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Wildfires are a major source of perturbations to the Earth’s system and have

important implications for understanding long-term interactions between the

global environment, climate, and organisms. In this study, current evidence for

global warming, wildfires, and floral changes across the Permian-Triassic (P-T)

and Triassic-Jurassic (T-J) transitions were reviewed, and their relationships

were discussed. Available evidence suggests that global plant community

turnover and the decline in plant diversity across the P-T and T-J boundaries

were primarily driven by widespread wildfires. The Siberian Large Igneous

Province and Central Atlantic Magmatic Province released large amounts of

isotopically light CO2 into the atmospheric system, contributing to global

warming and increased lightning activity. This ultimately led to an increase in

the frequency and destructiveness of wildfires, which have significantly

contributed to the deterioration of terrestrial ecosystems, the turnover of plant

communities, and the decline in plant diversity. Furthermore, frequent wildfires

also constitute an important link between land and ocean/lake crises. Large

amounts of organic matter particles and nutrients from the weathering of

bedrock after wildfires are transported to marine/lake systems through runoff,

contributing to the eutrophication of surface water and the disappearance of

aerobic organisms, as well as hindering the recovery of aquatic ecosystems.

These wildfire feedback mechanisms provide an important reference point for

environmental and climatic changes in the context of current global warming.

Therefore, the interplay between global warming, wildfires, and biological

changes and their feedback mechanisms needs to be fully considered when

assessing current and future risks to the Earth’s surface systems.

KEYWORDS

Permian-Triassic transition, Triassic-Jurassic transition, global warming, widespread
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1 Introduction

Increased global warming, a trend that has been a result of

human activity since the mid-20th century, has already led to an

increase in the frequency and severity of fire weather worldwide,

increasing the risk of wildfires (Jones et al., 2020; Sharifi, 2022).

Previous studies have shown that climate change will increase the

risk of wildfires, with a global increase in average temperatures;

frequency and intensity/extent of heatwaves, and regional increases

in the duration, intensity and frequency of droughts, have the

potential to influence fire weather, and thus increase the ignition

potential of wildfires (Jones et al., 2020; Sharifi, 2022). The potential

of wildfire occurrence is increasing at an unprecedented rate,

possibly comparable to the rapid climatic changes affecting

Earth’s ecosystems in its geological past.

Widespread wildfires have played an important role in the

Earth’s system changes since the emergence of Silurian land

plants, profoundly affecting the patterns and processes of global

ecosystems (e.g., Glasspool, 2000; Scott, 2000; Glasspool et al., 2004;

Glasspool et al., 2015; Lu et al., 2020; Glasspool and Gastaldo, 2022;
Frontiers in Ecology and Evolution 02
Xu et al., 2022; Zhang et al., 2022; Zhang et al., 2023a). Changes in

wildfire activity in Earth’s history can be identified in sediment

records through variations in the by-products of plant combustion,

such as charcoal fossils, fusinite, and polycyclic aromatic

hydrocarbons (PAHs) (e.g., Glasspool, 2000; Glasspool et al.,

2004; Shen et al., 2011; Glasspool et al., 2015; Lu et al., 2020;

Song et al., 2020; Glasspool and Gastaldo, 2022; Song et al., 2022; Xu

et al., 2022; Zhang et al., 2022; Jiao et al., 2023; Zhang et al., 2023a).

The earliest wildfires (inferred from charcoal fossils) date back to

the Silurian period (ca. 400 Ma) (Glasspool et al., 2004) and are

consistent with the first records of terrestrial flora (Belcher and

Claire, 2013). Therefore, the record of wildfire activity extends

throughout Earth’s turbulent climate history, covering many large

and small timespans of climate changes over geologic periods that

have been accompanied by global fluctuations in O2, CO2, and

temperature (Figures 1A–C), including four of the ‘Big Five’ mass

extinctions (Figures 1D–F).

