

corridors for aspen. Indeed, part of the study landscape is

characterised by the presence of habitats adjacent to forest roads

that are unsuitable for aspen, as evidenced by its absence on the

perpendicular transects (Figure 4A; Supplementary Figure 1).

Aspen distribution is channeled along forest roads, given that

they provide favourable habitat for its establishment and growth,

within a less favourable habitat matrix. This situation was observed

in 8 of the 19 sampled stands (Supplementary Figure 1).

The role of forest roads is more difficult to establish for stands

with aspen in perpendicular transect. The distribution of aspen in

five of these stands suggests that forest roads act as a habitat

corridor (Supplementary Figure 1), because aspen established at

greater densities close to the road than farther away (Figure 4B).

Yet, in five other stands, the forest roads did not play a particular

role in the distribution of the aspen and for three of them, the

habitat seems to be of better quality away from the roads in the

perpendicular transect than parallel to the roads (Figure 4C and

Supplementary Figure 1). In the last stand, the road seems to act as a

dispersal corridor (Figure 4D), but this result could reflect the

presence of unsuitable habitat beyond the first 30 m of the

perpendicular transect.

Contrary to our hypothesis, forest roads do not appear to have

acted as a starting point for the dispersal of aspen into adjacent
Frontiers in Ecology and Evolution 06
stands away from roads. Indeed, although the ANOVA indicates

significant differences between the average maximum age of

individuals according to distance classes (X² = 25.1, df = 4, p =

4.82 x 10-5), Tukey’s post hoc test does not indicate difference

between distance classes 0 m, 30 m and >30 m from roads

(Figure 5). However, aspen stems established at 10 and 20 m

from roads are significantly younger than aspen stems established

at 0 and more than 30 m from roads. Furthermore, although the age

of aspen stems does not differ significantly between the 20, 30 and

>30 m distance classes, individuals located at 30 m tend to be

slightly younger than individuals located beyond 30 m, and slightly

older than individuals located at 20 m. Thus, the colonisation of

road-edges seems to have occurred gradually from aspen

populations established both in the immediate vicinity of roads (0

m) and far from roads (>30 m).
4 Discussion

Forest roads play an important role in the distribution of aspen

in our study landscape, as evidenced by its presence on road-edges

along 55.9% of the 694 km of forest roads that we inventoried in

2018. Road construction and maintenance creates edge habitats in

which environmental conditions differ from those found in interior

forests, which in turn influences plant composition (Andrews, 1990;

Forman and Alexander, 1998; Trombulak and Frissell, 2000). Direct

effects of forest road construction include vegetation removal and

soil disturbance (Harper et al., 2005), together with altered nutrient

availability (Santelmann and Gorham, 1988; Devlaeminck et al.,
A B

DC

FIGURE 4

Relationships between the number of trembling aspen stems and the distance to the centre of the stands for transects parallel (in black) and
perpendicular (in grey) to the forest roads. Only four “typical” stands are represented (for all the stands, see Supplementary Figure 1). The number of
trembling aspen stems was transformed using a logarithmic function. Panels (A, B) show two examples of stands where forest roads act as a habitat
corridor for trembling aspen. Panel (C) shows an example of a stand where forest roads play no particular role in the distribution of trembling aspen.
Panel (D) shows a stand where the forest road appears to act as a dispersal corridor for trembling aspen.
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2005; Schmidt et al., 2017), wind and incident light patterns (Young

and Mitchell, 1994; Damschen et al., 2014; Stern et al., 2018), and

temperature and humidity of the air and soil (Chen et al., 1993;

Chen et al., 1995; Pohlman et al., 2007; Pohlman et al., 2009).

Consequently, edge habitats are generally favourable for pioneer,

shade-intolerant and disturbance-adapted species (e.g., Honnay

et al., 2002; Godefroid and Koedam, 2004; McDonald and Urban,

2006; Najafi et al., 2012; Picchio et al., 2018), such as aspen (Perala,

1990). For example, Harper et al. (2015) and Whitbeck et al. (2016)

showed that in the boreal forest, edge habitats of natural (i.e., fire,

lakes, wetlands) and anthropogenic origin (i.e., cutting, roads)

favoured poplars (Populus spp.). Since winter forest roads were

not considered in this study, their effects on the distribution of

aspen remain unknown. Yet, winter forest roads are probably less

favourable habitats for aspen, because the use of endogenous

materials for road construction (e.g., organic soil) tends to limit

the modification of edaphic conditions (Godefroid and Koedam,

2004; Bergès et al., 2013).

