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How the near-shore marine benthic communities survived Quaternary

glaciations in Antarctica is a major question for Southern Ocean

biogeographers. Several hypotheses that consider life-history traits, such as

bathymetric ranges and developmental modes, have been proposed. Near-

shore species with high dispersive potential are expected to show star-like

genealogies, with broadly distributed haplotypes surrounded by closely related

variants at low frequencies, a consequence of rapid population post-glacial

expansion mediated by larvae. By contrast, shallow-water taxa with low

dispersal potential are expected to evidence marked genetic structure or even

consist of separate cryptic species, due to their survival in small refugial

populations subject to repeated bottlenecks. In this study we performed

phylogeographic analyses on the high-latitude littorinid Laevilacunaria

antarctica across its distribution from maritime Antarctica to South Georgia.

This species is a highly abundant near-shore gastropod, commonly found on

macroalgae, with low autonomous vagility and exhibits benthic protected

development with no free-living dispersive stages. Such characteristics make

this species a suitable model to test the above hypotheses. Contrary to low

dispersal potential predictions, L. antarctica comprises a single unstructured unit

across its distribution in maritime Antarctica, exhibiting a typical high-dispersal

star-like, short-branched genealogy centered on a dominant broadly distributed

haplotype. The South Georgia population, however, consists of a separate

genetic unit, strongly differentiated from those of the maritime Antarctic. We

estimate that these two genetic groups separated ~1.2 My, long before the Last
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Glacial Maximum and evolved independently in these areas. Our results thus

provide partial support for the expected pattern for a near-shore marine benthic

species with low innate dispersive potential. On a wider geographic scale

(maritime Antarctica vs South Georgia), our results in L. antarctica provide

support for the expected pattern for a near-shore marine benthic species with

low innate dispersive potential. However, on a narrower scale (maritime

Antarctica) life-history characters including the close association of the species

with macroalgae, would allow dispersal and a species with low dispersal potential

exhibits paradoxically an absence of genetic structure across hundreds of

kilometers probably mediated by rafting.
KEYWORDS

maritime Antarctica, sub-Antarctic, South Georgia, Laevilacunaria antarctica,
quaternary glaciations, postglacial recolonization, rafting, dispersal potential
Introduction

How the shallow benthic marine biota endured Quaternary

glaciations, particularly the Last Glacial Maximum (LGM), is a

major question in Antarctic biogeography (Barnes et al., 2006;

Thatje et al., 2008; Allcock and Strugnell, 2012; Fraser et al., 2014;

Riesgo et al., 2015; Chenuil et al., 2018; Crame, 2018; Lau et al.,

2020; Baird et al., 2021). Ice advances across the Antarctic

continental platform generated major landscape shifts and a

drastic reduction of available habitats (Zachos et al., 2001; Pollard

and DeConto, 2009; Fraser et al., 2012; González-Wevar et al., 2012;

González-Wevar et al., 2013; McCay et al., 2016; Halanych and

Mahon, 2018);. Accordingly, near-shore marine benthic

communities would have been especially vulnerable as continental

ice sheets extended over most of the narrow Antarctic shelf to about

500 m in depth (Ingólfson, 2004; Thatje et al., 2005; Barker et al.,

2007; Dambach et al., 2012).

Quaternary glaciations severely impacted the abundance,

demographic dynamics, structure, and spatial distribution of

Antarctic (Convey et al., 2009; McGaughran et al., 2011; Fraser

et al., 2012; González-Wevar et al., 2013; Riesgo et al., 2015; Chenuil

et al., 2018; Guillemin et al., 2018; Halanych and Mahon, 2018;

Maturana et al., 2020; Cakil et al., 2021; Levicoy et al., 2021) and

sub-Antarctic (Waters, 2008; Fraser et al., 2009; Nikula et al., 2010;

González-Wevar et al., 2011; González-Wevar et al., 2012;

Cumming et al., 2014; Moon et al., 2017; González-Wevar et al.,

2018; González-Wevar et al., 2021) near-shore marine organisms.

Moreover, ice advances during glacial maxima would have

enhanced speciation, particularly in species with nonpelagic

developmental modes (direct developers), as populations became

fragmented into small and isolated refugia across the Antarctic

continental shelf (Brey et al., 1996; Pearse et al., 2009; Chenuil et al.,

2018). Following this, interglacial periods generated the expansion

of newly available habitats where populations and species would

have expanded their distributions (Provan and Bennett, 2008;
02
Marko et al., 2010; González-Wevar et al., 2013). Under a basic

expansion-contraction model of Pleistocene biogeography (Provan

and Bennett, 2008), refugial populations are expected to harbor

higher levels of intraspecific genetic diversity compared to those

that were heavily impacted by ice and/or recently recolonized ones

(Marko, 2004; Maggs et al., 2008; Marko et al., 2010). Moreover, in

some cases glaciations have been associated with the radiation and

speciation of different marine near-shore invertebrates (Thornhill

et al., 2008; Wilson et al., 2009; Allcock et al., 2011; Baird et al., 2011;

Baird et al., 2021), a process also known as ‘the Antarctic diversity

pump’ (Clarke and Crame, 1989; Clarke and Crame, 1992; Chenuil

et al., 2018).

