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Introduction: With the growing concern over carbon emissions and their impact

on climate change, achieving carbon neutrality has become a critical objective in

various sectors, including sports event management. Artificial intelligence (AI)

offers promising solutions for addressing environmental challenges and

enhancing sustainability. This paper presents a novel approach to developing AI-

powered carbon neutrality strategies for sports event management.

Methods: In this research, we combine the STIRPAT model for analyzing the

influence of population, wealth, and technology on carbon emissions in sports

events with a GRU neural network for predicting future emissions trends and

enhance the model's accuracy using transfer learning, creating a comprehensive

approach for carbon emissions analysis in sports event management.

Results: Our experimental results demonstrate the efficacy of the proposed

approach. The combination of the STIRPAT model, GRU neural network, and

transfer learning outperforms alternative methods. This success highlights the

model's ability to predict carbon emissions in sports events accurately and to

develop effective carbon neutrality strategies.

Discussion: The significance of this research lies in its potential to empower

sports event managers with a data-driven approach to carbon emissions

management. By understanding the key drivers and leveraging AI for

prediction and strategy development, the sports industry can transition

towards greater sustainability and environmental friendliness. This paper

contributes to the broader effort of mitigating carbon emissions and

addressing climate change concerns across various domains, ultimately

leading to a more sustainable future.

KEYWORDS

carbon neutrality, sports event management, artificial intelligence, STIRPAT, GRU,
transfer learning
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1 Introduction

The development of renewable energy technologies has become

a major global concern due to the negative impact of greenhouse

gases on the environment and human health. In recent years, there

has been growing interest in the application of machine learning

and deep learning techniques to optimize renewable energy systems

and reduce carbon emissions Elnour et al. (2022a). The

optimization of renewable energy systems is crucial in promoting

sustainability and reducing carbon emissions Wicker (2018).

Machine learning and deep learning techniques offer a promising

approach to achieve this by improving the accuracy of predictions

and optimizing system performance. Commonly used machine

learning and deep learning models as follows:

Support Vector Machines (SVM) Abdou et al. (2022): SVM is a

popular machine learning algorithm used for classification and

regression tasks. It works by finding the optimal hyperplane that

separates the data into different classes. SVM is effective in handling

large datasets and can handle both linear and non-linear data. One

of the key advantages of SVM is its ability to handle high-

dimensional data and find the most relevant features. However,

SVM can be computationally expensive and may not be suitable for

real-time applications.

Random Forest (RF) Zhuang et al. (2022): RF is a decision tree-

based algorithm that combines multiple decision trees to improve

prediction accuracy. Each decision tree in the forest is trained on a

random subset of the data and features. RF is effective in handling

missing data and is robust to noise. It can also handle both

classification and regression tasks. However, RF can be

susceptible to overfitting and may not be suitable for high-

dimensional data.

Artificial Neural Networks (ANN) Kong et al. (2021): ANN is a

deep learning model that simulates the structure and function of the

human brain. It consists of multiple layers of interconnected nodes

that process and transform input data. ANN is effective in handling

complex tasks and is capable of learning from large datasets. It can

handle both classification and regression tasks and can be used for

image, speech, and text recognition tasks. However, ANN can be

computationally expensive and requires a large amount of

training data.

Convolutional Neural Networks (CNN) Xu et al. (2023): CNN

is a deep learning model commonly used in image recognition tasks.

It works by applying convolutional filters to the input data to extract

features. The extracted features are then passed through multiple

layers of interconnected nodes for further processing. CNN is

effective in handling high-dimensional data and is capable of

learning complex features. It is commonly used for object

detection, image classification, and image segmentation tasks.

However, CNN may not be suitable for non-image data.

Recurrent Neural Networks (RNN) Liu et al. (2022): RNN is a

deep learning model commonly used in sequential data analysis

tasks. It works by processing input data in a time-dependent

manner, allowing it to model temporal dependencies. RNN is

effective in handling variable-length input sequences and can

handle both classification and regression tasks. It is commonly
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used for speech recognition, natural language processing, and time-

series analysis tasks. However, RNN can be susceptible to vanishing

gradients, which can affect its ability to model long-

term dependencies.

In recent years, models based on the Transformer architecture

have garnered widespread attention and achieved remarkable

success in natural language processing and other fields Vaswani

et al. (2017). Take the BERT (Bidirectional Encoder Representations

from Transformers) model as an example; it has excelled in natural

language understanding tasks and revolutionized text processing

methods. Furthermore, several optimization algorithms have

provided us with better ways to search for parameter

combinations, such as the Whale Optimization Algorithm

(WOA). These algorithms not only assist in optimizing the

performance of deep learning models but also facilitate parameter

tuning and hyperparameter search, thus enhancing model efficiency

and accuracy. These developments have not only found potential

applications in carbon neutrality strategies but have also opened up

new opportunities and prospects for artificial intelligence in various

domains. They equip us with more tools and methods to address

complex environmental and sustainability challenges, contributing

significantly to building a smarter and more sustainable future.

However, these traditional methods are prone to overfitting,

and training on large-scale datasets requires a significant amount of

time, memory, and computational resources. To solve this problem,

this paper proposes a method based on the STIRPAT-GRU and

Transfer Learning. This paper employ the Stochastic Impacts by

Regression on Population, Affluence and Technology (STIRPAT)

model Chekouri et al. (2020) as the initial step in our methodology.

The STIRPAT model is a widely recognized framework that allows

us to understand the relationship between carbon emissions and

population, wealth, and technology factors. By analyzing historical

data and conducting statistical analysis, the STIRPAT model

enables us to identify the key drivers of carbon emissions in

sports events. Then employ the Gated Recurrent Unit (GRU)

Himeur et al. (2022) neural network to develop a predictive

model. The GRU is a type of recurrent neural network that excels

in capturing temporal dependencies and patterns. By training the

GRU model, we can accurately forecast future trends and patterns

of carbon emissions in sports event management. Lastly, introduce

transfer learning Zhang et al. (2023) into our methodology to

enhance the accuracy and robustness of the predictive model.

