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Analyzing the response
distribution of DO concentration
and its environmental factors
under the influence of typhoon
rain events with remote sensing

Weiping Shen, Yuhao Jin*, Gengying Li and Peitong Cong*

College of Water Conservancy and Civil Engineering, South China Agricultural University,
Guangzhou, China
Typhoon rain events are important factors that trigger changes in dissolved

oxygen concentrations in watersheds. The direction of the typhoon driving force

is clear, but the mode of action and mechanism are complex. Moreover,

quantifying the relationship between these actions and dissolved oxygen is

challenging. This study collected measured data from water quality monitoring

and remote sensing during the 2022 typhoon rain events. By analyzing the

changes in typhoon driving factors and dissolved oxygen (DO) concentrations in

water under various typhoon storms, extended MOORA plus the full

multiplicative form (MULTIMOORA), Multiscale Geographic Weighted

Regression (MGWR), and spatial autocorrelation analysis were used to evaluate

the response of DO concentration. Furthermore, the effects of the atmospheric

environment under the influence of human activities on the response distribution

of the urban water environment were analyzed. The results of the study showed

that under the effect of a typhoon with higher rainfall intensity, the response of

DO concentration in the water body of the river in the center of the city was

better. However, the response of DO concentration in the water body at the

mouth of the sea had a tendency to become worse. Under the influence of

typhoon rain events with smaller intensity, the scouring effect of rainwater

dominated, and the DO concentration response in the water body had a

tendency to become worse. The analysis of spatial heterogeneity under the

influence of human activities showed that the ranking values of DO

concentration response in rivers in the city area of Zhongshan, under the

influence of typhoon rain events, were positively correlated with the

distribution of ozone (O3) concentration and sulfur dioxide (SO2)

concentration in the eastern, central, and western parts of Zhongshan.

Conversely, it was negatively correlated with the distribution of O3

concentration and SO2 concentration in the northern and southern parts of

Zhongshan. Based on the research results, we constructed a technique to

evaluate the response of dissolved oxygen concentration during the typhoon

transit period, which can provide an indicator reference for urban managers in

water environment management.
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1 Introduction

Water environmental pollution has become one of the three

major water problems in cities because urbanization has changed

the conditions for the formation of surface and subsurface runoff,

affecting the water cycle as well as the spatial and temporal

distribution of water (Qi-ting et al., 2005). Deterioration of water

quality, reduction of water quantity, and degradation of water

ecology are important impediments to the sustainable

development of urbanization (Yu et al., 2018). Studies have

shown that nonpoint source pollutants from typhoon rain events

are one of the major pollutants in urban surface water and have

serious impacts on surface water quality (Fu et al., 2021). Under the

subtropical oceanic monsoon climate, an average of seven typhoons

land and affect the Greater Bay Area every year, with high intensity

and frequency. These typhoons not only cause serious casualties

and economic losses but also have a significant impact on the urban

water environment conditions (Liu et al., 2009; Chen et al., 2020;

Cui et al., 2022). Water scarcity and deterioration of water quality

pose threats to human health and survival, making them major

challenges for existing freshwater resources (Mishra et al., 2021). In

order to achieve the United Nations 2030 Sustainable Development

Goals (SDGs) and to deepen the understanding and management of

water security, it is exploratory and valuable to assess the risk of the

water environment. Multi-criteria decision analysis (MCDA) is one

of the most widely used methods in the environmental decision-

making process (Mardani et al., 2017).

Globally, environmental risk assessment is an effective measure

to prevent and control environmental events. Typhoon rain events

have received attention from researchers as an important causative

factor in triggering environmental events (Han et al., 2019). Liang

Huanhuan et al. (2016) conducted a hierarchical study on the risk of

groundwater contamination at 37 hazardous waste landfills using

the MCDA model based on the idea of contamination source-

pathway-receptor risk throughout the whole process control.

Cabrera and Lee (2019) used multi-criteria decision analysis to

assess typhoon-induced flood-prone risk areas in Davao Oriental,

Philippines, by integrating various indicators such as rainfall and

elevation. The role of hierarchical analysis (AHP) as well as ratio

weighting (RW) in determining indicator weights was also

compared, and the AHP model was found to perform better in

calculating the importance of indicators. Gao et al. (2020) combined

the spatial analysis method of AHP and geographic information

system (GIS) to conduct a comprehensive weighted risk assessment

based on the spatial and temporal cumulative patterns of typhoon-

induced flooding disasters in Guangdong Province as the research

object. Guangdong Province was classified into six levels of risk

zones based on the integrated typhoon disaster risk, and the indirect

economic impacts were further analyzed on this basis. Wang et al.

(2022) synthesized the risk, exposure, and vulnerability of three

typhoon hazard chains, constructed a comprehensive typhoon

hazard risk indicator for the Greater Bay Area, divided the risk

level of typhoon hazard chains in important towns and cities as well

as the comprehensive risk level, and verified the validity of the
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assessment methodology of the comprehensive risk indicator for

typhoon hazards. In multi-attribute decision analysis,

MULTIMOORA method has simple calculation, short time and

strong robustness, and is widely used in process selection (Lixia

et al., 2020; Qiong et al., 2021; Lei et al., 2022), location selection

(Yuan-hua et al., 2023), risk assessment (Shenghua et al., 2019;

Zhang et al., 2022) and other fields(Hafezalkotob et al., 2019).

DO concentration in water bodies plays a crucial role in the

survival of aquatic organisms as well as the balanced development

of ecosystems, and is one of the important indicators for evaluating

the quality of the water environment (Songbai et al., 2017; Espinosa-

Diaz et al., 2021). Under the influence of typhoon rain events,

nitrogen dioxide (NO2), organic particulate matter, and other

pollutants generated by human activities will be diluted by

rainwater into the water environment, which affects the dissolved

oxygen concentration of the water body under the effect of

eutrophication and mineralization of organic particulate matter

(Xiu-qin et al., 2019; Yufeng et al., 2023). Some scholars have

conducted research on the potential influence mechanism between

temperature, wind speed, rainfall, and DO concentration, and

concluded that there is a positive correlation between DO

concentration and temperature, wind speed, and rainfall (Xiaoran

et al., 2013; Chen et al., 2016). Huang Weihui et al. (2021) and

Huang Yuling et al. (2022) studied the natural factors such as

geographical conditions on the concentration of saturated dissolved

oxygen, and concluded that the concentration of dissolved oxygen

was greatly affected by altitude and barometric pressure. In 2019,

Jiayang Zhang (Zhang and Chen, 2019) assessed the risk of flooding

disaster caused by typhoon rainstorms, and their evaluation indexes

included wind speed, rainfall, and elevation. Ji-Myong Kim et al.