At the scale of our study landscape, the effect of road-edges on

aspen regeneration and tree densities extends over a relatively short

distance (i.e., respectively 0 and 10 m; Figure 3). These results are

consistent with literature reports. Indeed, the effect of roads on the

composition of vegetation has been reported to be limited to about

10 m in several forest ecosystems (Watkins et al., 2003; Hansen and

Clevenger, 2005; Arévalo et al., 2008; Deljouei et al., 2017). The

restriction of aspen regeneration to the immediate vicinity of roads

(i.e., transect parallel to the road) could be due to insufficient solar

irradiance beyond a few metres from the roadway (Buckley et al.,

2003; Delgado et al., 2007; Avon et al., 2010; Deljouei et al., 2018), to

allow the regeneration of this very shade-intolerant species. Our

results are also consistent with the width of rights-of-way (i.e., the

area deforested during road construction) in our study landscape

(i.e., generally 30 m). These rights-of-way include an 8 m-wide

roadbed, which is normally located at the centre of the right-of-way,
Frontiers in Ecology and Evolution 07
plus an 11 m-wide cleared strip on either side of the roadway (i.e.,

road-edge habitats available for aspen) (MFFP, 2021). However, at

the stand scale, the distance of the road-edge effect on aspen density

is variable (Figure 3). The distance of the road-edge effect depends

upon many factors such as the width of the road and the intensity of

traffic (Angold, 1997; Forman et al., 2003; Zhou et al., 2020), the

position of the road in relation to the slope and wind (Forman and

Alexander, 1998), or the orientation of the edges, their age and the

characteristics of the adjacent vegetation (Matlack, 1993; Matlack,

1994; Camargo and Kapos, 1995; Didham and Lawton, 1999;

Harper and Macdonald, 2002; Dignan and Bren, 2003). In our

study, the orientation of the edges and the characteristics of the

adjacent stands (e.g., composition, age, height, surface deposit,

drainage) differ among sites, which probably explains the

observed variability in the response of aspen at the stand scale

(see Murcia, 1995; Ries et al., 2004).

Forest roads do not appear to have acted as dispersal corridors

for aspen in our study landscape (Figure 4). Nevertheless, the

presence of aspen stands along the Dalton Highway in Alaska,

beyond the northern range of the specie and the topographic barrier

of the Brooks Range, highlights the role that vehicles can play as a

dispersal vector for aspen seeds (Ackerman and Breen, 2016).

According to von der Lippe and Kowarik (2012), road-edge

species abundance and seed mass are the main factors affecting

the magnitude and probability of dispersal by vehicles, with

dispersal events of greater magnitude and frequency for abundant

species with light seeds (≤ 0.1 mg). The high abundance of aspen on

road edges (Figure 3), and the low weight of these seeds (≈ 0.1 mg)

(Greene et al., 1999; Wolken et al., 2010), could therefore favour its

dispersal by vehicles in our study area.

Forest roads sometimes act as habitat corridors for aspen in our

study landscape (Figure 4A and Supplementary Figure 1), because

its expansion appears to be channeled along the roads due to

unsuitable or less favourable conditions in adjacent habitats
FIGURE 5

Average maximum age of trembling aspen estimated by the linear mixed model, according to distance from forest roads. Error bars are standard
errors. The results of the ANOVA performed on the values estimated by the linear mixed model are shown. The transects parallel to forest roads
form a single distance class (0 m). The transects perpendicular to the forest roads are divided into four classes of distance: 10 m, 20 m, 30 m and
more than 30 m from the roads (>30). The symbol * indicates a statistically significant difference between the average age at a threshold of a = 0.05,
according to the results of Tukey’s post-hoc test. The symbol ** indicates a statistically significant difference at a threshold of a = 0.01.
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(Christen and Matlack, 2006; Huijser and Clevenger, 2006). In our