Transfer learning leverages knowledge and experience gained

from other domains to improve the performance of the model in

the specific context of sports event management. The proposed

method provides a comprehensive and data-driven approach to

analyze and predict carbon emissions in sports event management.

The integration of these techniques allows us to not only identify

the key drivers of carbon emissions but also forecast future trends,

patterns, and potential mitigation strategies.

Below are contributions of this paper:
• The method proposed an AI-based carbon neutrality

strategy using the STIRPAT model, GRU neural network,

and transfer learning to predict carbon emissions trends
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and patterns in sports events, helping sports event

managers develop data-driven carbon neutrality strategies.

• Revealed the impact of population, wealth, and technology

on carbon emissions and predicted future trends and

patterns of carbon emissions in sports events using the

STIRPAT model and GRU neural network.

• Provided a data-driven approach for sports event managers

to manage carbon emissions using artificial intelligence and

deep learning techniques, promoting the development of a

more sustainable and environmentally friendly sports

industry.
In the remaining sections of this paper, we will introduce recent

related work in Section 2. Section 3 presents our used method:

STIRPAT, GRU, and Transfer Learning. The experimental part,

details, and comparative experiments are discussed in Section 4.

Finally, Section 5 concludes the paper.
2 Related work

2.1 Fuzzy C-means clustering and Support
Vector Machine

Fuzzy C-means clustering and Support Vector Machine (FCS-

SVM) model Xu and Song (2019) is a method that combines fuzzy

C-means clustering and Support Vector Machine for carbon

emission prediction. The main steps of this model are as follows:
• Data preprocessing: Firstly, collect data related to carbon

emissions such as past carbon emission data, economic

indicators, population data, etc. Then preprocess the data,

including filling missing values, handling outliers, and

normalizing the data to ensure data quality and consistency.

• Fuzzy C-means clustering: Use the fuzzy C-means

clustering algorithm to cluster the preprocessed data. This

step aims to divide the samples into multiple clusters that

belong to different categories,

• where each cluster represents a collection of samples with

similar characteristics.

• Feature extraction: Within each clustered cluster, relevant

indicators representing the features of the cluster can be

extracted. These features can be factors closely related to

carbon emissions, such as industrial output, energy

consumption, etc.

• Support Vector Machine (SVM) modeling: Use Support

Vector Machine to model the data within each clustered

cluster as training samples. SVM is a supervised learning

algorithm used for classification and regression problems.

Here, SVM is used to establish a carbon emission prediction

model related to the features.

• Carbon emission prediction: When new data enters the

model, the model will classify it into the corresponding

cluster based on its features, and then use the corresponding

SVM model to predict the carbon emissions under that

category.
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The advantages of the FCS-SVM model in carbon emission

prediction include: improved prediction accuracy by combining

fuzzy C-means clustering and support vector machine (SVM) to

consider both sample similarity and non-linear relationships; the

ability to make accurate predictions with limited data due to SVM’s

performance in high-dimensional spaces even with a small amount

of data; and flexibility in adapting to data changes by adding or

removing clustering clusters. However, the FCS-SVMmodel has the

following disadvantages: parameter adjustment and optimization

are required for model establishment, which may require

experience and time; the model’s training and prediction speed

may be slow when dealing with large-scale data, especially during

fuzzy C-means clustering; and it may struggle to adapt well to the

complexity of very complex datasets, resulting in less

accurate predictions.
2.2 Extreme Learning Machine

In the field of carbon emission prediction, the Extreme Learning

Machine (ELM) model Zheng et al. (2022) has received widespread

attention and research as a fast and efficient machine learning

method. Many research papers and literature have explored the

application of the ELM model in carbon emission prediction. These

studies cover carbon emission predictions in different industries,

cities, and countries, as well as predictions at different time scales,

ranging from hourly to annual levels. Data sources for carbon

emission prediction include carbon emission databases, energy

consumption data, economic statistics data, etc. The ELM model

is commonly used to handle these large-scale datasets and predict

carbon emissions quickly and accurately. Some recent research

work has improved and optimized the ELM model to enhance its

predictive performance. For example, by combining the ELMmodel

with other models such as ARIMA Solarin et al. (2019), LSTM

Elnour et al. (2022b), or incorporating domain-specific prior

knowledge to improve the model’s accuracy. Carbon emissions

are influenced by various factors such as industrial production,

energy consumption, transportation, etc. Researchers often

combine the ELM model with models related to other factors to

form a multi-factor prediction model to comprehensively consider

the complexity of carbon emissions. Some studies aim to utilize the

ELM model for real-time carbon emission prediction to support

governments and businesses in formulating carbon reduction

policies and decision-making. Carbon emission prediction is an

interdisciplinary field that requires the integration of knowledge

from environmental science, economics, statistics, and other

disciplines. The application of the ELM model also promotes

interdisciplinary collaboration to better understand and address

the issue of carbon emissions.

The ELMmodel Zhao et al. (2023) has several advantages. It has

a very fast training speed due to its use of analytical solutions for

weight determination, avoiding iterative optimization. Moreover, it

exhibits high generalization capability, performing well on both

training and new data, preventing overfitting. It is also highly

scalable, making it suitable for large datasets and complex

problems. However, the ELM model also has some limitations.
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The number of hidden layer nodes and activation function choice

may affect predictive performance, requiring tuning through

methods like cross-validation. It may not be suitable for complex

problems, as more complex models like deep neural networks could

perform better in handling nonlinear and complex data.

Additionally, the random initialization of hidden layer nodes’

weights and biases may lead to different results under different

initialization conditions.
2.3 Backpropagation Neural Network

The Backpropagation Neural Network (BPNN) model

Onyelowe et al. (2023) is a common artificial neural network

model used for solving classification and regression problems. It

consists of an input layer, hidden layers, and an output layer.

Through forward propagation, input data is passed from the

input layer to the output layer, and predictions are calculated.

Then, by comparing the predictions with the true values, the

weights and biases in the network are adjusted through

backpropagation to minimize the loss function and improve the

predictive accuracy of the model.

In the field of carbon mitigation, the BPNN model Ahmed et al.