The Permian-Triassic (P-T) and the Triassic-Jurassic (T-J) mass

extinctions, the first and third largest biotic crises in the

Phanerozoic, respectively (e.g., Alroy, 2014; Dal Corso et al.,
B

C

D

E

F

A

FIGURE 1

Global warming/climatic disturbance event occurrences and their relationship to: (A) Modelled atmospheric CO2 concentrations; (B) Modelled
average global temperatures; (C) Modelled atmospheric oxygen concentrations (with uncertainty ranges (dotted line)) (modified from Lenton et al.,
2018); (D) Inertinite abundance (bin mean) from fossil peat deposits (modified from Glasspool and Scott, 2010); (E, F) Macro-evolutionary rates of
extinction of fossil marine invertebrate taxa, from the Paleobiology Database (modified from Blois et al., 2013 and Dal Corso et al., 2022). PAL,
present atmospheric level; PTME, Permian-Triassic mass extinction; TJME, Triassic-Jurassic mass extinction; OSME, Ordovician-Silurian mass
extinction; CPME, Cretaceous-Paleogene mass extinction; LOME, Late Devonian mass extinction.
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2022), were accompanied by significant changes in global

atmospheric composition, environment, climate, and flora (Shen

et al., 2019; Wignall and Atkinson, 2020; Dal Corso et al., 2022;

Shen et al., 2022b; Shen et al., 2023). Available evidence suggests

that the mass extinction of terrestrial and marine life during these

events were ultimately caused by the eruptions of the Siberian Large

Igneous Province (SLIP) and Central Atlantic Magmatic Province

(CAMP) (Wignall and Atkinson, 2020; Dal Corso et al., 2022),

which was accompanied by a combination of massive releases of

greenhouse gases and toxic gases (Fielding et al., 2019; Cui et al.,

2021; Shen et al., 2022a; Zhang et al., 2022; Wu et al., 2023), rapid

global warming (McElwain et al., 1999; Bonis et al., 2010; Schaller

et al., 2011; Sun et al., 2012; Wu et al., 2021), negative carbon

isotope excursions (CIEs) (Hesselbo et al., 2002; Shen et al., 2011;

Kovács et al., 2020; Ruhl et al., 2020; Wu et al., 2020; Shen et al.,

2022b), widespread wildfires (Belcher et al., 2010; Shen et al., 2011;

Petersen and Lindström, 2012; Lu et al., 2020; Song et al., 2020; Song

et al., 2022; Jiao et al., 2023), increased continental weathering (Cao

et al., 2019; Lu et al., 2020; Shen et al., 2022b), and increased erosion

(Biswas et al., 2020; van de Schootbrugge et al., 2020; Kaiho

et al., 2021).

In this study, published records of terrestrial wildfires and floral

changes across the P-T and T-J transitions were reviewed to assess

potential relationships between SLIP and CAMP eruptions, global

warming, wildfires, and floral extinction/turnover. This will provide

deeper insight into the effects of contemporary environmental

changes and the response mechanisms of the Earth’s ecosystems

to these changes.
2 Floral changes across the
Permian-Triassic transition

During the P-T transition interval, rapid extinctions/

disappearances of terrestrial plant communities and catastrophic

declines in plant diversity occurred across different geographic and

climatic zones (e.g., Fielding et al., 2019; Chu et al., 2020; Feng et al.,

2020; Gastaldo et al., 2020; Mays et al., 2020; Shu et al., 2022; Shao

et al., 2023). This redefined the history of floral evolution, followed

by the Early-Middle Triassic coal gap (the interval between the

disappearance of coal-forming plants). Global coal-forming plants

did not fully recover and form global coal deposits until the Late

Triassic Carnian (e.g., Gastaldo et al., 1996; Dal Corso et al., 2020;

Zhang et al., 2023b). Although some studies suggest that terrestrial

plant loss was relatively milder compared to that of animals

(Schneebeli-Hermann et al., 2017; Nowak et al., 2019), the abrupt

halt in global peat formation represents a clear signal of significant

terrestrial plant loss during the P-T transition (Gastaldo et al., 1996;

Dal Corso et al., 2020).