study landscape, edaphic conditions, especially the thickness of

organic layers, appear to be the main factor limiting the presence of

aspen away from roads. A thick organic layer (> 30 cm) is known to

limit establishment of aspen through sexual reproduction and

vegetative propagation (Gewehr et al., 2014; Lafleur et al., 2015),

which can be attributed to low soil temperatures and low nutrient

availability induced by organic matter accumulation (van Cleve

et al., 1983; Simard et al., 2007), and to low carbohydrate reserves

contained in small-sized aspen seeds (Greene et al., 1999; Greene

et al., 2007). In our study, 7 out of the 8 stands where aspen is absent

more than 10 m away from forest roads exhibit an organic layer

thicker than 30 cm. In these stands, road construction has created

favourable edge habitats for aspen, within a less favourable matrix.

The use of gravel for road construction may be responsible for

creating favourable conditions for aspen establishment in edge

habitats, as observed in Alaska (Ackerman and Breen, 2016).

Road dust transport due to wind, road traffic and runoff may

have increased soil pH and nutrient availability along the roads,

and limited moss cover, particularly Sphagnum spp. (Walker and

Everett, 1987; Auerbach et al., 1997; Myers-Smith et al., 2006;

Müellerová et al., 2011; Ackerman and Finlay, 2019). In addition,

dust deposits may have created islands of mineral soil that favour

aspen germination. Once established, aspen is able to exert a

positive feedback on its environment by limiting sphagnum cover

and improving nutrient cycling (Prescott et al., 2000; Fenton et al.,

2005; Légaré et al., 2005; Laganière et al., 2009; Laganière et al.,

2010), thereby facilitating its subsequent establishment along

the roads.

In addition to suitable edaphic conditions, the establishment of

aspen away from roads seems to require the occurrence of severe

disturbance. Indeed, all stands where aspen is present perpendicular

to the roads have been clear-cut (9 stands) or burned (2 stands) over

the last 40 to 50 years. The vigorous regeneration of aspen after

severe disturbance is a widely documented phenomenon (Bartos

and Mueggler, 1982; Bella, 1986; Brown and Debyle, 1987; Bartos

et al., 1991; Ilisson and Chen, 2009), and clear-cuts have played a

major role in aspen expansion in the boreal forest (Brumelis and

Carleton, 1988; Carleton andMacLellan, 1994; Friedman and Reich,

2005). As the practice of clear-cutting will continue in the future,

some stands may be vulnerable to aspen expansion from

populations that have established on the road-edges (see Parendes

and Jones, 2000). According to our 2018 vegetation inventory,

aspen is present only on the road-edges in 45% of our

observations. Yet, severe disturbance does not appear to be

systematic trigger of aspen establishment away from roads, as

three out of the 8 stands where aspen is absent perpendicular to

the roads have been clearcut. Given the high coverage of thick

organic deposits in our study landscape (45% of the soils surface),

the potential for aspen expansion from the roads could be lower

than what our vegetation inventory suggests, if disturbances do not

reduce sufficiently the thickness of organic layer to allow

establishment of aspen. Conversely, if disturbances, such as

clearcutting or fire, sufficiently reduce the thickness of the organic
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layer, these habitats could be particularly vulnerable to invasion

by aspen.

Contrary to our hypothesis, aspen stands along forest roads do

not appear to have acted as a starting point for dispersal into

adjacent habitats. Indeed, the establishment of the aspen took place

relatively synchronously near to and far from the roads (i.e., 0 m

and more than 30 m, Figure 5). This result could be due to the

synchronicity between road construction and clear-cutting. Given

that forest roads have a planned use of 10 to 15 years (MFFP, 2021),

logging must occur shortly after road construction. This hypothesis

is supported by the fact that roads and cuts appear together on the

governmental decadal forest map.

Construction of forest roads create edge habitats in which

environmental conditions differ from those found in adjacent

sites, which in turn influences vegetation composition. These edge

habitats are particularly favourable to aspen in our study landscape,

a frequent species along the road network. Soil disturbance, opening

of the canopy, and the use of gravel for the construction of forest

roads are likely important factors in explaining the high density of

aspen along the roads. The influence of roads on aspen density

extends over a short distance (10 m on each side of the roads) and

roads act as a habitat corridor for aspen, due to the presence of

unsuitable adjacent habitats. Although roads do not appear to have

acted as a starting point for aspen dispersal away from roads, these

habitats would be particularly vulnerable to invasion by aspen

following a disturbance that would reduce the thickness of the

organic layer.
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Naturelles, de la Faune et des Parcs, Direction de l’environnement forestier).