(2020) selected maximum wind speed and distance as evaluation

indicators in the vulnerability analysis of typhoons in Korea.

Therefore, in this study, DEM, total rainfall, maximum rainfall in

a single day, distance from typhoon landfall, and atmospheric PM2.5

concentration and NO2 concentration were comprehensively

selected as evaluation indicators.

The process of urbanization is the transformation of rural

territories into urban territories, involving the reshaping of

natural landscapes, and it represents the most significant

manifestation of human activities affecting hydrological systems

(Liu et al., 2004). Nutrient export due to human activities has

become a major cause of eutrophication and other ecological

hazards in water bodies (Howarth, 2008; Howarth et al., 2011).

Nutrient export due to human activities has become a major cause

of eutrophication and other ecological hazards in water bodies. To

comprehensively consider the source of non-point source pollution

from human activities, Miao Jin-Dian et al. (2021) used NANI and

NAPA models to analyze the spatial and temporal variation

characteristics and driving factors of nitrogen and phosphorus in

the Hangzhou section of the Qiandao Lake Basin. Fan Hongxiang

et al. (2021) investigated the extent of the contribution of human

activities to the change of water age in the lake area of Poyang Lake

by coupling a deep learning network and a traditional two-

dimensional hydrodynamic model. Yisong Zhao et al. (2022) took
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Dianchi Lake as the research object and discussed the response of

surface temperature and lake surface temperature under the

influence of human activities. Therefore, it is informative for this

study to discuss the effects of anthropogenic O3 concentration and

SO2 concentration on the distribution of DO concentration

response in urban waters under typhoon rain events.

Scholars at home and abroad have mostly conducted research on

typhoon disaster risk assessment with the purpose of considering the

economy and safety (Chaojia et al., 2022). However, relatively few

typhoon disaster risk assessments have been carried out from the

perspective of river water quality indicators, and there have been

limited studies on the DO response of urban waters under the

influence of human activities. In this paper, based on the measured

data of urban water bodies during the 2022 typhoon rain events and

remote sensing image data, the extended MULTIMOORA method is

used to establish the correlation between typhoon drivers and the

response of DO concentration in urban water bodies. Furthermore, this

study aims to assess and quantify the distribution of the DO

concentration response in urban water bodies. The MGWR model

and spatial autocorrelation analysis were used to analyze the effects of

O3 concentration and SO2 concentration generated under the influence

of human activities on the distribution of urban water environment

response. The results of the study will contribute to a more intuitive and

in-depth understanding of the effects of typhoon rain events, as well as

human activities, on the distribution of DO concentration response in

urban waters. Local government decision-makers can formulate more

effective water environmental protection policies and disaster

prevention and mitigation measures based on the results of this study.
2 Materials and methods

2.1 Study area

The Guangdong-Hong Kong-Macao Greater Bay Area is

located in the lower reaches of the Pearl River Basin, surrounded

by mountains to the east, west, and north, and directly facing the

South China Sea. It has a well-developed regional economy as well

as a very high population density (Zhilin et al., 2022). Zhongshan is
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located in the heart of the Guangdong-Hong Kong-Macao Greater

Bay Area, between latitude 22° 11’– 22° 47’ north and longitude

113° 09’– 113° 46’ east, with a total area of 1,783.67 km2. The city’s

topography is dominated by plains, which are high in the middle

and flat around the perimeter, with the plains sloping from

northwest to southeast. Zhongshan City is located in the

subtropical monsoon climate, abundant rainfall, the annual

average rainfall is 1886 mm, the annual average inbound and

transit water volume is 2662.94 billion m3 and 2678.92 billion m3

respectively. The disaster weather suffered by Zhongshan City

mainly includes typhoons, heavy rainfall and strong convection,

with high rainfall and intensity. Overall, the capacity of Zhongshan

City to cope with emergencies such as pollution accidents and water

quality-type water shortage conditions is relatively insufficient

(Xuehua et al., 2022). The study area is shown in Figure 1.
2.2 Research date

In this study, four typhoon rain events (Chaba, Mulan, Ma-on,

Nalgae) affecting Zhongshan City in 2022 were used as the study

area. The extended MULTIMOORA theory was used to investigate

the response of DO concentration in the water system of

Zhongshan City during the transit of different typhoons. The

selected indicators of the extended MULTIMOORA theory are:

total rainfall, maximum rainfall in a single day, daily mean PM2.5

concentration, daily mean NO2 concentration, elevation, and

distance from the station at the time of typhoon landfall.

Rainfall data from GPM (https://disc.gsfc.nasa.gov/; accessed on

7 June 2023) series of products. Global Precipitation Measurement

(GPM) is an international satellite mission, carried out in

cooperation with NASA and JAXA, which utilizes multi-sensor,

multi-satellite and multi-algorithm in combination with satellite

network and rain gauge inversion to obtain more accurate

precipitation data. The GPM satellite carries ka-band

precipitation radar and high-frequency microwave instrument,

which can improve the observation of light rain and snowfall, and

can provide higher spatial resolution and global coverage of

precipitation observation data than TRMM satellite data.
BA

FIGURE 1

Research diagram. (A) Diagram of a typhoon. (B) Map of DEM.
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Meteorological data (NO2, SO2, O3) from the TROPOMI

(https://s5phub.copernicus.eu/dhus/#/home; accessed on 25 June

2023) series of products. Sentinel-5P is a global atmospheric

pollution monitoring satellite launched by the European Space

Agency (ESA) on 13 October 2017. The TROPOMI sensor on

board the satellite can effectively observe trace gas components in

the atmosphere around the globe, including NO2, O3, SO2, HCHO,

CH4 and CO, which are important indicators closely related to

human activities, and enhance the observation of aerosols

and clouds.