In a review of genetic signatures induced by Quaternary events

in Antarctic taxa, Allcock and Strugnell (2012) proposed that two

life-history traits, bathymetric ranges and developmental modes,

played a key role. Shallow species with dispersive potential would

exhibit star-like haplotype networks, with broadly distributed

common haplotypes and closely related variants occurring at low

frequencies. Such a pattern is associated with rapid population

expansion, probably mediated by larvae dispersion, and has been

recorded in the sea urchin Sterechinus neumayeri (Dıáz et al., 2011),

the nemertean Parborlasia corrugatus (Thornhill et al., 2008), the

Antarctic limpet (González-Wevar et al., 2013) and the shrimp

Chorismus antarcticus (Raupach et al., 2010). By contrast, the

genetic signature predicted for shallow species with low dispersal

potential includes disjunct haplotypes networks comprising

multiple smaller genetic units, indicative of small populations

isolated in glacial refugia that underwent bottlenecks. Due to the

absence of free dispersive stages, recolonization is slow, allowing

time for genetic drift and possible adaptive differentiation before

secondary contact of isolated populations. Examples of taxa

displaying this pattern include the amphipods Eusirus (Baird

et al., 2011), the pycnogonid Colossendeis megalonyx (Krabbe

et al., 2010), cephalopods (Allcock et al., 2011), and the

nudibranch Doris kerguelensis (Wilson et al., 2009).
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The high-latitude littorinid species Laevilacunaria antarctica

(Martens van and Pfeffer, 1886) is one of the most abundant inter-

and subtidal gastropods on macro-algae and rocky shores across

ice-free areas of the Antarctic Peninsula and sub-Antarctic island of

South Georgia (Cantera and Arnaud, 1984; Iken, 1999; Amsler et al.,

2015; Martin et al., 2016; Amsler et al., 2019; Amsler et al., 2022;

Schmider-Martıńez et al., 2023). As with other Laevilitorininae

genera such as Laevilitorina (Simpson and Harrington, 1985), L.

antarctica exhibits low autonomous vagility, benthic protected

development with the absence of free-living dispersive stages, a

mode or reproduction where crawling juveniles emerge directly

from egg masses. Generally, high-latitude littorinids are considered

to be poor dispersers, with most species having narrow distributions

restricted to particular areas of the Southern Ocean (González-

Wevar et al., 2022; Rosenfeld et al., 2023). Based on its broad

distribution and abundance across the maritime Antarctica, its

narrow bathymetric range, and its reproductive mode, L.

antarctica represents a suitable model to test the hypotheses

proposed for Antarctic Quaternary biogeography of shallow

marine benthic organisms.

In this study, we performed population-based molecular

analyses of Laevilacunaria antarctica across its known

distribution. We included more than 320 specimens collected

from across the Antarctic Peninsula (AP) and the nearby South

Shetland Islands (SSI), as well as from sub-Antarctic South Georgia

(SG). Comparative mitochondrial (COI) and nuclear (28S rRNA)

genetic analyses allowed us to unravel the legacy of Quaternary

glaciations in the patterns of genetic diversity and structure of this

species. Considering the lack of larval dispersive stages in the

species and its narrow bathymetric range, we predicted that L.

antarctica would display several disjunct haplotype networks

separated into smaller genetic units, as recorded in other

Antarctic species with similar life history traits. Through this

research we aimed to understand how key elements of the near-
Frontiers in Ecology and Evolution 03
shore Antarctic marine benthic communities endured Quaternary

climate shifts associated with glacial and interglacial periods.
Materials and methods

Sample collection, DNA extraction
and amplifications

Specimens of L. antarctica were collected by hand and by scuba

divers from intertidal and subtidal rocky-shore ecosystems between

2015 and 2021 during the Chilean Scientific Antarctic Expeditions

(ECAs) across the species distribution in the maritime Antarctica (AP

and SSI) and SG (Figure 1; Table 1). The identification of specimens

was done following the original descriptions and revisions (Martens

van and Pfeffer, 1886; Smith, 1879; Preston, 1916; Powell, 1951) as

well as recent literature (Arnaud and Bandel, 1979; Cantera and

Arnaud, 1984; Engl, 2012). Individuals were fixed in situ using 95%

ethanol and transported for further molecular analyses. All the

specimens were photographed and measured for future

comparative morphological studies. Preparation of DNA from the

whole animal used the standard salting-out methodology (Aljanabi

and Martinez, 1997) and the QIAGEN DNEasy Blood & Tissue kit

(QIAGEN Inc.). We amplified a partial fragment of the

mitochondrial cytochrome c subunit I gene (COI) using universal

primers LCO1490 and HCO2198 (Folmer et al., 1994). Similarly, we

used the universal primers 900F and 1600R (Littlewood et al., 2000)