Hansen, M., and Clevenger, A. (2005). The influence of disturbance and habitat on
the presence of non-native plant species along transport corridors. Biol. Conserv. 125
(2), 249–259. doi: 10.1016/j.biocon.2005.03.024

Harper, K., and Macdonald, S. (2002). Structure and composition of edges next to
regenerating clear-cuts in mixed-wood boreal forest. J. Vegetation Sci. 13 (4), 535–546.
doi: 10.1111/j.1654-1103.2002.tb02080.x

Harper, K., Macdonald, S., Burton, P., Chen, J., Brosofske, K., Saunders, S., et al.
(2005). Edge influence on forest structure and composition in fragmented landscapes.
Conserv. Biol. 19 (3), 768–782. doi: 10.1111/j.1523-1739.2005.00045.x

Harper, K. A., Macdonald, S. E., Mayerhofer, M. S., Biswas, S. R., Esseen, P. A.,
Hylander, K., et al. (2015). Edge influence on vegetation at natural and anthropogenic
edges of boreal forests in Canada and Fennoscandia. J. Ecol. 103 (3), 550–562.
doi: 10.1111/1365-2745.12398

Honnay, O., Verheyen, K., and Hermy, M. (2002). Permeability of ancient forest
edges for weedy plant species invasion. For. Ecol. Manage. 161 (1-3), 109–122.
doi: 10.1016/S0378-1127(01)00490-X
Frontiers in Ecology and Evolution 10
Huijser, M., and Clevenger, A. (2006). “Habitat and corridor function of rights-of-
way,” in The ecology of transportation: managing mobility for the environment. Ed. J.D.
&J. L. Davenport (Dordrecht, NL: Springer), 233–254.

Ilisson, T., and Chen, H. (2009). Response of six boreal tree species to stand replacing
fire and clearcutting. Ecosystems 12 (5), 820–829. doi: 10.1007/s10021-009-9259-z

Kalwij, J., Milton, S., and McGeoch, M. (2008). Road verges as invasion corridors? A
spatial hierarchical test in an arid ecosystem. Landscape Ecol. 23 (4), 439–451.
doi: 10.1007/s10980-008-9201-3

Lafleur, B., Cazal, A., Leduc, A., and Bergeron, Y. (2015). Soil organic layer thickness
influences the establishment and growth of trembling aspen (Populus tremuloides) in
boreal forests. For. Ecol. Manage. 347, 209–216. doi: 10.1016/j.foreco.2015.03.031
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Perala, D. (1990). “Populus tremuloides Michx. quaking aspen,” in Silvics of North
America: Hardwoods. Eds. R. Burns and B. Honkala (Washington DC, USA: US
Department of Agriculture, Forest Service), 555–569.

Picchio, R., Tavankar, F., Venanzi, R., Lo Monaco, A., and Nikooy, M. (2018). Study
of forest road effect on tree community and stand structure in three italian and Iranian
temperate forests. Croatian J. For. Eng. 39 (1), 57–70.
frontiersin.org