In the high latitudes of the Southern Hemisphere, plant macro-

and microfossils in Australia indicate the rapid transformation of

Glossopteris flora into gymnosperms (lycopodium) and fern

dominated flora during the P-T transition interval, and the

subsequent loss of coal seam and rapid colonization of planktonic

algae, fungi, and bacteria (Fielding et al., 2019; Mays et al., 2020;
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Vajda et al., 2020; Mays et al., 2021; McLoughlin et al., 2021). In the

mid-latitudes of the Southern Hemisphere, plant communities from

the Karoo Basin (inferred from plant macro- and microfossils) have

undergone similar transformations, characterized by taeniate

bisaccate Protohaploxypinus and Striatopodocarpidites pollen are

replaced by assemblages rich in algal remains and low abundance of

non-taeniate, alete bissacate pollen and cavate spores (Gastaldo

et al., 2020), and the rapid increases followed by rapid deceases

trend in the terrestrial plant index (the ratios of normal alkanes of

terrestrial plant origin to total normal alkanes) from Guryul Ravine,

India, indicates that the land plant community has also experienced

catastrophic losses, characterized by a sharp reduction in the

amount of terrestrial vegetation, occurred before and at the end-

Permian marine extinction (Aftabuzzaman et al., 2021).

Near the equator, plant macrofossil records in South China

show that terrestrial plants across the P-T transition led to the rapid

disappearance of coal-forming plants such as lycopodium, ferns,

seed ferns, and cycads in Cathaysia flora, with species reduction of

95% and genera reduction of 50% (Zhang et al., 2016; Chu et al.,

2020; Feng et al., 2020). The latest palynological fossil results show

the occurrence of two significant changes in the terrestrial plant

community and plant diversity in South China across the P-T

transition (Hua et al., 2023; Shao et al., 2023). The first was

accompanied by a significant change of plant community

dominated by Gigantopteris to gymnosperms, and the second was

accompanied by a collapse of plant community and a significant

decline in plant diversity (inferred from the disappearance of spores

and pollen) (Hua et al., 2023; Shao et al., 2023). In addition, the

change trends of land plant indices from South China (including

Meishan, Shangsi, Liangfengya, Huangzhishan, and Xiaohebian

sections) and Italy (Bulla Section) also show a catastrophic loss of

land plant communities across the P-T transition (Biswas et al.,

2020; Aftabuzzaman et al., 2021; Kaiho et al., 2021).

In the lower latitudes of the Northern Hemisphere, Cathaysia

flora dominated by ferns and Gigantopteris gradually disappeared

and was transformed into a Euramerican type Zechstein flora

dominated by gymnosperms inc lud ing coni fe r s and

pteridosperms (= seed ferns) in the lowest part of the Sunjiagou

Formation (Wuchiapingian-Changxingian Stage transition) of the

NCP (e.g., Wang and Chen, 2001; Yang and Wang, 2012; Lu et al.,

2020). In the middle and/or upper part of the Sunjiagou

Formation (Late Permian), plant macrofossil records show the

disappearance of approximately 54% (14/26) of genera and

approximately 88% (28/32) of species (Chu et al., 2015; Chu

et al., 2019) and the interval of plant extinctions during the

Early Triassic (Shu et al., 2022). Recent palynological results

also indicate a catastrophic loss of terrestrial plant communities

and plant diversity in the Yiyang coalfield of the NCP across the P-

T transition (Zhang et al., 2023a). In the mid-latitudes of the

Northern Hemisphere, the Junggar Basin in northwestern China

has also experienced significant terrestrial flora and fauna loss

across the P-T transition (Cao et al., 2008; Cai et al., 2021a). In the

high latitudes of the Northern Hemisphere, plant macrofossils

from Russia show a catastrophic loss of plant communities and

plant diversity during this time interval (Krassilov and Karasev,
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2009). In summary, the P-T transition experienced a catastrophic

loss of terrestrial floras on a global scale.
3 Floral changes across the
Triassic-Jurassic transition

During the T-J transition interval, the communities and

diversity of terrestrial plants also showed significant changes

across different geographic and climatic zones (e.g., Li et al.,

2020; Zhang et al., 2022). This reflects another terrestrial plant

diversity loss event after a period of complete recovery (the plant

radiation during the Carnian Pluvial Episode of the Late Triassic)

(Dal Corso et al., 2020; Lu et al., 2021; Zhang et al., 2023b) after

the end-Permian terrestrial flora extinctions. This event also had

an important impact on the global environment and

climate change.