PM2.5 data were obtained from Ventusky (https://

www.ventusky.com/; accessed on 5 April 2023), with numerical

results from FINNISH METEOROLOGICAL INSTITUTE,

calculated from the SILAM model and MODIS Aqua and Terra

remote sensing imagery data. DEM data were obtained from

Geospatial Data Cloud (https://www.gscloud.cn/home; accessed

on 26 January 2023).

The typhoon data used in this study were obtained from the

Typhoon Network (http://typhoon.weather.com.cn/index.shtml;

accessed on 8 March 2023). Four typhoon events (Chaba, Mulan,

Ma-on, and Nalgae) affecting the study area in 2022 were used as

study cases. Typhoon Chaba was generated in the South China Sea

on 30 June 2022 and made landfall in Dianbai, Guangdong Province

on 2 July with a landfall wind speed of 35 m/s. Chaba had an

asymmetrical structure, a large circulation range of the cloud

system, slow movement, a long influence time, and a wide range.

Typhoon Mulan was generated in the South China Sea on 8 August

2022 and landed in Xuwen, Guangdong Province on 10 August with

a landing wind speed of 23 m/s. Mulan had characteristics of, for

example, a large size, a peculiar path, a short life cycle, a wide impact

range, and strong local rain. Typhoon Ma-on was generated in the

ocean east of the Philippines on 21 August 2022 and made landfall

in Isabela Province, Philippines on 23 August and in Dianbai,

Guangdong Province on 25 August. Ma-on was fast moving and

had an asymmetric structure. Typhoon Nalgae was generated in the

northwest Pacific Ocean on 27 October 2022 and made landfall in

Catanduanes, Philippines on 29 October and Zhuhai, Guangdong

Province on 3 November. Nalgae was characterised by low intensity

and a loose structure with a large cloud scale.
2.3 Research method

2.3.1 MULTIMOORA method
Brauers and Zavadskas (2006) proposed a Multi-Objective-

Optimization on basis of Ratio Analysis (MOORA) with discrete

schemes. By constructing a decision matrix for multiple

alternatives, decision makers are helped to choose the best option

according to specific preference principles. The main steps are as

follows:

Nxij =
xijffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

j=1x
2
ij

q (1)
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Where: xij is the response of alternative j to target i, j = 1,2,…,m;

m is the number of alternatives, i = 1,2,…,n; n is the number of

targets. Nxij is a dimensionless number representing the normalized

response of alternative j to objective i, with the response interval at

[0; 1].

According to the ratio system method, different types of targets

need to be dealt with separately due to the difference between

benefit and cost in the selection of targets.

A =o
ɡ

i=1
Nxij − o

n

i=ɡ+1
Nxij (2)

Where: i = 1,2,…,ɡ is the number of revenue targets, i =

ɡ+1,ɡ+2,…,n is the number of cost class objectives. Evaluation

value A under alternative j is obtained, and Rank1 is obtained by

ranking according to the evaluation result of value A.

According to the reference point method, a maximum reference

point is selected for the benefit target, whose coordinates are the

largest among all responses. Select a minimal reference point for the

cost class target whose coordinates are the smallest of all responses.

Bij =

���
max

(i)
Nxij − Nxij

���       i < ɡ

���
min

(i)
Nxij − Nxij

���       i > ɡ

8>>>><
>>>>:

(3)

B =    
max

(j)
  Bij (4)

Where: Bij is the maximum reference distance of target i under

alternive j, and B is the evaluation value under alternative j. Rank2 is

obtained by ranking the results of value B.

Brauers and Zavadskas (2010) conducted a study on the

robustness of multi-attribute decision making methods and

pointed out that, in terms of robustness, the multi-attribute

decision making method combining more decision-making

methods has better effect. Therefore, the full multiplicative model

is introduced into MOORA, and the full multiplicative form

(MULTIMOORA) method is proposed. That is, the full

multiplicative form of multiple objectives is added on the basis of

the original, and the formula is as follows:

C =

Qɡ
i=1 NxijQn

i=ɡ+1 Nxij
(5)

Where:
Qɡ

i=1 Nxij is the utility of alternative j for the income

objective, and
Qn

i=ɡ+1 Nxij is the utility of alternative j for the cost

objective. C is the value of alternative j. Rank3 is obtained by

ranking the results of value C.

minF(A,B,C) = f1(A,B,C), f2(A,B,C)… fj(A,B,C)
� �

  (6)

Finally, by summing the above three kinds of sorting, the result

of comprehensive sorting is obtained according to the

dominant theory.
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2.3.2 Extended MULTIMOORA method
Although the MULTIMOORA method has good robustness,

simple and effective calculation, and has a wide range of application

scenarios. However, its shortcomings are that it does not consider

the evaluation information support among experts and the non-

negligible redundancy relationship between evaluation indicators,

the lack of indicator weights (Jun and Shi-Hua, 2022). In this study,

the subjective weight wi is calculated by using OWA operator, the

objective weight wo is calculated by using random forest, and finally

the comprehensive weight ws is obtained based on the principle of

minimum discriminative information.

The Ordered Weighted Averaging (OWA) operator is one of

the most commonly used aggregation operators, which can facilitate

a more versatile data fusion process. Since the introduction of the

OWA operator, many researchers have delved into various methods

of obtaining weights (Xu, 2005). In this study, a method of

calculating combinations is employed to assign weights to the

OWA operator. The formula is as follows (Yu and Ze-Shui, 2008;

Guo et al., 2020). See Appendix A for the detailed calculation

process.

wi =
op

j=1
Cj
p−1

2p−1 *aj

op
i=1op

j=1
Cj
p−1

2p−1 *aj

(i = 1, 2,…, p,j = 0, 1,…, p − 1) (7)

Random Forest is a highly flexible machine learning method

that utilizes multiple decision trees to handle nonlinear data,

address regression and classification problems, and perform

feature selection based on its feature importance metrics. Random

Forest employs the Bootstrap resampling method to extract a

training set comprising 2/3 of the original samples and an Out-

Of-Bag (OOB) data set consisting of 1/3 of the samples for feature

importance computation (Shufang and Ruyang, 2021; Chen et al.,

2023). The principle involves randomly perturbing a particular

input parameter and calculating the resulting estimation error. The

importance of this parameter is determined based on the magnitude

of the error, where a higher importance value indicates greater

significance of the parameter. The formula (LuanXiao et al., 2021;

Xiao-wen et al., 2021) of objective weights is shown below. See

Appendix B for the detailed calculation process.

wo =
IMPi(Xi

OOB)

on
i=1IMPi(Xi

OOB)
(8)

Where: IMPi(Xi
OOB) signifies the importance results of the

feature variables.