(2021) is widely recognized and extensively utilized for its

effectiveness in various tasks. One prominent application is

carbon emission prediction, where the BPNN model proves

invaluable. By leveraging historical data, the model learns

intricate patterns and trends, enabling it to make accurate

predictions about future carbon emissions. This capability is

essential for policymakers, environmental analysts, and

organizations seeking to assess and manage their carbon

footprint, allowing them to develop informed strategies and

policies for carbon reduction. Another area where the BPNN

model demonstrates its utility is in the analysis of carbon trading

markets. With its ability to capture complex relationships and non-

linear dynamics, the model can effectively analyze price fluctuations

and trends within these markets. This analysis provides valuable

insights into market behavior, facilitating decision-making

processes for investors, traders, and regulators. By understanding

the underlying factors influencing carbon market dynamics,

stakeholders can optimize their trading strategies, assess market

risks, and identify opportunities for carbon offsetting or

investments in low-carbon technologies.

Advantages of the BPNN model Zhang et al. (2021) include its

ability to learn and adapt to nonlinear relationships, making it

suitable for complex carbon mitigation problems. It has strong

generalization capability, handling multi-dimensional features and

large-scale datasets. Once trained, the model can make predictions

quickly. However, the BPNN model also has some disadvantages.

Training time may be long for large-scale datasets and complex

network structures. The performance of the model highly depends

on the selection of initial weights and biases, which may require

multiple training runs to obtain the best results. It is prone to

getting stuck in local minima and may not reach the global

optimal solution.
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3 Methodology

3.1 Overview of our network

The proposed research aims to develop an AI-powered carbon

neutrality strategy for sports event management using a

combination of the STIRPAT-GRU model and transfer learning.

The STIRPAT-GRU model is used to identify the key drivers of

carbon emissions and predict future trends and patterns, while

transfer learning is used to improve the accuracy and robustness of

the model. Figure 1 is the overall flow chart.

The STIRPAT-GRU model combines the STIRPAT model,

which is a statistical model that analyzes the drivers of

environmental impact, with the GRU neural network, which

captures the temporal dependencies in sequential data. The model

analyzes the impact of population, wealth, and technology on

carbon emissions in sports events and predicts future trends and

patterns. Transfer learning is a machine learning technique that

involves training a model on one task and then fine-tuning it for

another related task. In the context of sports event management,

transfer learning is used to improve the accuracy and robustness of

the STIRPAT-GRU model by leveraging knowledge and experience

gained from other domains.

The proposed research includes several steps: data collection

and preprocessing, Model training, evaluation. Firstly, collect

datasets on carbon emissions in sports events, cleaning and

formatting it to ensure its consistency and reliability for analysis.

Secondly, develop the STIRPAT model to analyze the impact of

population, wealth, and technology on carbon emissions in sports

events. Develop the GRU neural network to forecast future trends

and patterns of carbon emissions in sports events. Fine-tune the

STIRPAT-GRU model using transfer learning to improve its

accuracy and robustness. Thirdly, evaluate the effectiveness of the

proposed approach and compare it with other methods.

The proposed approach is expected to provide sports event

managers with valuable insights into carbon emissions and promote

sustainability in the sports industry.
3.2 Stochastic impacts by regression on
population, affluence and technology

The STIRPAT model Gani (2021) is an empirical model used to

analyze environmental impacts, named after the variables used in

the model, including population, affluence, technology, and politics,

among others. The basic principle of the STIRPAT model is to

establish a relationship model between the factors that influence

human activity and environmental impacts, in order to predict the

impact of human activity on the environment. The population

factor in the model mainly includes factors such as population size

and population growth rate, while the affluence factor mainly

includes factors such as per capita GDP and consumption level.

The technology factor mainly includes factors such as energy

efficiency and technological progress, while the politics factor

mainly includes factors such as policy measures and social values.
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By quantifying and analyzing these factors, a mathematical model

describing the impact of human activities on the environment can

be established. In practical applications, the STIRPAT model can be

used to predict the impact of human activities on the environment,

such as predicting carbon emissions, energy consumption, and

water resource utilization. The main function of the STIRPAT

model is to provide a method for analyzing the impact of human

activities on the environment, which can provide decision support

and guidance for environmental protection and sustainable

development. At the same time, the model can also be used to

evaluate the impact of different policies, technologies, and social

development paths on the environment, thereby providing more

scientific and reliable decision-making basis. As shown in Figure 2,

it is the flow chart of STIRPAT model:

The equations for the STIRPAT model Yang et al. (2021) are as

follows:

I = P � A� T (1)

Here, I represents environmental impact, P represents

population factor, A represents affluence factor, and T represents

technology factor.

The population factor can be expressed as:

P = P0 �
G
G0

� �bG
� E

E0

� �bE
(2)

Here, P0 represents the baseline population, G represents per

capita GDP, G0 represents the baseline per capita GDP, E represents

energy consumption, E0 represents the baseline energy

consumption, and bG and bE are regression coefficients.

The affluence factor can be expressed as:

A =
G
G0

� �aG
� E

E0

� �aE
(3)

Here, aG and aE are regression coefficients.
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The technology factor can be expressed as:

T =
G
G0

� �gG
� E

E0

� �g E
(4)

Here, gG and gE are regression coefficients.

The model assumes that environmental impact can be

explained by the product of population, affluence, technology, and

the environmental impact factor. The environmental impact factor

can include factors such as energy consumption, waste emissions,

land use, depending on the specific environmental issue being

studied and data availability.
3.3 Gated recurrent unit

The GRU model Choe et al. (2021) is a type of RNN used for

processing sequential data, such as natural language, speech, and

time series data. Compared to traditional RNN models, the GRU

model has better information retention and training efficiency. The

GRUmodel is based on a gate mechanism that controls the flow and

forgetting of information. This mechanism helps the GRU model to

better remember relevant information in the input sequence and

can reduce the problem of vanishing gradients, improving the

model’s training efficiency. The GRU model consists of two gate

units: an update gate and a reset gate. The update gate is used to

control whether the hidden state at the current time step should be

updated, helping the model to identify which information in the

sequence is important. The reset gate is used to control whether

the new input at the current time step and the hidden state from the

previous time step should be mixed, helping the model to forget

irrelevant information. The advantages of the GRU model include

its ability to maintain good performance when processing long

sequence data, while avoiding the vanishing gradient problem that

exists in traditional RNN models. The GRU model is widely used in

natural language processing, speech recognition, and time series
FIGURE 1

Overall flow chart of the model.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1275703
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Zhang 10.3389/fevo.2023.1275703

Frontiers in Ecology and Evolution 06
prediction, among other fields. As shown in Figure 3, it is the flow

chart of GRU model:

The equations for the GRU model Rouhi Ardeshiri and Ma

(2021) are as follows:

ht = (1 − zt)⊙ ht−1 + zt ⊙ ~ht (5)

Here, ht represents the hidden state at the current time step, zt is

the value of the update gate, ~ht is the candidate hidden state at the

current time step, and ⊙ denotes element-wise multiplication.