Studies on the western Tethys and Southern Hemisphere report

the occurrence of a significant turnover of terrestrial plant

communities and a decline in plant diversity across the T-J

transition. In the western Tethys (including North America,

Germany, Denmark, East Greenland, southwest England, and

Austria), floral changes during the T-J transition interval occurred

as follows: (1) an end-Triassic fern peak (including Polypodiisporites

polymicroforatus, and trilete megaspores in some areas); (2) the first

appearance of Cerbropollenites thiergartii and the last occurrence of

Lunatisporites rhaeticus during the earliest Jurassic; and (3) a brief

proliferation of Classopollis pollen (Cheirolepidiaceae) during the

earliest Jurassic and the subsequent restoration and dominance of

conifers (Olsen et al., 2002; Whiteside et al., 2007; Bonis et al., 2009;

van de Schootbrugge et al., 2009; Bonis et al., 2010; Pieńkowski

et al., 2012; Vajda et al., 2013; Lindström et al., 2017; Wignall and

Atkinson, 2020; Boomer et al., 2021). Similarly, palynological fossil

results from New Zealand and Australia in the Southern

Hemisphere also show a significant turnover in terrestrial plant
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communities (De Jersey and McKellar, 2013). In New Zealand,

terrestrial plants from the Late Triassic were dominated by

lycophyte and bryophyte spores and corystosperm pollen, and

those from the Early Jurassic were dominated by Osmundaceous

spores and Classopollis pollen (Cheirolepidiacea) (De Jersey and

McKellar, 2013). A similar pattern is observed in Australia, where

terrestrial plants range from the Late Triassic dominated by ferns

and bryophyte spores to the Early Jurassic dominated by

Cheirolepidiacean pollen (De Jersey and McKellar, 2013).

Studies on the eastern Tethys also report a significant turnover

of terrestrial plant communities and a decline in plant diversity

across the T-J transition (Li et al., 2020; Zhou et al., 2021; Shen et al.,

2022b; Zhang et al., 2022). In South China, plant macrofossil

records (mainly pteridophytes) show a significant turnover of the

terrestrial plant community; specifically, drought-resistant plant

groups increased significantly across the T-J transition (Zhou

et al., 2021). Similarly, palynological fossil results suggest species

replacement of the terrestrial plant community, reflected by a

change from predominantly pteridophyte lowland vegetation to

coniferous species (Li et al., 2020). In North China, palynological

fossil records show two significant changes in terrestrial plant

communities and a decrease in plant diversity during this time

interval (Zhang et al., 2022). In the first instance, the dominant

gymnosperm pollen was replaced by algae and fern spores, and the

proportion of palynological fossils decreased by ca. 45% (from 38

genera to 21 genera) (Zhang et al., 2022). In the second instance, the

dominant fern spores were replaced by gymnosperm pollen, and the

proportion of palynological fossils decreased by ca. 44% (from 50

genera to 28 genera) (Zhang et al., 2022). In northwestern China,

both plant macro- and microfossils show that the rapid rise of fern

spores, and the subsequent change from fern spores to

gymnosperms occurred across the T-J transition (Lu and Deng,

2005; Shen et al., 2022b). In summary, terrestrial floras have

experienced a significant global turnover of plant communities

and a decrease in plant diversity across the T-J transition.
A B

FIGURE 2

Global paleogeography during Permian-Triassic (A) and Triassic-Jurassic (B) transitions, including the location of the Large Igneous Province and
wildfires around the world (modified from Lu et al., 2020; Vajda et al., 2020; Zhang et al., 2022; Zhang et al., 2023a). Wildfire distributions from Song
et al. (2020), Song et al. (2022), Cai et al. (2021a), and Jiao et al. (2023). NCP, North China Plate; SCP, South China Plate; SLIP, Siberian Large Igneous
Province; CAMP, Central Atlantic Magmatic Province.
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4 Contemporaneous wildfires linked
to volcanism as a potential cause for
floral changes