https://doi.org/10.1007/s10342-018-1138-8
https://doi.org/10.1016/j.scitotenv.2004.07.005
https://doi.org/10.1111/j.1744-7429.1999.tb00113.x
https://doi.org/10.1016/S0378-1127(02)00491-7
https://climat.meteo.gc.ca/climate_normals/
https://climat.meteo.gc.ca/climate_normals/
https://doi.org/10.1186/s12859-017-1486-2
https://doi.org/10.1016/j.scitotenv.2017.07.037
https://doi.org/10.1016/j.foreco.2005.03.017
https://doi.org/10.1007/s11258-005-9057-4
https://doi.org/10.1146/annurev.ecolsys.29.1.207
https://doi.org/10.1890/04-0748
https://doi.org/10.1093/aob/mcw218
https://doi.org/10.1093/aob/mcw218
https://doi.org/10.1139/cjfr-2013-0481
https://doi.org/10.1657/1938-4246-46.4.947
https://doi.org/10.1657/1938-4246-46.4.947
https://doi.org/10.1016/j.biocon.2004.01.003
https://doi.org/10.1139/X06-245
https://doi.org/10.1139/x98-112
https://doi.org/10.1016/j.biocon.2005.03.024
https://doi.org/10.1111/j.1654-1103.2002.tb02080.x
https://doi.org/10.1111/j.1523-1739.2005.00045.x
https://doi.org/10.1111/1365-2745.12398
https://doi.org/10.1016/S0378-1127(01)00490-X
https://doi.org/10.1007/s10021-009-9259-z
https://doi.org/10.1007/s10980-008-9201-3
https://doi.org/10.1016/j.foreco.2015.03.031
https://doi.org/10.1016/j.apsoil.2008.08.005
https://doi.org/10.1139/X09-208
https://doi.org/10.2980/16-4-3252
https://doi.org/10.1007/s11104-005-1482-6
https://doi.org/10.1614/ws-06-040r1.1
https://doi.org/10.1656/058.014.0402
https://doi.org/10.1139/cjfr-2022-0082
https://doi.org/10.1016/0006-3207(93)90004-K
https://doi.org/10.1016/0006-3207(93)90004-K
https://doi.org/10.2307/2261391
https://doi.org/10.1007/s10530-005-5227-5
https://doi.org/10.1614/IPSM-08-125.1
https://doi.org/10.1614/IPSM-08-125.1
https://doi.org/10.1016/j.scitotenv.2011.06.056
https://doi.org/10.1016/S0169-5347(00)88977-6
https://doi.org/10.2980/1195-6860(2006)13[503:CIOAAT]2.0.CO;2
https://doi.org/10.1177/194008291400700108
https://doi.org/10.1177/194008291400700108
https://doi.org/10.1046/j.1523-1739.2000.99089.x
https://doi.org/10.3389/fevo.2023.1336409
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Marchais et al. 10.3389/fevo.2023.1336409
Pickering, C., Mount, A., Wichmann, M., and Bullock, J. (2011). Estimating human-
mediated dispersal of seeds within an Australian protected area. Biol. Invasions 13 (8),
1869–1880. doi: 10.1007/s10530-011-0006-y

Pohlman, C., Turton, S., and Goosem, M. (2007). Edge effects of linear canopy
openings on tropical rain forest understory microclimate. Biotropica 39 (1), 62–71.
doi: 10.1111/j.1744-7429.2006.00238.x

Pohlman, C., Turton, S., and Goosem, M. (2009). Temporal variation in
microclimatic edge effects near powerlines, highways and streams in Australian
tropical rainforest. Agric. For. Meteorology 149 (1), 84–95. doi: 10.1016/
j.agrformet.2008.07.003

Prescott, C., Maynard, D., and Laiho, R. (2000). Humus in northern forests: friend or
foe? For. Ecol. Manage. 133 (1-2), 23–36. doi: 10.1016/S0378-1127(99)00295-9

Ries, L., Fletcher, R., Battin, J., and Sisk, T. (2004). Ecological responses to habitat
edges: mechanisms, models, and variability explained. Annu. Rev. Ecology Evolution
Systematics 35, 491–522. doi: 10.1146/annurev.ecolsys.35.112202.130148

Ross, S. (1986). Vegetation change on highway verges in south-east Scotland. J.
Biogeography 13 (2), 109–117. doi: 10.2307/2844986

Santelmann, M. V., and Gorham, E. (1988). The influence of airborne road dust on
the chemistry of Sphagnum mosses. J. Ecol. 76 (4), 1219–1231. doi: 10.2307/2260644

Schmidt, M., Jochheim, H., Kersebaum, K.-C., Lischeid, G., and Nendel, C. (2017).
Gradients of microclimate, carbon and nitrogen in transition zones of fragmented
landscapes – a review. Agric. For. Meteorology 232, 659–671. doi: 10.1016/
j.agrformet.2016.10.022

Seiler, A. (2001). Ecological effects of roads: a review (Uppsala, SE: Swedish University
of Agricultural Sciences).

Simard, M., Lecomte, N., Bergeron, Y., Bernier, P., and Paré, D. (2007). Forest
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