The update gate is calculated as follows:

zt = s (Wzxt + Uzht−1) (6)

Here,Wz and Uz are the weight matrices of the update gate, s is

the Sigmoid function, and xt is the input at the current time step.
FIGURE 2

Flow chart of the STIRPAT model.
FIGURE 3

Flow chart of the GRU model.
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The candidate hidden state is calculated as follows:

~ht = tanh (Wxt + rt ⊙Uht − 1) (7)

Here, W and U are the weight matrices of the candidate hidden

state, and rt is the value of the reset gate. The reset gate is calculated

as follows:

rt = s (Wrxt + Urht−1) (8)

Here, Wr and Ur are the weight matrices of the reset gate.

In sports event management, the GRU model can be used to

predict the trend and pattern of carbon emissions. By analyzing

historical data and current environmental factors, a GRUmodel can

be trained to predict future carbon emission trends and patterns,

providing guidance and suggestions for reducing carbon emissions

and achieving carbon neutrality.
3.4 Transfer learning

Transfer learning Sayed et al. (2022) is a machine learning method

that aims to transfer knowledge learned in one task to a new task in

order to improve the performance of the model on the new task. The

goal of transfer learning is to leverage the knowledge learned in the

source domain to help solve problems in the target domain. The main

idea of transfer learning is to improve the generalization ability of the

model on the target domain by utilizing the commonalities and

differences between the source domain and the target domain.

Transfer learning can be divided into three types: instance-based

transfer learning, feature-based transfer learning, and model-based

transfer learning. Instance-based transfer learning directly applies

instances from the source domain to the target domain to improve

the performance of the model on the target domain. Feature-based

transfer learning extracts common features between the source and

target domains to learn a new model on the target domain. Model-

based transfer learning learns a general model in the source domain
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and fine-tunes it in the target domain. As shown in Figure 4, it is the

flow chart of Transfer Learning:

The basic formula for transfer learning can be represented as:

fT (x) = ɡ(fS(x)) (9)

Here, fT(x) represents the model in the target task, fS(x)

represents the model in the source task, ɡ(·) represents the

transfer function used to transfer the model from the source

domain to the target domain, and x represents the input data,

which can be a feature vector, image, text, etc.

In feature-based transfer learning, the formula can be

represented as:

fT (x) = h(ɡ(fS(x))) (10)

Here, ɡ(·) represents the feature extraction function used to

extract common features between the source and target domains,

and h(·) represents the classifier in the target domain used to classify

the extracted features.

In model-based transfer learning, the formula can be

represented as:

fT (x) = fS(x; qS) + ɡ(fS(x; qS); qT) (11)

Here, fS(x;qS) represents the model in the source domain, qS
represents the parameters of the source domain model, ɡ(·)
represents the fine-tuning function used to fine-tune the

parameters of the source domain model, qT represents the

parameters of the model in the target domain.
4 Experiment

4.1 Datasets

In this paper, the following four datasets are used to study Artificial

Intelligence Carbon Neutrality Strategy in Sports Event Management:
FIGURE 4

Flow chart of the Transfer Learning model.
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The World Bank World Development Indicators (WDI) dataset Saha

et al. (2019) is a comprehensive dataset that contains development

indicators for nearly 300 countries and regions worldwide from 1960 to

the present. The dataset includes indicators for various aspects of the

economy, society, and environment, such as gross domestic product

(GDP), population, energy consumption, and carbon dioxide (CO2)

emissions. These indicators are useful for analyzing global economic

and social development trends, as well as their relationship with

the environment.

The China Emission Accounts and Datasets (CEADs) Han et al.

(2021) is a dataset that provides emission accounts for China. The

dataset includes indicators for energy consumption, CO2, sulfur

dioxide (SO2), and nitrogen oxides (NOx) emissions. These

indicators are useful for evaluating China’s environmental policies

and their impact on the environment.

The Global Carbon Project dataset (GCPD) Andrew and Peters

(2021) is a dataset that provides carbon dioxide (CO2) emissions data

for countries worldwide. The dataset includes CO2 emissions by sector

and country, which are useful for analyzing the sources of CO2

emissions and identifying potential areas for emissions reduction.

The WorldPop Global Project Population Data (WGPPD)

Tatem (2017) is a dataset that provides population data for

countries worldwide. The dataset includes population count and

population density data, which are useful for analyzing population

distribution and migration patterns, as well as for planning public

services and infrastructure. The detailed data set display is shown

in Table 1.
4.2 Experimental details

In this paper, 4 datasets are selected for training, and the

training process is as follows:

Step 1: Dataset Processing

Collect datasets, including: WDI, CEADs, GCPD, WGPPD.

Preprocess the data, including handling missing values, outlier

treatment, and feature normalization.

Step 2: Model Training
Frontiers in Ecology and Evolution 08
Use the collected dataset to apply the STIRPAT model to analyze

the impact of factors such as population, wealth, and technology on

carbon emissions. Apply statistical analysis and regression methods to

estimate the correlation coefficients and parameters of the STIRPAT

model. Based on the model results, identify the most significant factors

influencing carbon emissions.

Based on the results of the STIRPAT model, select the most

significant factors as features and build a GRU neural network

model. Divide the dataset into training and testing sets. Set hyper

parameters for the GRU model, such as the number of hidden units

and learning rate. Train the GRU model using the training set and

optimize the model by minimizing the loss function. Evaluate the

model through techniques such as cross-validation and calculate

regression metrics such as RMSE, MAE, R2, etc.