Contemporaneous widespread wildfires are believed to have

been a major contributor to changes in the terrestrial environment,

climate, and floras across the P-T and T-J transitions (Cao et al.,

2008; Shen et al., 2011; Yan et al., 2019; Lu et al., 2020; Cai et al.,

2021a; Cai et al., 2021b; Zhang et al., 2022; Zhang et al., 2023a)

(Figures 2, 3). During the P-T and T-J transition intervals,

published studies have shown that frequent wildfires are primarily

controlled by their ignition mechanisms, namely the increased

frequency and intensity of lightning activity, which is primarily

associated with rapid increases in global temperatures (e.g.,

Glasspool et al., 2015; Lu et al., 2020; Zhang et al., 2022; Zhang

et al., 2023a). Greenhouse warming (increased temperature),

related to high CO2, resulted in an increase of upper-tropospheric

water vapor, leading to more lightning activity and storminess

(Miller and Baranyi, 2021). During the P-T and T-J transition

intervals, SLIP and CAMP released large amounts of isotopically

light CO2 into the atmospheric system, resulting in a significant

increase in global temperatures and subsequent enhanced lightning

activity (Glasspool et al., 2015; Miller and Baranyi, 2021), ultimately

leading to an increase in wildfire frequency and destructiveness (van

de Schootbrugge et al., 2008; Belcher et al., 2010; Glasspool et al.,

2015; Lu et al., 2020; Zhang et al., 2022; Zhang et al., 2023a)

(Figures 2, 3).

Widespread wildfires across the P-T and T-J transitions caused

the disappearance/extinction of terrestrial plants, marking

significant changes in plant communities and diversity. During

the P-T transition interval, evidence from charcoal, fusinite, and

PAHs shows the prevalence of massive wildfires worldwide,

including eastern Greenland (Nabbefeld et al., 2010), Brazil

(Manfroi et al., 2015; Kauffmann et al., 2016), Australia

(Glasspool, 2000; Vajda et al., 2020), India (Murthy et al., 2020),

Canada (Nabbefeld et al., 2010; Grasby et al., 2011), South China

(Shen et al., 2011; Zhang et al., 2016; Yan et al., 2019; Chu et al.,
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2020; Cai et al., 2021b; Song et al., 2022; Jiao et al., 2023), North

China (Lu et al., 2020; Zhang et al., 2023a), and northwestern China

(Cao et al., 2008; Cai et al., 2021a) (Figure 2A). During the T-J

transition interval, evidence from charcoal, fusinites, and PAHs

shows a global prevalence of large-scale wildfires, including North

America (Jones et al., 2002), eastern Greenland (Belcher et al.,

2010), Poland (Marynowski and Simoneit, 2009), Denmark

(Lindström et al., 2019; Lindström et al., 2021), Sweden

(Lindström et al., 2019; Lindström et al., 2021), South China

(Pole et al., 2018; Song et al., 2020), and North China (Zhang

et al., 2022) (Figure 2B). In addition, frequent wildfires during the

aforementioned periods also had positive feedbacks on global

warming and the carbon cycle because biomass burning also

releases large amounts of isotopically light carbon into the

atmosphere, further increasing the magnitude of global warming

and CIEs (Ivany and Salawitch, 1993; Belcher et al., 2010).