to amplify a fragment of the nuclear 28S rRNA gene. PCR amplicons

were purified and sequenced in both directions at Macrogen Inc

(Seoul, South Korea). Forward and reverse sequences were assembled

and edited for each marker independently using GENEIOUS (http://

www.geneious.com). Alignments and base composition of nucleotide

sequences analyses were done for each marker in MUSCLE (Edgar,

2004) in MEGA 11 (Tamura et al., 2021), respectively. Wright’s
FIGURE 1

Sampling localities of Laevilacunaria antarctica populations across its distribution in maritime Antarctica (SSI/AP) and South Georgia (SG).
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mitochondrial codon usage was computed using the Effective

Number of Codons (ENC) in DnaSP v5 (Librado and Rozas,

2009). The data presented in the study are deposited in the

GenBank repository, accession number COI (ORT701885 -

ORT701931) and 28S rRNA (ORT711532 - ORT711533).
Genetic diversity and population structure
in L. antarctica

We performed a DNA saturation analysis following Xia and Xie

(2001) to evaluate how transitions accumulate in relation to

nucleotide divergence in the complete L. antarctica COI data set.

We then estimated levels of population mtDNA polymorphism

through standard diversity indices including number of haplotypes

(k), haplotype diversity (H), number of segregating sites (S) and the

number of private haplotypes (p. hap) per locality. Moreover, we

also determined the average number of pairwise differences (П) and

the nucleotide diversity (p) across the species distribution

using DnaSP.

Patterns of population differentiation were estimated following

Pons and Petit (1996), using haplotype frequencies (GST) and mean

pairwise differences (NST) in Arlequin v.3 (Excoffier et al., 2005).

The statistical significance of genetic pairwise differences was

calculated using permutation tests (20,000 iterations) and the

adjustment for multiple testing was done through False Discovery

Rate (FDR) correction (Narum, 2006). Moreover, we estimated

levels of genetic differentiation using the nearest-neighbor statistic

(Snn), which measures how often nearest-neighbor (in sequence

space) sequences are from the same locality in geographic space

(Hudson, 2000). The statistical significance of Snn was determined

using a permutation test (20,000 iterations).

We used two different clustering methods to determine the

spatial genetic structure of L. antarctica. First, we determined the

number and the composition of panmictic groups and the spatial
Frontiers in Ecology and Evolution 04
boundaries using a Bayesian model computed in GENELAND

v.2.0.0 (Guillot et al., 2005) in the R environment (Ihaka and

Gentleman, 1996). This analysis implements a Markov Chain

Monte Carlo (MCMC) procedure to estimate the best clustering

of samples considering genetic and geographic information.

Analyses were run using 50 x 106 MCMC iterations sampled

every 1,000 steps. Assembled scores were graphed against

generations in Tracer v.1.5. (Rambaut et al., 2018) to identify

stationarity and the number of generations to be discarded as

burn-in. A maximum number of clusters (K = 13) were run to

estimate the model parameters and posterior probabilities of group

membership. Second, we determined the spatial genetic structure in

L. antarctica by estimating the number and composition of groups

that were most differentiated based on sequence data set using

Spatial Analysis of Molecular Variance (SAMOVA) (Dupanloup

et al., 2002). This analysis partitions the genetic variance into i)

within populations, ii) among populations within groups and iii)

among groups.
Demographic analyses in L. antarctica

Haplotype genealogical relationships in L. antarctica

populations were reconstructed using median-joining and

maximum-parsimony networks in Network 10 (Forster et al.,

2001) and Hapview (Salzburger et al., 2011), respectively.

Moreover, we performed neutrality statistical tests (Tajima’s D

and Fu’s FS) using DnaSP for the whole COI data set, for each

recognized group, and for each locality to estimate whether

sequences deviate from mutation-drift equilibrium. Population

demographic histories were estimated comparing the distribution

of pairwise differences between haplotypes (mismatch distribution)

for each recognized group to the expected distribution under the

sudden expansion growth model of Rogers and Harpending (1992).

Finally, for comparative purposes, we also constructed genealogical
TABLE 1 Sampled localities of Laevilacunaria antarctica across its distribution in maritime Antarctica (MP) and South Georgia.