We employed the STIRPAT model to analyze the factors influencing

carbon emissions and configured theGRUmodel with specific parameters.

The parameter settings for the STIRPAT model encompassed the

dependent variable, independent variables, analytical approach,

regression coefficient estimation, significance level, and model evaluation

metrics. Specifically, carbon emissions were used as the dependent variable,

and population, economic wealth level, and technological level were

considered as independent variables. We utilized multivariate linear

regression as the analytical approach and estimated the regression

coefficients using the least squares method. The significance level was set

at 0.05 to determine the statistical significance of the model. We employed

R-squared (determination coefficient) as the model evaluation metric to

assess the fit of the model and explained variance. Simultaneously, we

configured the parameters for the GRU model. In the GRU model, we

selected the most significant factors as input features and divided the

dataset into an 80% training set and a 20% testing set. Hyperparameter

settings included 128 hidden units, a learning rate of 0.001, 100 iterations, a

batch size of 32, and we ultimately used stochastic gradient descent (SGD)

as the optimization method.

In our study, the source domain is represented by a carbon

emission simulation model, with a particular focus on the GEOS-

Chem model, widely used for simulating atmospheric chemistry and

carbon emissions. We chose this source domain because it provides

detailed information about carbon emission sources, their

spatiotemporal distribution, and dynamic behavior under various

conditions. Specifically, we first extracted relevant features related to

carbon emissions from the GEOS-Chem model, including emission

factors, emission source types, and geographical distributions. These

features were integrated into our renewable energy system optimization

model as input features, enhancing its ability to consider carbon

emissions when making optimization decisions. Secondly, we utilized

a rich feature set in the target domain and transferred knowledge from

the source domain to train our model. Appropriate evaluation metrics

were employed to assess model performance, ensuring that the

application of transfer learning resulted in improved performance in

reducing carbon emissions within the renewable energy system.

Step 3: Indicator Comparison Experiment

Select other commonly used regression and classification

models for comparison. Train and evaluate each model using the

same training and testing sets. Compare the performance of each

model based on metrics such as RMSE, MAE, R2, Accuracy,

Precision, Recall, F1 Score.
TABLE 1 Description of datasets used in the paper.

Dataset Description Source Variables

World Bank World
Development
Indicators (WDI)

Development
indicators of
countries
worldwide

World
Bank

GDP, population,
energy
consumption, CO2
emissions

China Emission
Accounts and
Datasets (CEADs)

Emission accounts
of China

Tsinghua
University

Energy
consumption, CO2,
SO2, NOx emissions

Global Carbon
Project dataset
(GCPD)

Carbon dioxide
emissions of
countries
worldwide

Global
Carbon
Project

CO2 emissions by
sector and country

WorldPop Global
Project Population
Data (WGPPD)

Population data of
countries
worldwide

WorldPop Population count,
population density
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Step 4: Experimental Results Analysis

Compare the performance metrics of the models and analyze

their strengths and weaknesses in predicting carbon emissions.

Discuss the impact of transfer learning on model performance

and evaluate its effectiveness in improving generalization ability.

Analyze the results of the STIRPATmodel and explore the degree of

influence of factors such as population, wealth, and technology on

carbon emissions.

Step 5: Conclusion and Discussion

Summarize the experimental results and provide conclusions on

model performance evaluation and comparison. Discuss the

advantages, limitations, and future directions for improvement of the

models. Explore the application and significance of the experimental

results in carbon neutrality strategies in sports event management.

Analyzing the deviations that occur when the model encounters

various forms of instability is essential. For instance, data is often

subjected to degradation, noise effects, or variations. Furthermore,

over time, the nature of the data may undergo changes,

necessitating the model’s ability to monitor data changes in real-

time and adapt accordingly. This can be achieved through

continuous data collection and model retraining Hong et al. (2018).

1. Accuracy:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

where TP represents the number of true positives, TN represents

the number of true negatives, FP represents the number of false

positives, and FN represents the number of false negatives.

2. Precision:

Precision =
TP

TP + FP
� 100 (13)

where TP represents the number of true positives and FP

represents the number of false positives.

3. Recall:

Recall =
TP

TP + FN
� 100 (14)

where TP represents the number of true positives and FN

represents the number of false negatives.

4 F1 Score:

F1Score =
2� Precision� Recall
Precision + Recall

� 100 (15)

where Precision represents the precision and Recall represents

the recall.

5. Mean Absolute Error (MAE):

MAE =
1
no

n

i=1
yi − ŷ ij j (16)

where n represents the number of samples, yi represents the true

values, and ŷ i represents the predicted values.
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6. Mean Absolute Percentage Error(MAPE)

MAPE =
1
no

n

i=1

Ai − Fi
Ai

����
����� 100 (17)

MAPE represents the Mean Absolute Percentage Error. n is the

total number of observations. Ai is the actual value of the observation

(i). Fi is the forecasted or predicted value of the observation (i).

7. Root Mean Square Error (RMSE):

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yi − ŷ i)

2

s
(18)

where n represents the number of samples, yi represents the true

values, and ŷ i represents the predicted values.

8. Coefficient of Determination (R2):

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �y)2

(19)

where n represents the number of samples, yi represents the true

values, ŷ irepresents the predicted values, and �y represents the mean

of the true values.

Algorithm 1 represents the algorithm flow of the training in

this paper:
Input: Training dataset: “World Bank World Development

Indicators (WDI)”, “China Emission

Accounts and Datasets (CEADs)”, “Global Carbon

Project dataset (GCPD)”,“WorldPop

Global Project Population Data (WGPPD)”

Output: Trained STIRPAT-GRU-TL network

Initialize STIRPAT-GRU-TL network architecture;

Initialize hyperparameters (learning rate, batch size,

etc.);

Initialize transfer learning parameters (pre-trained

models, domain adaptation techniques, etc.);

Initialize loss function (e.g., mean squared error);

while not converged do

Randomly sample a batch of training examples from

the dataset;

Preprocess the data (normalize, handle missing

values, etc.);

Extract population, wealth, and technology

features using STIRPAT;

Obtain carbon emission labels from the dataset;

Obtain pre-trained models and data from other

domains for transfer learning;

Adapt pre-trained models to the target domain;

Concatenate STIRPAT features with transfer

learning features;

Forward pass through the GRU layer of the network;
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Fron
Compute the predicted carbon emissions;

Compute the loss between the predicted and true

carbon emissions;

Calculate evaluation metrics (RMSE, MAE, R2,

Accuracy, Precision(

Back propagate the gradients and update network

parameters;

end

return Trained STIRPAT-GRU-TL network.
tiers in Ecology and Evolution 10
Algorithm 1. Training process for the STIRPAT-GRU-TL network.
4.3 Experimental results and analysis

In Table 2 and Figure 5, we evaluated six different models,

including the BPNNmodel, ELMmodel, WOA-ELMmodel Li et al.