For a discrete random variable X = (x1,x2,…,xn), the probability

distribution of x is only related to the condition d and the condition
t. Under the condition d, the xk probability distribution function is

d(xk); similarly, under the condition t, the xk probability

distribution function is t(xk). Thus, the discriminatory

information (Lee et al., 2019) is expressed as:

I½t(x), d (x)� = o
n

k=1

t(x)log
t(x)
d (x)

(9)

Since both subjective and objective weight data are discrete

random variables, in order to enhance the credibility and accuracy
Frontiers in Ecology and Evolution 05
of the composite weight for evaluation metrics with smaller errors,

this study employs the Minimum Discriminant Information

Principle to determine a composite weight that closely

approximates both. The solution is obtained by introducing

Lagrange multipliers into the equation.

Lag(x,y ) = q(x) − yd (x) (10)

Where: q(x) represents the original function, and d(x) is

the constraint condition function, and y denotes the

Lagrange multiplier.

The formula is as follows. See Appendix C for the detailed

calculation process.

ws =
ffiffiffiffiffiffiffiffiffiffi
wiwo

p

op
i=1

ffiffiffiffiffiffiffiffiffiffi
wiwo

p (11)

Where: ws is the combined weight of the evaluation indicators,

wi is the subjective weight of the evaluation indicators and wo is the

objective weight of the evaluation indicators.

The formula for the extended MULTIMOORA method is

shown below.

A =o
ɡ

i=1
wsNxij − o

n

i=ɡ+1
wsNxij (12)

B =  
max

(j)

ws

���
max

(i)
Nxij − Nxij

���                       i < ɡ

ws

���
min

(i)
Nxij − Nxij

���                     i > ɡ

8>>>><
>>>>:

(13)

C =
 
Yi

ɡ=1 x
    ws
ɡj      Yn

k=i+1 x
    ws
kj  

(14)

The theory of dominance is a method that can integrate

multiple rankings into one ranking result based on various

criteria such as dominance, equality, and transition (Brauers and

Zavadskas, 2012). The extended MULTIMOORA method allows

the ranking of three alternatives to be obtained, and then multiple

rankings are integrated into one ranking based on the theory of

dominance. Finally, the response analysis is performed based on the

final ranking results.

2.3.3 Spatial autocorrelation analysis
After obtaining the extended MULTIMOORA sorting

distribution data, the global Moran index (Ge et al., 2022) was

used as the global spatial autocorrelation index to analyze the

correlation and difference of DO concentration responses in river

water bodies in Zhongshan City. The expression is as follows:

I = o
n
i=1on

j=1wij(xi − �x)(xj − �x)

S2(oiojwij)
(15)

The local Moran index was further used to analyze the local

spatial autocorrelation of the aggregation of DO concentration

response in the river water bodies in Zhongshan City, to identify

the high value aggregation area and the low value aggregation area
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of the DO concentration response, in order to reflect the spatial

dependence and heterogeneity of the DO concentration response.

The expression of the local Moran index is:

Ii =
(xi − �x)on

j=1wij(xi − �x)

S2
(16)

Where: n is the number of spatial grid cells, xi and xj are

observations representing cell i and cell j respectively, (xi − �x) is the

deviation of the observation from the mean value on the ith grid cell,

and wij is a spatial weight matrix based on spatial k-

neighbourhood relationships.
2.3.4 Multiscale geographic weighted regression
In traditional regression analysis, the relationship between the

independent variable and the dependent variable is considered to be

stable throughout the whole area, so the estimated regression

coefficients obtained are averaged over the whole study area,

which cannot respond to the real spatial characteristics of the

regression parameters. Drawing on the idea of local smoothing

and embedding the spatial location of the data in the regression

equations, Fotheringham et al. (1998) proposed a geographically

weighted regression model (Geographically weighted regression,

GWR), whose expression is as follows:

yi = b0(ui; vi) +o
p

k=1

bk(ui; vi)xik + ei     i = 1, 2,…, n (17)

Where: yi is the dependent variable; b0(ui;vi) is the intercept; xik
is the value of the kth independent variable at the ith sampling

point; (ui;vi) is the coordinates of the sampling point, bk(ui;vi) is the
kth regression parameter on the sampling point (ui;vi); ϵi is the

random error.

MGWR, developed from GWR, takes into account different

levels of spatial heterogeneity and allows each independent variable

to have an optimized bandwidth based on itself (Jin et al., 2021). Its

expression is as follows:

yi =o
n

j=1
ajXij + o

m

j=n+1
bj(ui; vi)Xij + ei                       i, j = 1, 2,…, n (18)

Where: Xij is the value of the independent variable; j is the

number of independent variables; bj is the regression coefficient of

the global variable; bj is the regression coefficient of the

local variable.
Frontiers in Ecology and Evolution 06
3 Result

3.1 Analysis of DO response at different
stations under the influence of the
same typhoon

In order to study the DO response at different water quality

automatic monitoring stations under the influence of the same

typhoon. In this study, the distance from the station at the time of

typhoonMa-on’s landfall, station elevation, total rainfall, maximum

rainfall in a single day, average daily PM2.5 concentration, and

average daily NO2 concentration were selected as the evaluation

indexes, and the extended MULTIMOORA method was applied to

carry out the study. The evaluation indicators for the different

typhoons are shown in Table 1.

Five experienced experts with a long history of research in the

water environment were invited to rate each indicator. The scale

ranges from 1 to 10, with higher ratings indicating that the indicator

has a greater impact on DO concentrations in the water system. The

expert scores are shown in Table 2. The indicators were ranked in

descending order according to the experts’ scores, and the subjective

weights wi = (0.12,0.14,0.23,0.22,0.12,0.17) for each indicator were

subsequently calculated by combining equations (7).