Locality Latitude Longitude Area Main Area

Penguin Island (PI) 62°06′00′′S 57°55′41′′W King George Island South Shetland Islands

Admiralty Bay (AB) 62°09′41′′S 58°28′10′′W King George Island South Shetland Islands

Fildes Bay (FB) 62°12’57″S 58°57’35″W King George Island South Shetland Islands

Coppermine Bay (CB) 62°22′17″S 59°42′53″W Robert Island South Shetland Islands

Hannah Point (HP) 62°39′19″S 60°36′48″W Livingston Island South Shetland Islands

Whalers Bay (WB) 62°59′57′′S 60°40′28′′W Deception Island South Shetland Islands

Chile Bay (CH) 62°28′43″S 59°39′48″W Greenwich Island South Shetland Islands

Covadonga Bay (CO) 63°19′15″S 57°53′59″W Covadonga Bay Antarctic Peninsula

South Bay (SB) 64°52′55′′S 63°35′03′′W Doumer Island Antarctic Peninsula

Adelaide Island (AI) 67°46′23′′S 68°55′53′′W Marguerite Bay Antarctic Peninsula

Avian Island (AV) 67°46′15′′S 68°53′10′′W Marguerite Bay Antarctic Peninsula

Cumberland Bay (SG) 54°14′12′′S 36°28′32′′W South Georgia Scotia Arc
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relationships in L. antarctica using sequences of the nuclear marker

28S rRNA.

We reconstructed past population dynamics through time in

the recognized L. antarctica’s genetic clusters using a Bayesian

skyline plot method implemented in BEAST v.1.10.4 (Drummond

and Rambaut, 2007; Drummond et al., 2012). Three evolutionary

models (strict clock, uncorrelated lognormal and uncorrelated

relaxed clock) were tested and compared statistically using a Bayes

factor test (Suchard et al., 2001) in Tracer and the strict clock

model was the best fit for each of the COI data-set clusters.

Following this, we performed three independent Bayesian

MCMC runs for 250 x 106 generations (sampled every 1000

iterations), using the GTR + I + G model, previously estimated

in MrModeltest v.2.3 (Nylander, 2004). Molecular evolutionary

studies have yielded a wide range of rate estimates for different

genes and taxa. Several studies based on population-level and

intraspecific data have generated remarkably high estimates of

mutation rate, which contrast with substitution rates inferred in

phylogenetic studies. Consequently, BSP analyses were done using

a tenfold evolutionary rate estimated for littorinids (Reid et al.,

2012). Such a rate correction was assumed considering the time-

dependence of molecular rate proposed by Ho et al (2005; 2007;

2011). The first 10% of the parameter values were discarded as a

burn-in and the convergence of runs was confirmed with Tracer,

ensuring a minimum of 1000 effective sampling for each statistic

(ESSs > 1000).
Frontiers in Ecology and Evolution 05
Results

Genetic diversity in L. antarctica

The whole COI data set in L. antarctica included 323 specimens

(SG = 28; SSI = 188; AP = 107) and comprised 687 nucleotide

positions coding for 229 amino acids. No insertion/deletions or stop

codons were detected. Moreover, mitochondrial (mtDNA) and

nuclear (nucDNA) sequences were not saturated and no evidence

of mtDNA codon bias was found (ENC = 46.75). Four amino-acid

substitutions (positions 11, 44, 144, and 171) were recorded in L.

antarctica using the invertebrate mitochondrial table. Low levels of

genetic diversity characterized populations of L. antarctica, with 48

polymorphic characters (6.9%) and 29 of them (60.4%) were

parsimony informative. Sequences were A – T rich (67.2%). The

haplotype diversity (H) varied between 0.123 (Robert Island, SSI)

and 0.675 (Cumberland Bay, SG) (Table 2). The number of

polymorphic sites (S) varied between 1 (Admiralty Bay, SSI) and

10 (Cumberland Bay, SG). Similarly, the number of haplotypes/

private haplotypes varied among the analyzed localities between 2/0

(Admiralty Bay, SSI) and 11/11 (Cumberland Bay, SG) (Table 2).

Finally, the average number of nucleotide differences (П) and the

mean nucleotide diversity (p) were very low in most localities across

the maritime Antarctica (SSI and AP), whereas the diversity of these

indices was higher in SG (Table 2). The mean level of mtDNA

genetic divergence between SSI/AP and SG populations of L.
TABLE 2 Diversity indices, private alleles, and neutrality tests in Laevilacunaria antarctica populations across its distribution in maritime Antarctica
and South Georgia.