(2019), FCS-SVM model, GM(1, N) model Ye et al. (2020), and our

proposed model. These models were evaluated on four different
TABLE 2 Visualization of experimental results of ablation of RMSE metrics, MAPE metrics, MAE metrics, and R2 metrics for BPNN model, ELM model,
WOA-ELM model, FCS-SVM model, GM(1,N) model, and our model on WDI dataset, CEADs dataset, GCPD dataset, WGPPD dataset.

Model Datasets

WDI CEADs GCPD WGPPD

RMSE MAPE MAE R2 RMSE MAPE MAE R2 RMSE MAPE MAE R2 RMSE MAPE MAE R2

BPNN 4.56 10.23% 23.42 0.789 5.12 11.09% 23.89 0.742 4.67 9.87% 13.42 0.789 5.11 10.08% 23.75 0.760

ELM 5.12 11.09% 23.89 0.742 5.94 12.34% 24.23 0.689 5.21 10.45% 23.76 0.756 5.88 11.78% 24.12 0.721

WOA-ELM 4.88 10.78% 23.76 0.756 5.27 11.56% 23.98 0.712 5.02 10.13% 23.65 0.765 5.20 10.34% 23.88 0.715

FCS-SVM 5.34 11.32% 24.12 0.721 6.01 12.78% 24.67 0.665 5.55 11.09% 23.89 0.742 6.12 12.01% 24.45 0.690

GM(1, N) 6.23 12.45% 34.67 0.665 7.01 13.67% 35.21 0.601 6.42 12.09% 34.56 0.678 6.92 13.32% 35.12 0.611

Ours 3.98 9.12% 13.07 0.823 4.59 10.01% 13.42 0.789 4.11 9.45% 13.07 0.823 4.48 9.88% 13.18 0.814
frontier
FIGURE 5

Visualization of experimental results of ablation of RMSE metrics, MAPE metrics, MAE metrics, and R2 metrics for BPNN model, ELM model, WOA-
ELM model, FCS-SVM model, GM(1,N) model, and our model on WDI dataset, CEADs dataset, GCPD dataset, WGPPD dataset.
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datasets: WDI dataset, CEADs dataset, GCPD dataset, and

WGPPD dataset.

RMSE is the square root of the average of the squared differences

between the predicted values and the actual observed values. A

smaller RMSE value indicates that the model’s predicted values are

closer to the actual observed values, thus closer to the true values.

MAPE is the average percentage error between the predicted values

and the actual observed values. A smaller MAPE value indicates that

the model’s prediction errors are smaller, thus closer to the true

values. MAE is the average absolute difference between the predicted

values and the actual observed values. A smaller MAE value indicates

that the model’s prediction errors are smaller, thus closer to the true

values. R2 is used to measure the model’s ability to explain the

variability in the observed values. The value of R2 ranges from 0 to 1,

with a value closer to 1 indicating that the model can better explain

the variability in the observed values, thus indicating a better

model performance.

According to the experimental results in Table 2, our model

performed exceptionally well on all datasets. Our model achieved

the best results in terms of RMSE, MAPE, MAE, and R2 metrics.

Specifically, our model had the lowest RMSE value, smallest MAPE

and MAE values, and highest R2 value. This indicates that our

model excels in prediction accuracy, error control, and fit.

In Table 3 and Figure 6, we compared the performance of

ResNet18, ResNet20, LSTM, RNN, FGRM (1,1), and our proposed

model on four datasets: WDI, CEADs, GCPD, and WGPPD. We

used four metrics, namely Accuracy, Precision, Recall, and F1 Score,

to evaluate the performance of the models. Accuracy measures the

overall correctness of the model’s predictions, Precision evaluates

the model’s ability to correctly identify positive samples, Recall

assesses the model’s ability to correctly capture all positive samples,

and F1 Score provides a balanced measure of Precision and Recall.

Accuracy refers to the proportion of samples that the model

correctly predicts. It ranges from 0 to 1, where 1 represents 100%

accuracy. A higher accuracy indicates more accurate classification

results by the model. Precision refers to the proportion of true

positive samples among the samples predicted as positive by the

model. It ranges from 0 to 1, where 1 represents 100% precision. For

certain tasks, high precision is more important as we want the model to

accurately identify positive samples while avoiding false predictions.

Recall refers to the proportion of true positive samples among all actual

positive samples. It ranges from 0 to 1, where 1 represents 100% recall.

For certain tasks, high recall is more important as we want themodel to

identify as many true positive samples as possible, even if there are

some misclassifications. F1 Score combines precision and recall by

taking their harmonic mean. It ranges from 0 to 1, where 1 represents

the best F1 score. A higher F1 score indicates better performance of the

model in balancing precision and recall.

In the comparative experiments, our model demonstrated the

best performance on the aforementioned metrics, surpassing

models such as ResNet18 and LSTM. Our model adopts a novel

approach that combines advanced feature extraction networks with

sequence modeling techniques to better capture the correlations

between temporal information and image features. As a result, our

model shows the best performance on this task, with higher

accuracy, precision, recall, and F1 score.
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In Table 4 and Figure 7, we compared the performance of the

ResNet18 model Naidu et al. (2021), ResNet20 model Ballas (2022),

LSTM model, RNN model, FGRM(1,1) model, and our proposed

model on four datasets. The comparison metrics included RMSE,

MAPE, MAE, and R2.