Using the distance from the station at the time of typhoon Ma-

on landfall, station elevation, total rainfall, single-day maximum

rainfall, daily average PM2.5 concentration and daily average NO2

concentration as inputs and the change in DO concentration as

outputs, the above data were input as training samples into a

random forest model to build a regression prediction model, as

shown in Figure 2. In this case, the training samples are set up with a

training set and a test set, which account for 80% and 20% of the

number of training samples respectively. The objective weights wo =

(0.16,0.14,0.16,0.2,0.15,0.19) of each indicator were obtained by

normalising the importance of each feature based on the solved one.

Finally, after coupling the subjective weight wi and the objective

weight wo through equation (9) to equation (11), the combined weight

ws = (0.14,0.14,0.19,0.21,0.14,0.18) of each indicator is obtained.

In order to eliminate the difference in scale between each

indicator, the evaluation indicator data of different sites were first

standardised, and the processing results are shown in Table 3.

After standardisation of the indicator data, the indicators in

Table 4 were calculated using the ratio system, the reference point

approach and the full multiplication form of the extended
TABLE 1 Evaluation indicators for different stations under Typhoon Ma-on.

Typhoon
Distance from
Landing Point
(km)

DEM
(m)

Total Rainfall
(mm)

Maximum
Daily
Rainfall
(mm)

PM2.5 Concentration
(ug/m3)

NO2 Concentration
(ug/m3)

Site 1 258.977 7 15.3 10.6 34 28.75

Site 2 245.974 24 18 12.3 31.792 32.458

Site 3 277.901 11 14.6 7.4 40.792 35.625

Site 4 286.133 0 40.3 27.8 46.417 41.375
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MULTIMOORA method via equations (12) to (14) respectively.

The rating values for each indicator were determined as shown in

Table 4. Where A is the rating value of the ratio system, B is the

rating value of the reference point approach and C is the rating

value of the full multiplication form.

As can be seen from Table 4, the response of DO concentrations

in the water at different sites under the influence of TyphoonMa-on

is ranked from largest to smallest: Site 2 > Site 1 > Site 4 > Site 3. In

terms of DO concentrations, the variation in DO concentrations

measured before and after the typhoon at the four automatic water

quality monitoring stations in the study area during Typhoon Ma-

on was 0.4 (Site 2) > 0.15 (Site 1) > −0.1 (Site 4) > −2.4 (Site 3). A

positive value means that the DO concentration in the water

column has increased after the typhoon, indicating a positive

trend; a negative value means that the DO concentration in the

water column has decreased after the typhoon, indicating a

negative trend; this is in line with the expert scoring and the

MULTIMOORA theory of ranking. The urban pattern of

Zhongshan City shows that Site 2 and Site 1 are in the more

urbanised population centres, while Site 4 and Site 3 are in the less

urbanised river inlets. DO concentrations are relatively low in water

bodies at large population centres, and tend to increase as a result of

rainfall dilution; DO concentrations are relatively high in water

bodies at the mouths of less urbanised rivers, and tend to decrease as

a result of rainfall scouring. Combined with the data for the

selected indicators, the results of this method of ranking are

considered reasonable.
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3.2 Analysis of DO response in water in
Zhongshan City under the influence of
typhoon rain events

An in-depth understanding of the response status of DO

concentration in urban water bodies under the influence of

different typhoon rain events is helpful in revealing the trend of

changes in the urban water environment under the influence of

typhoon rain events, and in formulating strategies for controlling the

water environment during the transit of typhoons. In some studies,

an information system based on multi-criteria decision analysis is the

preferred method because it involves multiple weighted combinations

and also produces visualization results (Kut and Pietrucha-Urbanik,

2022), which is important for decision-making on the environmental

risks of typhoon disasters. In this study, the extended

MULTIMOORA theory is combined with geographic information

system (GIS) to extract the above six evaluation index values using

remote sensing image data, and the extracted index values are

substituted into the formula for calculating the DO concentration

response ranking under the influence of field typhoon and rainfall,

and finally the DO concentration response under the influence of

typhoon rain events is visualized. In this study, four typhoons (Chaba,

Mulan, Ma-on, and Nalgae) affecting Zhongshan City in 2022 were

visualized and analyzed separately, in which the metrics were

extracted as shown in Figures 3–6, and the response of DO

concentration in Zhongshan City under the influence of typhoon

rain events in each scene is shown in Figure 7.
BA

FIGURE 2

Schematic diagram of random forest regression analysis. (A) Diagram of the training process. (B) Schematic representation of the importance of features.
TABLE 2 Expert evaluation form.

Scorer
Distance from
Landing Point

(km)

DEM
(m)

Total
Rainfall
(mm)

Maximum Daily
Rainfall (mm)

PM2.5 Concentration
(ug/m3)

NO2 Concentration
(ug/m3)

Expert 1 6 7 3 10 4 9

Expert 2 5 3 9 7 5 8

Expert 3 2 4 9 8 6 6

Expert 4 3 6 8 8 3 3

Expert 5 5 5 8 7 4 4
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Chaba was generated in the South China Sea on 30 June 2022,

and landed in the coastal area of Guangdong Dianbai at 15:00 on 2

July, with landing winds reaching 35 m/s. As can be seen from

Figure 3, from 2 to 4 July, the cumulative rainfall in Zhongshan City

ranged from 88.1737 mm to 142.435 mm under the influence of

Chaba, with the maximum single-day rainfall ranging from

39.5626 mm to 81.5451 mm. The daily average PM2.5

concentration ranged from 15.7081 mg/m3 to 18.8748 mg/m3 and

NO2 concentration ranged from 0.0000963933 mol/m2 to

0.000202383 mol/m2.

Mulan intensified from a tropical storm in the South China Sea

on 9 August 2022, and made landfall in Xuwen, Guangdong at 10:00

a.m. on 10 August, with landfall winds reaching 23 m/s. As can be

seen from Figure 4, the cumulative rainfall in Zhongshan City from

9 to 11 August under the influence of Mulan ranged from

36.4076 mm to 111.974 mm, with the maximum single-day

rainfall ranging from 19.5202 mm to 63.1185 mm, the daily

average PM2.5 concentration ranged from 7.16744 mg/m3

to 16.6249 mg/m3 and NO2 concentration ranged from

0.0000351573 mol/m2 to 0.00011281 mol/m2.