Locality n k H S П p p. hap. Tajima´s D Fu´s FS

Penguin Island (SSI) 26 4 0.222 4 0.308 0.0015 1 -1.88* -2.45

Admiralty Bay (SSI) 21 2 0.095 1 0.095 0.0001 0 -1.16 -0.919

Fildes Bay (SSI) 28 6 0.437 6 0.556 0.0008 2 -1.85* -3.66*

Hannah Point (SSI) 21 4 0.414 3 0.448 0.0006 1 -1.21 -1.77

Coppermine Bay (SSI) 32 3 0.123 3 0.188 0.0002 1 -1.72 -1.70

Whalers Bay (SSI) 30 7 0.464 6 0.524 0.0007 5 -1.86* -5.35**

Chile Bay (SSI) 30 7 0.366 7 0.467 0.0006 6 -2.17** -5.88**

SSI 188 23 0.311 23 0.380 0.0005 n/a -2.48** -40.27***

Covadonga Bay (AP) 33 2 0.061 2 0.121 0.0001 1 -1.50 -0.48

South Bay (AP) 27 5 0.396 5 0.507 0.0007 4 -1.70 -2.57

Adelaide Island (AP) 26 9 0.578 7 0.745 0.0010 5 -1.81* -7.45***

Avian Island (AP) 21 4 0.271 3 0.286 0.0004 2 -1.72 -2.80*

AP 107 17 0.324 14 0.408 0.0005 n/a -2.29** -25.57***

MA 295 36 0.405 34 0.405 0.0005 n/a -2.56*** -75.32***

Cumberland Bay (SG) 28 11 0.675 10 1.167 0.0017 11 -1.91* -7.86***

Total 323 47 0.436 48 2.296 0.0033 -2.00* -42.19***
fro
Where AP = Antarctic Peninsula; SSI = South Shetland Islands; MA = Maritime Antarctica (SSI + AP); SG = South Georgia.
n = number of analyzed individuals; k = number of haplotypes; S = polymorphic sites; H = haplotype diversity; П = average number of pairwise differences; p = nucleotide diversity. *p<0.05,
**p<0.01, *** p<0.001; n/a not applicable.
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antarctica was 1,74%. Levels of nucDNA diversity were much lower

in the species, SSI and AP specimens (n = 123) shared the same

allele which was differentiated by two mutation steps from the

sequences recorded at South Georgia.
Genetic structure in L. antarctica

Mean general values of differentiation estimated were low,

especially considering average GST (0.112) and NST (0.170). In

fact, general levels of differentiation among maritime Antarctic

populations were extremely low, considering average GST (0.043)

and NST (0.034). Pairwise population comparisons did not

recognize significant structure among maritime Antarctica

populations (Table 3). Nevertheless, some populations showed

significant differences after FDR corrections. By contrast, GST and

NST comparisons recorded significant differences between SG and

the rest of the analyzed populations from the maritime

Antarctica (Table 3).

The nearest neighbor statistic in L. antarctica (Snn = 0.199)

showed low but significant levels of phylogeographic signal (p <

0.0001). Nevertheless, when this analysis was carried out

considering the main pattern of genetic differentiation recorded

in the species (maritime Antarctic vs South Georgia), Snn became

extremely high (Snn = 1.00) and significant, showing the high degree

of phylogeographic signal found between maritime Antarctica and

SG. The pattern of genetic structure was supported by the model

based on the Bayesian clustering algorithm, which detected two

main clusters (K = 2). Again, the first cluster included all localities

from the maritime Antarctica (Figure 2A), while the second one

comprised only South Georgia (Figure 2B). Values of cluster

membership were very high (P = 1.000) for all the individuals

and the mean probability value (P = 0.5) corresponds to the

boundary between these clusters and runs across the Scotia Ridge
Frontiers in Ecology and Evolution 06
located between South Georgia and the Antarctic Peninsula.

Similarly, SAMOVA analyses detected two maximally

differentiated genetic groups – maritime Antarctica and South

Georgia – accounting for 59.35% of the total variance, in

comparison with only 0.83% due to within-group variation

among localities (Table 4). Considering the level of mtDNA

genetic divergence (1.74%) and the strong phylogeographic signal

recorded between SSI/AP and SG we performed divergence time

estimations analysis under a phylogenetic framework. For this a

relaxed molecular-clock using an uncorrelated-lognormal (ucld)

model of molecular evolutionary rate heterogeneity and the GTR + I

+ G model of substitution was implemented in BEAST v.1.7.5

(Drummond & Rambaut, 2007; Drummond et al., 2012). Four

chains were run for 200 x 106 generations and trees were sampled

every 10,000 generations. For divergence time estimations we

include in the analyses several calibration points within the

evolution of Littorinidae estimated for the most common

ancestors (TRMCA) of the genera Echinolittorina, Littorina,

Littoraria, Austrolittorina, Tectarius and Afrolittorina) following

Reid et al. (2012), and with special emphasis on higher latitude

groups (González-Wevar et al., 2022). According to our divergence-

time analyses the separation between SSI/AP and SG genetic

clusters occurred around 1.1 Ma (2.0 – 0.55 Ma).
Demographic reconstructions

The parsimony mtDNA network of L. antarctica included 47

haplotypes and clearly discriminated two main groups: maritime

Antarctica and South Georgia, separated by nine substitutional

steps (Figure 3A). Both maritime Antarctica and South Georgia

clusters exhibited typical starlike topologies and short genealogies.