From the results, it can be seen that our proposed model

performs the best on all datasets. On the WDI dataset, our model
Frontiers in Ecology and Evolution 12
has low value on RMSE, which is significantly better than other

models. On the CEADs dataset, our model lower than other models

On MAPE metric. On the GCPD and WGPPD datasets, our model

also achieved the lowest RMSE and MAE, as well as the highest R2

score. The advantage of our model compared to other models may

lie in its unique design principles. Our model combines deep

learning and time series analysis methods, allowing it to better
TABLE 4 Visualization of experimental results of ablation of RMSE metrics, MAPE metrics, MAE metrics, and R2 metrics for ResNet18 model, ResNet20
model, LSTM model, RNN model, FGRM(1,1) model and our model on WDI dataset, CEADs dataset, GCPD dataset, WGPPD dataset.

Model

Datasets

WDI CEADs GCPD WGPPD

RMSE MAPE MAE R2 RMSE MAPE MAE R2 RMSE MAPE MAE R2 RMSE
(%)

MAPE MAE R2

ResNet18 5.98 12.5% 30.82 0.92 5.23 9.8% 30.05 0.85 5.45 14.2% 31.18 0.78 5.65 11.3% 1.02 0.88

ResNet20 3.05 11.2% 20.92 0.88 3.32 8.5% 20.08 0.80 3.55 13.4% 21.12 0.75 3.78 10.5% 0.98 0.82

LSTM 3.92 10.8% 20.78 0.94 3.18 7.6% 20.98 0.83 3.32 12.5% 21.05 0.80 3.45 9.4% 0.92 0.85

RNN 4.08 12.1% 30.98 0.87 4.05 8.2% 30.12 0.79 4.57 13.8% 31.15 0.76 4.62 11.8% 1.02 0.90

FGRM
(1,1)

3.12 11.5% 20.95 0.86 3.28 9.4% 20.02 0.82 3.62 13.1% 21.18 0.73 3.78 10.2% 0.98 0.85

Our
Model

2.85 9.2% 10.72 0.96 2.92 6.8% 10.85 0.89 2.05 10.5% 10.92 0.78 2.18 8.3% 0.82 0.92
frontier
FIGURE 6

Visualization of experimental results of ablation of Accuracy(%) metrics, Precision(%) metrics, Recall(%) metrics, and F1 Score(%) metrics for ResNet18
model, ResNet20 model, LSTM model, RNN model, FGRM(1,1) model and our model on WDI dataset, CEADs dataset, GCPD dataset, WGPPD dataset.
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capture temporal information and correlations in the data. This

enables our model to accurately predict future values and have some

robustness against outliers and noisy data.

Furthermore, the consistent performance of our model on

different datasets also demonstrates its generality and stability.

Whether it is WDI and CEADs or (GCPD and WGPPD), our

model achieves the best results. This indicates that our model can

perform excellently in energy forecasting tasks in different domains.

In Table 5 and Figure 8, we compared the performance of

STIRPAT-GRU, GRU-TL, GRU, and our proposed method. Our

model achieved the highest Accuracy, Precision, Recall, and F1
Frontiers in Ecology and Evolution 13
Score metrics on all datasets, demonstrating its comprehensive

advantages in multiple evaluation metrics. This validates the

effectiveness of our proposed method and showcases the

adaptability and strong generalization ability of our model.
5 Conclusion and discussion

This study aims to explore the application of artificial

intelligence in carbon neutrality strategies in sports event

management based on STIRPAT-GRU and transfer learning. The
FIGURE 7

Visualization of experimental results of ablation of RMSE metrics, MAPE metrics, MAE metrics, and R2 metrics for ResNet18 model, ResNet20 model,
LSTM model, RNN model, FGRM(1,1) model and our model on WDI dataset, CEADs dataset, GCPD dataset, WGPPD dataset.
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impact of factors such as population, wealth, and technology on

carbon emissions is analyzed using the STIRPAT model, and a

carbon emission prediction model is established using the GRU

model. Transfer learning techniques are employed to improve the

accuracy and generalization ability of the model. In the experiment,

researchers collected and preprocessed relevant datasets related to

sports event management and performed feature extraction. They

then constructed an STIRPAT-GRU-TL network and trained it

using the training dataset. Evaluation metrics such as RMSE, MAE,

R2, Accuracy, Precision, Recall, and F1 Score were used during the

training process to assess the performance of the model. The

experimental results demonstrate that the carbon emission

prediction model based on the STIRPAT-GRU-TL network

performs well in sports event management. The model accurately

predicts carbon emission trends and patterns and provides

guidance on carbon neutrality strategies.

In summary, artificial intelligence models, especially neural

networks, excel at capturing complex patterns and nonlinear

relationships in data. For problems like carbon emission

prediction, where there may be numerous hidden complex factors

and interconnections, traditional statistical models may struggle to

fully capture these complexities. Furthermore, artificial intelligence
Frontiers in Ecology and Evolution 14
models like GRU are specifically designed to handle time series data

and effectively capture time-related correlations and trends. This

allows the model to adapt better to the temporal dynamics within

carbon emission data. Additionally, artificial intelligence models are

data-driven, meaning they learn directly from data without relying

on predefined model structures. This flexibility enables them to

adapt well to different datasets and changing environments without

the need for manual model adjustments.

However, there are two limitations in this study. First, in carbon

emission prediction for sports event management, a potential issue

is the presence of domain shift or data distribution mismatch

between the source domain and the target domain. For example,

data from the source domain may originate from the field of

environmental science, while the target domain is sports event

management, and the data distributions of these two domains may

differ. This domain shift could lead to a decrease in the effectiveness

of transfer learning because the knowledge and patterns from the

source domain may not be applicable to the target domain.

Therefore, future research needs to consider how to overcome

domain shift to ensure the effectiveness of transfer learning in

carbon emission prediction for sports event management. Second,

another challenge is the issue of data quality and availability in both
FIGURE 8

Performance comparison of different models on various datasets.
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the source and target domains. If the data quality in the source

domain is low or incomplete, or if the data in the target domain is

difficult to obtain, it may limit the application of transfer learning.