Ma-on was generated on 22 August 2022 over the ocean east of

the Philippines and landed on the coast of Guangdong Dianbai at

10:00 a.m. on 25 August, with landing winds reaching 33 m/s. As

can be seen from Figure 5, the cumulative rainfall in Zhongshan

City from 24 to 26 August under the influence of Ma-on ranged

from 6.46943 mm to 20.8218 mm, with the maximum single-day

rainfall ranging from 5.73675 mm to 19.8135 mm, with daily

average PM2.5 concentrations ranging from 27.5838 mg/m3 to

46.3735 mg/m3 and NO2 concentrations ranging from

0.0000432654 mol/m2 to 0.0000855731 mol/m2.

Nalgae was generated in the northwest Pacific Ocean on 27

October 2022 and landed in Xiangzhou District, Zhuhai,

Guangdong on 3 November, with landing winds reaching 16 m/s.

As can be seen from Figure 6, the cumulative rainfall in Zhongshan

City from 31 October to 3 November was between 5.31433 mm to
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13.3876 mm under the influence of Nalgae, with the maximum

single-day rainfall ranging from 2.7148 mm to 6.63383 mm, with

daily average PM2.5 concentrations ranging from 33.0633 mg/m3

to 42.5623 mg/m3 and NO2 concentrations ranging from

0.000225898 mol/m2 to 0.000561096 mol/m2.

The lower the ranking value calculated based on the extended

MULTIMOORA theory, the more likely the DO concentration in

the water body at that location will respond in a good direction

under the influence of the typhoon rain events; the higher the

ranking value calculated based on the extended MULTIMOORA

theory, the more likely the DO concentration in the water body at

that location will respond in a bad direction under the influence of

the typhoon rain events. As can be seen from Figure 7, the DO

concentration response of the rivers in the Zhongshan city area

under the influence of Chaba, Mulan and Nalgae is such that there

is a tendency for the south-western water bodies to develop to the

good side, while the north-eastern water bodies have a tendency to

become worse. Under the influence of Ma-on, the DO

concentration response in the Zhongshan municipal rivers is a

trend towards worse water bodies in the south-west as well as in

the north.

An accurate understanding of the regional distribution of DO

concentration response in urban waters under the influence of

different typhoon rain events is helpful in revealing the regional

distribution of urban water environment risks under the influence

of typhoon rain events, and in formulating targeted disaster

prevention and mitigation efforts. In this study, the ranked values

calculated by the extended MULTIMOORA theory are clustered

and analyzed, as shown in Figure 8.

As can be seen from Figure 8, under the influence of Chaba,

Mulan and Nalgae, the southern and northwestern parts of

Zhongshan City show low-low aggregation phenomena,

indicating that the response of DO concentration in this region

has a tendency to develop for the better, and it is a low-risk area; the

northern and northeastern parts of Zhongshan City show high-high
TABLE 4 Ratings of different stations under Typhoon Ma-on.

Typhoon A Rank1 B Rank2 C Rank3 SUM Comprehensive sort

Site 1 0.095 3 0.109 2 0.62 2 7 2

Site 2 0.194 2 0.099 1 0.769 1 4 1

Site 3 0.067 4 0.13 4 0.575 3 11 4

Site 4 0.217 1 0.123 3 0 4 8 3
TABLE 3 Indicators for the different sites after standardization.

Typhoon
Distance from
Landing Point

(km)

DEM
(m)

Total
Rainfall
(mm)

Maximum Daily Rain-
fall (mm)

PM2.5

Concentration
(mg/m3)

NO2

Concentration
(mg/m3)

Site 1 0.484 0.256 0.313 0.321 0.439 0.412

Site 2 0.459 0.879 0.368 0.372 0.411 0.466

Site 3 0.519 0.403 0.298 0.224 0.527 0.511

Site 4 0.534 0 0.823 0.842 0.6 0.593
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B C

D E

A

FIGURE 3

Distribution of indicators in Zhongshan under the impact of Typhoon Chaba. (A) Distribution of NO2 concentration. (B) Distribution of PM2.5 concentration.
(C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
B C

D E

A

FIGURE 4

Distribution of indicators in Zhongshan under the impact of Typhoon Mulan. (A) Distribution of NO2 concentration. (B) Distribution of PM2.5

concentration. (C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
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FIGURE 6

Distribution of indicators in Zhongshan under the impact of Typhoon Nalgae. (A) Distribution of NO2 concentration. (B) Distribution of PM2.5 concentration.
(C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
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FIGURE 5

Distribution of indicators in Zhongshan under the impact of Typhoon Ma-on. (A) Distribution of NO2 concentration. (B) Distribution of PM2.5 concentration.
(C) Distribution of maximum rainfall in a single day. (D) Distribution of total rainfall. (E) Distance from landing site to site.
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aggregation phenomena, indicating that the response of DO

concentration in this region has a tendency to deteriorate, and it

is a high-risk area. Under the influence of Ma-on, the localized areas

in the northeast and southwest of Zhongshan City showed the

phenomenon of high-high aggregation, indicating that the response

of DO concentration in this region has a tendency to become worse

and is a high-risk area; the phenomenon of low-low aggregation in

the northwest of Zhongshan City indicates that the response of DO

concentration in this region has a tendency to develop in a better

direction and is a low-risk area.
3.3 Spatial heterogeneity in the response of
water body DO concentration under the
influence of typhoon rain events

Human activities are the main drivers of atmospheric pollution

(Shuping et al., 2016). SO2 and O3 are important gases affecting

atmospheric quality, of which O3 is a very important greenhouse gas

with an uneven global distribution, which is significantly affected by
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human activities (Bing and Hua, 2014). SO2 mainly originates from

human activities such as industrial activities, fossil fuel combustion

and biomass combustion (Jie et al., 2011), therefore SO2 can be used

to characterize the intensity of human activities. Spatial

heterogeneity in population distribution has been suggested

(Zhipeng et al., 2022), and thus the same spatial heterogeneity

exists in SO2 concentration distribution and O3 concentration

distribution driven by anthropogenic intensity. In this study, the

MGWR model was used to explore the correlation between the O3

concentration distribution and SO2 concentration distribution

driven by the intensity of human activities and the DO

concentration response ranking values of urban streams, and the

calculated results are shown in Figure 9. (a), (c), (e), (g), and (b), (d),

(f), (h) are the spatial distributions of the coefficients of influence of

the O3 concentration distributions and the SO2 concentration

distributions on the sorted values of the DO concentration

response for Chaba, Mulan, Ma-on, and Nalgae, respectively.