In maritime Antarctica, the central haplotype (H01) was the most

frequent (82%), broadly distributed and surrounded by 35
TABLE 3 Pairwise GST (below the diagonal) and NST (above the diagonal) values calculated among the analyzed populations of Laevilacunaria
antarctica. 20,000 iterations.

Locality PI AB FB HP CB WB CH CO SB AI AV SG

Penguin Island (PI) - 0.000 0.017 0.038 0.001 0.009 0.000 0.003 0.013 0.017 0.000 0.938

Admiralty Bay (AB) 0.000 - 0.014 0.050 0.000 0.004 0.000 0.000 0.010 0.019 0.000 0.941

Fildes Bay (FB) 0.021 0.057 - 0.000 0.017 0.022 0.006 0.027 0.024 0.030 0.014 0.930

Hannah Point (HP) 0.028 0.071 0.000 - 0.044 0.035 0.029 0.065 0.039 0.039 0.037 0.930

Coppermine Bay (CB) 0.000 0.000 0.058 0.076 - 0.013 0.000 0.000 0.019 0.031 0.000 0.947

Whalers Bay (WB) 0.021 0.057 0.000 0.003 0.062 - 0.009 0.016 0.019 0.027 0.000 0.932

Chile Bay (CH) 0.000 0.022 0.000 0.002 0.024 0.000 - 0.001 0.011 0.017 0.000 0.934

Covadonga Bay (CO) 0.013 0.000 0.097 0.120 0.000 0.096 0.053 - 0.015 0.036 0.000 0.950

South Bay (SB) 0.009 0.043 0.000 0.005 0.046 0.000 0.000 0.051 - 0.028 0.002 0.931

Adelaide Bay (AI) 0.047 0.045 0.004 0.009 0.064 0.000 0.008 0.144 0.088 - 0.018 0.922

Avian Island (AV) 0.000 0.001 0.005 0.011 0.002 0.000 0.000 0.031 0.000 0.023 - 0.935

Cumberland Bay (SG) 0.546 0.588 0.444 0.446 0.613 0.432 0.482 0.649 0.463 0.372 0.510 -
frontier
Statistical significant FDR differences are marked in bold.
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haplotypes of low frequency (fewer than four individuals). A second

dominant haplotype (H02) was found in 57% of the SG individuals

and was surrounded by ten closely derived ones (Figure 3A). As

expected, for star-like genealogies, global Tajima’s D and Fu’s

neutrality tests were negative and significant for each recognized

cluster and for the whole COI data set (Table 2). The distribution of

pairwise differences depicted for the maritime Antarctica showed a

typical L-shaped distribution. In contrast, the distribution of

pairwise differences for South Georgia was bimodal. As stated

above, nucDNA parsimony network showed that the maritime

Antarctica populations specimens exhibited the same allele (HI)

while SG specimens carried another one (HII) separated by two

mutational steps (Figure 3B).

Bayesian skyline-plot analyses identified similar trajectories in

terms of the time since the most recent common ancestors (trmca)

and populations expansions between maritime Antarctica and

South Georgia (Figure 4). Population expansion of the maritime
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Antarctica populations occurred approximately 5,000 years ago

while the expansion at South Georgia occurred around 9,000

years ago. The tmrca of SSI/AP occurred around 12,000 years ago

while the tmrca for SG occurred 17,000 years ago (Figure 4).
Discussion

Our results show that Laevilacunaria antarctica has a

remarkably low level of genetic diversity across much of its

known range, with the presence of a single dominant COI

haplotype in our sampled populations from Penguin Island (62°

06’), the farthest north locality in the South Shetland Islands, to the

southernmost point in Avian Island (67°46’) in the Antarctic

Peninsula. There is marginally more diversity further afield, in

South Georgia, although again one haplotype, albeit a very different

one, dominates. The only population structure is between South

Georgia and the remaining populations, with no shared haplotypes

and at least nine substitutional steps between haplotypes from these

two parts of the species’ range. Effectively, the haplotype map is one

of two star-like genealogies linked by a nine-step branch.

Nevertheless, such results should be taken with caution,

considering that we only included one locality from South

Georgia. In this context, future samplings in South Georgia are

required to increase our sampling effort across this island and

corroborate the diversity pattern here recorded.

Our findings provide only limited support for the predictions of

Allcock and Strugnell (2012), and indeed some evidence to the

contrary. As Laevilacunaria lacks any pelagic dispersal stage, yet the

low levels of diversity and the absence of genetic structure showed

by star-like networks in the maritime Antarctica across hundreds of

kilometers are more congruent with the pattern of genetic diversity

these authors envisaged in highly dispersive species. Nevertheless,

our analyses detected a marked phylogeographic signal between

sub-Antarctic South Georgia and maritime Antarctic localities,

fitting more closely with a poor dispersal capacity at large

geographical scale. The absence of shared haplotypes, together
TABLE 4 Spatial Analysis of Molecular Variance (SAMOVA) depicting the
percentage of variation explained among groups (maritime Antarctica
and South Georgia), among populations within groups and
within populations.