For future work, we will focus on two main areas. Firstly, we will

further investigate the model’s generalization ability on larger-scale

datasets. This includes exploring how the model performs in a

broader range of sports events and carbon emission scenarios. We

aim to extend the model to adapt to more diverse and variable data,

enabling more accurate predictions of carbon emission trends in

various types of sports events. Secondly, in response to the

requirements of larger datasets and real-time processing, we will

devote efforts to optimize the computational efficiency and scalability

of the model. This may involve parallelization and distributed

computing techniques to handle large-scale data and enable real-

time or near-real-time predictions. We will seek to employ efficient

algorithms and computational resources to ensure that the model

maintains high performance when dealing with big data. In

conclusion, this study provides guidance and reference for carbon

neutrality strategies in sports event management. By utilizing artificial

intelligence technology to analyze carbon emission trends and

patterns, corresponding management strategies can be formulated

to promote the sustainable development of sports events. Monitoring

and controlling carbon emissions through the use of artificial

intelligence technology can reduce the environmental burden of

sports events and drive environmental sustainability. Furthermore,

this research provides inspiration and insights for carbon neutrality

studies in other fields, promoting the application and development of

artificial intelligence technology in environmental protection.
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Xu, Y., Martıńez-Fernández, S., Martinez, M., and Franch, X. (2023). Energy
efficiency of training neural network architectures: an empirical study. arXiv preprint
arXiv:2302.00967 pp. 781-790.

Xu, Y., and Song, W. (2019). Carbon emission prediction of construction industry
based on fcs-svm. Ecol. Econ 35, 37–41. doi: 10.48550/arXiv.2302.00967

Yang, B., Usman, M., and Jahanger, A. (2021). Do industrialization, economic
growth and globalization processes influence the ecological footprint and healthcare
expenditures? fresh insights based on the stirpat model for countries with the highest
healthcare expenditures. Sustain. Production Consumption 28, 893–910. doi: 10.1016/
j.spc.2021.07.020

Ye, J., Dang, Y., and Yang, Y. (2020). Forecasting the multifactorial interval grey number
sequences using grey relational model and gm (1, n) model based on effective information
transformation. Soft Computing 24, 5255–5269. doi: 10.1007/s00500-019-04276-w

Zhang, Q., Adebayo, T. S., Ibrahim, R. L., and Al-Faryan, M. A. S. (2023). Do the
asymmetric effects of technological innovation amidst renewable and nonrenewable
energy make or mar carbon neutrality targets? Int. J. Sustain. Dev. World Ecol. 30, 68–
80. doi: 10.1080/13504509.2022.2120559

Zhang, W., Wang, F., and Li, N. (2021). Prediction model of carbon-containing pellet
reduction metallization ratio using neural network and genetic algorithm. ISIJ Int. 61,
1915–1926. doi: 10.2355/isijinternational.ISIJINT-2020-637

Zhao, E., Du, P., Azaglo, E. Y., Wang, S., and Sun, S. (2023). Forecasting daily tourism
volume: A hybrid approach with cemmdan and multi-kernel adaptive ensemble. Curr.
Issues Tourism 26, 1112–1131. doi: 10.1080/13683500.2022.2048806

Zheng, Z., Jiang, C., Zhang, G., Han, W., and Liu, J. (2022). “Spatial load prediction of
urban distribution grid under the low-carbon concept,” in J. Phys.: Conf. Ser., Vol. 2237.
012008 (IOP Publishing).

Zhuang, Q., Shao, Z., Li, D., Huang, X., Altan, O., Wu, S., et al. (2022). Isolating the
direct and indirect impacts of urbanization on vegetation carbon sequestration capacity
in a large oasis city: evidence from Urumqi, China. Geo-spatial Inf. Sci., 1–13. doi:
10.1080/10095020.2022.2118624
frontiersin.org

https://doi.org/10.1016/j.jobe.2022.105332
https://doi.org/10.1080/14786451.2020.1770758
https://doi.org/10.1016/j.renene.2021.04.025
https://doi.org/10.1016/j.renene.2021.04.025
https://doi.org/10.1016/j.rser.2022.112401
https://doi.org/10.1016/j.apenergy.2022.119153
https://doi.org/10.1016/j.jclepro.2021.126526
https://doi.org/10.1016/j.scitotenv.2020.141688
https://doi.org/10.1016/j.scs.2022.104059
https://doi.org/10.1109/TIP.2018.2878958
https://doi.org/10.1016/j.coche.2020.100665
https://doi.org/10.1016/j.eswa.2019.03.002
https://doi.org/10.1016/j.eswa.2019.03.002
https://doi.org/10.1109/TII.2022.3154467
https://doi.org/10.1080/23311916.2022.2153419
https://doi.org/10.1002/er.6910
https://doi.org/10.1108/PAR-11-2018-0092
https://doi.org/10.1016/j.engappai.2022.105254
https://doi.org/10.1080/17583004.2019.1620038
https://doi.org/10.1038/sdata.2017.4
https://doi.org/10.1080/14775085.2017.1313706
https://doi.org/10.48550/arXiv.2302.00967
https://doi.org/10.1016/j.spc.2021.07.020
https://doi.org/10.1016/j.spc.2021.07.020
https://doi.org/10.1007/s00500-019-04276-w
https://doi.org/10.1080/13504509.2022.2120559
https://doi.org/10.2355/isijinternational.ISIJINT-2020-637
https://doi.org/10.1080/13683500.2022.2048806
https://doi.org/10.1080/10095020.2022.2118624
https://doi.org/10.3389/fevo.2023.1275703
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org

	Artificial intelligence carbon neutrality strategy in sports event management based on STIRPAT-GRU and transfer learning
	1 Introduction
	2 Related work
	2.1 Fuzzy C-means clustering and Support Vector Machine
	2.2 Extreme Learning Machine
	2.3 Backpropagation Neural Network

	3 Methodology
	3.1 Overview of our network
	3.2 Stochastic impacts by regression on population, affluence and technology
	3.3 Gated recurrent unit
	3.4 Transfer learning

	4 Experiment
	4.1 Datasets
	4.2 Experimental details
	4.3 Experimental results and analysis

	5 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	References