As shown in Figure 9, there is a certain correlation between the

DO concentration response ordering values and the O3 concentration

distribution and SO2 concentration distribution. In terms of O3
B

C D

A

FIGURE 7

Response of DO concentration in Zhongshan City water bodies under the influence of Typhoon Rain Events. (A) Influenced by Chaba. (B) Influenced
by Mulan. (C) Influenced by Ma-on. (D) Influenced by Nalgae.
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concentration distribution, under the influence of the four typhoon

events, the maximum positive correlation between DO concentration

response ranking values and O3 concentration distribution occurred

in the eastern part of Zhongshan City, the minimum positive

correlation occurred in the western part of Zhongshan City, and

the maximum negative correlation occurred in the northern part of

Zhongshan City. In terms of SO2 concentration distribution, under

the influence of the four typhoon rains, the maximum positive

correlations between the ranked DO concentration response values

and the SO2 concentration distribution occurred in the eastern and

western parts of Zhongshan City, the minimum negative correlations

occurred in the southern part of Zhongshan City, and the maximum

negative correlations occurred in the northern part of

Zhongshan City.
4 Discussion

In recent years, a series of research results have been achieved in

both environmental risk assessment and typhoon disaster risk
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assessment. And in the existing studies, economy and safety are

mostly taken as the assessment objectives. In this study, an attempt

is made to introduce the expanded MULTIMOORA theory in

multi-criteria decision analysis to carry out the environmental

risk assessment of typhoon disaster with the response of DO

concentration in the water body as the assessment objective.

Meanwhile, combining the measured water quality data and

corresponding public information, the results of this study are

considered reasonable, and the findings can provide some

reference for the local government in formulating disaster

prevention and mitigation plans and water environment control

strategies during typhoons.

As can be seen in Figures 7, 8, the effect of field typhoon rains

on the response of DO concentrations in urban rivers is two-sided,

which is consistent with previous reports (Zhou et al., 2012; Ye

et al., 2014). In general, rainfall with higher DO concentration into

the river can effectively increase the DO concentration of the river

(Muñoz et al., 2015), and at the same time, rainfall can also cause a

large amount of oxygen-depleting compounds and organic matter

to enter into the river, which can cause a rapid decrease in the DO
B

C D

A

FIGURE 8

Cluster Analysis of DO Concentration Response in Zhongshan City Water Bodies under the Impact of Typhoon Rain Events. (A) Influenced by Chaba.
(B) Influenced by Mulan. (C) Influenced by Ma-on. (D) Influenced by Nalgae.
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content of the river. Combined with the results of the study, this

paper concludes that: in the rainfall intensity of the larger typhoon

rain events, rich in dissolved oxygen rainfall will play a dilution

effect, increase the dissolved oxygen content in the water body of

the urban water network; and in the production of convergence

and the role of surface scouring to reduce in the water body at the

mouth of the sea in the content of dissolved oxygen. This is

consistent with existing research. Pearce and Schumann (2003)

documented a 13-month period of dissolved oxygen

concentration measurements in the Gamtoos Estuary, South

Africa, noting that hypoxic conditions occurred throughout the

estuary following a large-scale extreme rainfall event. In 2011,

Mitra.A. (Mitra et al., 2011a; Mitra et al., 2011b) et al. conducted

an in-situ study of hydrological parameters in the Bay of Bengal

and neighboring estuaries under the influence of AILA and found

that dissolved oxygen showed a decreasing trend at all the

sampling points during the transit of AILA, and gradually

recovered to the pre-AILA level in the water column 10 days

after the end of the AILA event. Geng Ye et al. (2021) analyzed

urban surface water quality under the influence of Lekima based

on automatic monitoring data, and concluded that during the

typhoon’s transit, the DO concentration in the Jinan section of the

Xiaoqing River showed an overall upward trend accompanied by

small fluctuations under the combined effect of upstream inflow

and surface tributary inflow during the same period. Under the

action of the typhoon rain events with lower rainfall intensity, the
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scouring action of rainwater dominates, washing pollutants from

urban impervious surfaces as well as organic matter from

mountainous soils into the river water body, leading to a trend

of worse overall DO concentration response in the water body.

This is consistent with existing studies. Yihui et al. (2022) analyzed

in detail the characteristics of the impacts of typhoon rain events

on the water environment of lakes and showed that the effect of

typhoon rain events would cause a decrease in the concentration

of DO in the water body. In terms of rainfall intensity, the results

of this paper are consistent with existing studies that different

rainfall characteristics produce different runoff loads and runoff

concentrations, which in turn lead to different runoff water quality

(An et al., 2014).

As can be seen from Figure 9, the ranked values of DO

concentration response in the rivers of Zhongshan city area

under the influence of typhoon rain events show some

correlation with the distribution of O3 concentration and the

distribution of SO2 concentration. Specifically, the response

rankings of DO concentration were positively correlated with

the distribution of O3 and SO2 concentrations in the eastern,

central and western parts of Zhongshan City, i.e., the larger the

concentrations of O3 and SO2, the larger the response rankings of

DO concentration, and the water quality in the river had a

tendency to deteriorate under the impacts of the typhoon rain

events; The response ranking of DO concentration is negatively

correlated with the distribution of O3 and SO2 concentrations in
B C D
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FIGURE 9