Source
of
variation

d.f. Sum
of
squares

Variance
components

Percentage
of variation

Among
groups

1 13.232 0.25343 Va 59.35

Among
populations
within groups

10 2.654 0.00357 Vb 0.83

Within
populations

311 52.867 0.16999 Vc 39.81

Total 322 68.752
FSC = differentiation within populations among groups; FCT = Differentiation among groups
(*** p<0.001).
Fixation Indices.
FSC: 0.02054***.
FCT: 0.59354***.
A B

FIGURE 2

Spatial output from Geneland using Laevilacunaria antarctica populations. White circles indicate the relative positions of the sampling localities
across maritime Antarctica and South Georgia. Darker and lighter shadings are proportional to posterior probabilities of membership to particular
genetic cluster (A = maritime Antarctica and B = South Georgia). Posterior probabilities were plotted against the shapefile of the Antarctic coastline
available in GEOdas (NOAA) and filtered using GEOdas Coastline Extractor v.1.1.3.1 (https://www.ngdc.noaa.gov/mgg/geodas/geodas.html).
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with the number of fixed mutations (n = 9) between these areas are

strong evidence of distinct genetic and evolutionary units in L.

antarctica. Indeed, divergence-time estimations of these Significant

Evolutionary Units (ESUs) suggest that they were separated ~ 1.1

million years ago (Ma), long before the LGM and, ever since, have

evolved independently in these areas of the Southern Ocean.

How do we explain these apparently contradictory results? The

absence of population structure in the maritime Antarctica matches

previous molecular studies of near-shore marine benthic

invertebrates such as the Antarctic limpet Nacella concinna

(Hoffman et al., 2010; González-Wevar et al., 2013), the trochoid

gastropodMargarella antarctica (González-Wevar et al., 2021), and

the sea urchin Sterechinus neumayeri (Dıáz et al., 2011; Dıáz et al.,

2018). Nacella and Sterechinus species possess a pelagic larval stage

and such patterns are explained by their respective higher dispersal

potentials. By contrast, Margarella and Laevilacunaria species

exhibit benthic protected development, but they live closely

associated with macroalgae on which they graze and reproduce.

Accordingly, it is possible thatMargarella and Laevilacunaria could

maintain connectivity through rafting of adults and/or egg-masses

attached to macroalgae. Alternatively, the low levels of genetic

diversity and the absence of genetic structure in L. antarctica

across the maritime Antarctica is probably associated to strong

founder effects from bottlenecked refugial population. This same

argument would apply to the South Georgian populations of L.

antarctica. The lower frequency of buoyant macroalgae in the

maritime Antarctic represented by Crystosphaera jacquinotti,

however, presumably limits the extent of this rafting, precluding
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dispersal of L. antarctica (and, indeed, also occur in the trochoidM.

antarctica) to the more distant areas such as South Georgia. Events

of long-distance colonization by rafting have been documented

among non-buoyant macroalgae (Fraser et al., 2013; McCay et al.,

2016). Evidence of macroalgae fronds enclosed in drift ice have been

reported at sea (Guillemin M-L pers. comm.) and these fronds have

been recovered far away from the coast (Guillemin et al., 2018). In

fact, across the same study are, several non-buoyant red algae also

exhibit very low levels of genetic diversity and a complete absence of

genetic structure (Guillemin et al., 2018). During Quaternary

glaciations, the study area, SSI/AP and SG, have been located

south of the Antarctic Polar Front (APF). Hence, the positition of

the APF can be excluded as a potential barrier to gene flow between

these areas. Drifter-based data have demonstrated that the

Antarctic Circumpolar Current flows from the maritime

Antarctica to South Georgia with a velocity that would allow to

drift between these two areas around two months (Matschiner

et al., 2009).

The lack of genetic variation in the maritime Antarctica, with

one dominant haplotype in the centre of a star-like genealogy, fits

well with the idea that L. antarctica survived a bottleneck induced

by the LGM in one or (possibly) more shelf refugia. The slightly less

star-like pattern, and the smoother historical demographic curve in

South Georgia implies, perhaps, a less drastic reduction in

population size and/or an earlier population expansion.

We note that the levels of nucleotide diversity recorded in L.

antarctica are significantly lower than those found in temperate

(Doellman et al., 2011; Silva et al., 2013; Sotelo et al., 2020; Blakeslee
A

B

FIGURE 3

Parsimony mtDNA (A) and nucDNA (B) networks in Laevilacunaria antarctica across its distribution in maritime Antarctica and South Georgia. Each
haplotype/allele is represented by a colored circle indicating the locality. The size the haplotypes/alleles is proportional to their frequencies.
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et al., 2021) and sub-Antarctic littorinids (González-Wevar et al.,

2022). In fact, levels of genetic diversity in the species are much

lower than those found in most other groups of Antarctic marine

molluscs (Wilson et al., 2009; González-Wevar et al., 2013; Fassio

et al., 2019; Levicoy et al., 2021) and fishes (Parker et al., 2002;

Damerau et al., 2012; Damerau et al., 2014; Hüne et al., 2015).