Frequent wildfires also appear to be an important link between

terrestrial and ocean/lake ecological crises. Widespread wildfire

damage to surface vegetation can lead to the exposure of bedrock,

leading to increased continental weathering, and increased soil

erosion (e.g., Glasspool et al., 2015; Lu et al., 2020; Zhang et al.,

2022) (Figure 3). These processes can release large amounts of

organic matter (including charcoal and un-charred material) and

nutrients (including phosphorus and potassium) into the ocean/

lake system through surface runoff (Glasspool et al., 2015; Lu et al.,

2020; Zhang et al., 2022) (Figure 3). These organic particles

temporarily float in the ocean/lake, increasing ocean/lake

turbidity through siltation and affecting light penetration and

photosynthesis of marine/lake organisms (Glasspool et al., 2015)

(Figure 3). Large nutrient inputs to the ocean/lake promote the

eutrophication of surface water and the proliferation of

cyanobacteria and algae (Liu et al., 2022) (Figure 3). In this

context, oxygen circulation between ocean/lake surface water and

the atmosphere will be suppressed by floating organic particles,

cyanobacteria, and algae (Glasspool et al., 2015). The death of algal

blooms reduces the amount of dissolved oxygen in water, produces

toxic secondary metabolites (Mays et al., 2021), and enhances

alkalinity in local micro-environment via a decaying hydrolytic
A B

FIGURE 3

Extinction mechanisms. (A, B), Summary of the volcanically triggered extinction mechanisms inferred from the geochemical, sedimentary, and
paleontological record of the Permian-Triassic and Triassic-Jurassic mass extinctions and their recorded effects on biota in the ocean/lake.
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destruction (Luo et al., 2021), impeding the recovery of ocean/lake

ecosystems (Mays et al., 2021). These combined factors also further

contribute to an anoxic environment in the ocean/lake and lead to

the extinction of aerobic organisms.

The two examples discussed in this study highlight the interplay

between wildfires and a wide range of environmental and climatic

change processes in the Earth’s surface systems, which is critical to

the complete understanding of the feedback effects of wildfires and

their changes on terrestrial ecosystems over various time scales. In

modern ecosystems, global warming and drought-induced climate

conditions triggered by high levels of anthropogenic greenhouse gas

emissions pose several risks to the Earth’s environment (Sharifi,

2022). In particular, these issues have the potential to increase the

probability of widespread natural fires, which have a significant

impact on plants, animals, and other natural resources worldwide

(Sharifi, 2022). The interaction between fuel and climate and

weather conditions determine fire regimes, driving the

transformation of smoldering peat fires and low-intensity surface

fires to intense crown fires. In turn, these fire regimes influence

environmental and climatic change (including atmospheric

concentration) over a range of short and long timescales through

their feedbacks to geophysical and biological processes. For

example, changes in vegetation types can affect wildfire types, and

frequent terrestrial wildfires can in turn affect biological and

geochemical processes in the Earth’s surface systems, such as

nutrient transport, resulting in the loss of aerobic organisms in

lakes and oceans (Glasspool et al., 2015; Zhang et al., 2022).

Similarly, wildfires account for up to 20% of global greenhouse

gas production and can travel at speeds of up to 22 km/h, indicating

their potential for rapid devastation over large areas of land (Sharifi,

2022). Therefore, when assessing risks to modern and future surface

system ecosystems, the interactions and feedback processes between

wildfires, climate, and organisms on different time scales should be

properly taken into account. An essential requirement for

understanding potential future global warming-driven changes in

the global fire regime and their impact over time is to clarify these

feedback processes and the timescales over which they operate.
5 Conclusion

Studies of wildfires (inferred from charcoal fossils, fusinites, and

PAHs) and plants (inferred from macro- and microfossils) across the

P-T and T-J transitions have shown that widespread wildfires are the

main drivers of the deterioration of terrestrial ecosystems, turnover of

plant communities, and decline in plant diversity. SLIP and CAMP

can release large amounts of greenhouse gases into the atmospheric

system, contributing to global warming and an increase in the

frequency of lightning activity, which ultimately enhance the

frequency and destructive capacity of wildfires. Wildfires will affect
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the global environment through positive feedback effects. In other

words, biomass burning will also release large amounts of isotopically

light CO2 into the atmospheric system, further increasing the

magnitude of global warming and CIEs. In addition, large amounts

of organic particles and nutrients produced by the weathering of

bedrock after wildfires are transported to lakes or marine systems

through surface runoff, causing eutrophication of surface water and

the disappearance of aerobic organisms, as well as hindering the

recovery of aquatic ecosystems.
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