(A) Spatial distributions of the coefficients of influence of the O3 concentration distributions on the sorted values of the DO concentration response
influenced of Chaba. (B) Spatial distributions of the coefficients of influence of the SO2 concentration distributions on the sorted values of the DO
concentration response influenced of Chaba. (C) Spatial distributions of the coefficients of influence of the O3 concentration distributions on the
sorted values of the DO concentration response influenced of Mulan. (D) Spatial distributions of the coefficients of influence of the SO2

concentration distributions on the sorted values of the DO concentration response influenced of Mulan. (E) Spatial distributions of the coefficients of
influence of the O3 concentration distributions on the sorted values of the DO concentration response influenced of Ma-on. (F) Spatial distributions
of the coefficients of influence of the SO2 concentration distributions on the sorted values of the DO concentration response influenced of Ma-on.
(G) Spatial distributions of the coefficients of influence of the O3 concentration distributions on the sorted values of the DO concentration response
influenced of Nalgae. (H) Spatial distributions of the coefficients of influence of the SO2 concentration distributions on the sorted values of the DO
concentration response influenced of Nalgae.
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the north and south of Zhongshan City, i.e., the larger the

concentrations of O3 and SO2 are, the smaller the response

ranking of DO concentration is, and there is a tendency for the

water quality in the river to be better under the influence of the

typhoon rain events. This result is consistent with conventional

knowledge: the central, western and eastern parts of Zhongshan

City are densely populated urban centers, where intensive human

activities provide a large amount of O3 precursors and SO2; while

the southern and northern parts of Zhongshan City are not only

set up as agroforestry ecological zones, but also as an agricultural

development area in the southern part of the city, where the

content of O3 precursors and SO2 is lower. Under the condition of

similar rainfall, the DO concentration response ranking values

showed positive correlation with O3 concentration distribution

and SO2 concentration distribution in the east, center and west of

Zhongshan City, and negative correlation in the north and south

of Zhongshan City, which is in line with the reality.

In conclusion, the results of this study are accurate and credible,

and can provide a visual reference and theoretical basis for urban

managers to develop adaptive water governance and carry out

targeted disaster prevention and mitigation work (Liya et al., 2022).
5 Conclusion

Characterizing the response of dissolved oxygen concentration in

urban water bodies under the influence of a single typhoon is essential

for city managers to make decisions on response programs and input

budgets. In this study, the extended MULTIMOORA method was

used to establish the correlation between typhoon drivers and the

response of DO concentration in urban water bodies, and to quantify

and evaluate the characteristics of the response distribution of DO

concentration in urban water bodies. The results showed that the

response of DO concentration in the water body of the river in the

center of the city under the action of the more intense typhoon rain

events was developed to be better; the response of DO concentration

in the water body at the mouth of the sea tended to be worse. Under

the effect of less intense typhoon rain events, the scouring effect of

rainwater dominates and there is a tendency for the response of DO

concentration in the water body to become worse. Meanwhile, this

study used the MGWR model and spatial autocorrelation analysis to

explore the impact of human activities on the distribution of urban

water environment response. The results show that the response

ranking values of DO concentration in rivers in Zhongshan city

under the influence of the typhoon rain events are positively

correlated with the distribution of O3 concentration and SO2

concentration in the east, center and west of Zhongshan city, and

negatively correlated with the distribution of O3 concentration and

SO2 concentration in the north and south of Zhongshan city. The

results of this study can provide visual reference and theoretical

support for local governments and city managers in developing

adaptive water management and targeted disaster prevention and

mitigation programs.
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Appendix A. OWA operator:

First, P experts are invited to rate the target Q. The rating results

are then arranged in descending order , result ing in

(a0, a1,…, aj,…, ap−1), where a0 > a1 > … > aj > … > ap−1. The

weight yj+1 for aj is determined by combinatorial calculations.

yj+1 =
Cj
p−1

2p−1
  (j = 0, 1,…, p − 1) (1)

According to the weights yj+1, the target data is sequentially

weighted to obtain the absolute weights of the target, denoted as wi.

wi =o
p

j=1
yj+1aj(i = 1, 2,…, p) (2)

Hence, the subjective weights wi calculated by the OWA

operator can be obtained.

wi =
wi

op
i=1wi

(i = 1, 2,…, p) (3)
Appendix B. The process of solving
objective weights:

The formulae (LuanXiao et al., 2021; Xiao-wen et al., 2021) are

shown below.

ɡ(D ∣O) = H(D) − H(D ∣O) (1)

mseiOOBm = mse(Yi
P − Y)2 −mse(YP − Y)2 (2)

IMPi(Xi
OOB) =

1
To

T

t=1
mseiOOBm (3)

Where: g(D|O) is the information gain value,H(D) is the overall

entropy value before branching, H(D|O) is the entropy value after

pre-branching in condition O. Y represents the true values, YP

represents the predicted values, Yi
P denotes the predicted values

after modifying the feature variables, mseiOOBm represents the mean

squared error of the feature variables for decision tree tm, T is the

number of decision trees, and IMPi(Xi
OOB) signifies the importance

results of the feature variables.

Calculate the objective weights wo as follows:

wo =
IMPi(Xi

OOB)

on
i=1IMPi(Xi

OOB)
(4)
Appendix C. The process of solving
comprehensive weights:

For a discrete random variable X = (x1, x2,…, xn), the

probability distribution of x is only related to the condition d and

the condition t. Under the condition d, the xk probability
Frontiers in Ecology and Evolution 17
distribution function is d(xk); similarly, under the condition t, the
xk probability distribution function is t(xk). Thus, the

discriminatory information (Lee et al., 2019) is expressed as:

I½t(x), d (x)� = o
n

k=1

t(x)log
t(x)
d (x)

(1)

Since both subjective and objective weight data are discrete

random variables, in order to enhance the credibility and accuracy

of the composite weight for evaluation metrics with smaller errors,

this study employs the Minimum Discriminant Information

Principle to determine a composite weight that closely

approximates both. The solution is obtained by introducing

Lagrange multipliers into the equation.

Lag(x,y ) = q(x) − yd (x) (2)

Where: q(x) represents the original function, and d(x) is the

cons t r a in t cond i t i on func t i on , and y deno t e s the

Lagrange multiplier.

Establishing the objective function as follows:

min (I½ws,wi� + I½ws,wo�) = o
n

k=1

(wsln
ws

wi
+ wsln

ws

wo
)

o
n

k=1

ws − 1 = 0

8>>><
>>>:

(3)

Substituting the Lagrange multiplier yields:

Lag(ws,y ) = o
n

k=1

(wsln
ws

wi
+ wsln

ws

wo
) − y (o

n

k=1

ws − 1) (4)

Taking the partial derivative of Equation 4 results in:

ws =
ffiffiffiffiffiffiffiffiffiffi
wiwo

p

op
i=1

ffiffiffiffiffiffiffiffiffiffi
wiwo

p (5)

Where: ws is the combined weight of the evaluation indicators,

wi is the subjective weight of the evaluation indicators and wo is the

objective weight of the evaluation indicators.
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