Nevertheless, several species of Antarctic near-shore marine

invertebrates are characterized by low genetic diversity including

the nemertean Parborlasia (Thornhill et al., 2008), the crustacean

Chorismus antarcticus (Raupach et al., 2010), the echinoid

Sterechinus neumayeri (Dıáz et al., 2011) and the trochoid

Margarella antarctica (González-Wevar et al., 2021). Drastic

reduction of habitats has presumably affected populations of these

Antarctic species and left characteristic signatures of drastic

bottlenecks and/or founder effects (Aronson et al., 2007; Clarke

and Crame, 2010; Allcock and Strugnell, 2012; González-Wevar

et al., 2013; Riesgo et al., 2015; Guillemin et al., 2018).
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Genetic structure

Our study adds to the diversity of biogeographic patterns seen

in different taxa across maritime Antarctica and South Georgia in

different taxa. This variation ranges from the absence of genetic

differentiation, as in nototheniod fishes like Gobionotothen

gibberifrons (Matschiner et al., 2009) and Notothenia rossi (Young

et al., 2015), through marked phylogeographic structure, as in the

limpet Nacella concinna (Hoffman et al., 2011; González-Wevar

et al., 2013) and the notothenioid fish Champsocephalus gunnari

(Young et al., 2015), to the presence of clearly divergent species-

level clades, as in the gastropod Margarella (González-Wevar et al.,

2021), the nudibranchDoris (Wilson et al., 2009), the crinoids of the

genus Promachocrinus (Wilson et al., 2007), and the notothenioid

genus Lepidonotothen (Dornburg et al., 2016).

The mtDNA (COI) levels of genetic divergence recorded

between maritime Antarctic and South Georgian populations
FIGURE 4

Historical demographic trajectories of the effective population sizes (Ne) estimated under a Bayesian skyline-plot approach based on COI sequences
of L. antarctica. The y-axis represents the effective population size (Ne) while the x-axis shows the time since the present. The median estimates are
shown for each genetic cluster recorded in the species (maritime Antarctica and South Georgia).
frontiersin.org

https://doi.org/10.3389/fevo.2023.1320649
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


González-Wevar et al. 10.3389/fevo.2023.1320649
(1.74%) is lower than those recorded between clearly recognized

littorinid species (Williams et al., 2003; Williams and Reid, 2004;

Reid et al., 2012) and particularly in higher latitude groups

(González-Wevar et al., 2022; Rosenfeld et al., 2023). Under this

molecular-based criteria, we would not treat the SSI/AP and SG

populations as different species. Appropriate names would be

available, however: the type locality of L. antarctica is South

Georgia, whereas Deception Island, one of the South Shetland

Islands, is the type locality for L. bransfieldensis, considered a

junior synonym by Simone (2018). Nevertheless, our results in

Laevilacunaria could probably be interpreted as an incipient

speciation process, as has been hypothesized for other groups of

marine organisms including Nacella (González-Wevar et al., 2011;

González-Wevar et al., 2017), octocorals (Dueñas et al., 2016), Doris

(Wilson et al., 2009), Pareledone (Allcock et al., 2011),

nothothenioid fishes (Near et al., 2012; Dornburg et al., 2016) and

even penguins (Vianna et al., 2017; Frugone et al., 2019). To further

understand such evolutionary and biogeographic hypotheses in

Laevilacunaria, future studies through morphological (radular

and geometric morphometrics) analyses are needed. Addressing

this important question in Laevilacunaria will provide new insights

concerning biogeographical and diversity patterns in this

widespread maritime Antarctica gastropod group. Moreover,

integrative systematic studies including phylogenetic, genomic

and morphological analyses of the whole genus are also required

to evaluate the potential role of vicariance and long-distance

dispersal in the biogeography of Laevilacunaria. The inclusion of

the poorly known Kerguelen species L. pumilio and the partially

sympatric Antarctic species L. bennetti will allow us to determine

the origin and diversification of Laevilacunaria in different

provinces of the Southern Ocean. Finally, through geometric

morphometric it will be possible to evaluate the relevance of

cryptic speciation in the evolution of the group across the

Southern Ocean, a region of the planet that has been relatively

neglected in spite of its global relevance.
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González-Wevar, C. A., Segovia, N. I., Rosenfeld, S., Noll, D., Maturana, C. S., Hüne,
M., et al. (2021). Contrasting biogeographical patterns in Margarella (Gastropoda:
Calliostomatidae: Margarellinae) across the Antarctic Polar Front. Mol. Phylogenet.
Evol. 156, 107039. doi: 10.1016/j.ympev.2020.107039
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