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Which land cover product
provides the most accurate
land use land cover map of
the Yellow River Basin?

Weige Zhang1,2, Junjie Tian2, Xiaohu Zhang2, Jinlong Cheng2

and Yan Yan2*

1Institute of Management and Business, Kyrgyz National University named after Jusup Balasagyn,
Bishkek, Kyrgyzstan, 2School of Land and Tourism, Luoyang Normal University, Luoyang, China
Precise land use land cover (LULC) data are essential for understanding the

landscape structure and spatial pattern of land use/cover in the Yellow River

Basin (YRB) to regulate scientific and rational territorial spatial planning and

support sustainable development. However, differences in the multiple sets of

LULC products in portraying the land composition of the YRB limit our

understanding of the land cover composition in this region. To address this

issue, this study chose five sets of open and high spatiotemporal LULC data in

2020, namely, CLCD, LSV10, ESRI10, CLC_FCS30, and Globeland30, to evaluate

the accuracy and consistency of classification in the YRB. Our results show that:

(1) The LULC composition of the YRB in 2020 was mapped consistently by the

five datasets. Grasslands, croplands, and woodlands constitute the major LULC

types, accounting for 96% of the total area of the study area. (2) The correlation

coefficients of the LULC types of any two of the five datasets ranged from 0.926

to 0.998, showing high land compositional consistency. However, among the

five datasets, there were considerable differences in the areas of a single LULC

type. (3) The classification consistencies of croplands, woodlands, grasslands,

and water bodies were higher than 60% in any two datasets. The spatial

consistencies of grasslands, croplands, and woodlands were higher than those

of other LULC types. An area with better consistency can reachmore than 50% of

the average area of the corresponding land types, but grasslands were mixed

with other LULC types in ESRI10 and GLC_FCS30. (4) According to the accuracy

assessments, LSV10 data have the highest overall classification accuracy, 79.32%,

and the classification accuracy of major land types is also higher than 70%;

GLC_FCS30 data have the lowest overall accuracy, 70.14%. Based on these

results, LSV10 can more accurately demonstrate LULC than the other four

datasets. This study can be used as a reference for selecting land cover data,

and it also highlights that the necessary assessments of consistency and accuracy

are essential when conducting land use/cover change studies in a

specific region.

KEYWORDS

land use land cover datasets, accuracy assessment, classification consistency, spatial
consistency, Yellow River Basin (YRB)
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1 Introduction

The Yellow River Basin (YRB) is a vital ecological barrier and an

important region for economic development in China. It is essential

for national environmental security and economic construction (Xi,

2019). However, the fragile environment and the relatively crude

mode of economic development, mainly in the form of energy-

dependent industries, have put enormous pressure on the ecological

environment in the basin. In the past few decades, the increasing

population and intensity of human activities, combined with

climate change, have resulted in degradation in the environmental

functions of the YRB (Jin, 2019; Jin et al., 2020). In response to

environmental degradation in the basin, Chinese governments at

every level have taken a series of actions to improve the eco-

environment, for example, implementing several major ecological

restoration projects, including large-scale sand control and sand

treatment, promoting comprehensive environmental improvement

in beach areas and protecting and restoring the Yellow River Delta

wetlands (China, 2021). These ecological restoration projects have

had a profound and dramatic impact on the land cover of the YRB,

driving complex spatiotemporal land cover changes (Zhao et al.,

2018; Zhang et al., 2021) that have affected the quality of the

ecological environment of the basin (Zhang et al., 2014). It has

been stated that the land cover change in the YRB from 1986 to

2018 was dominated by an increase in orchards and terraces at the

cost of decrease in woodlands, grasslands, and croplands (Ji et al.,

2021). In addition, vegetation coverage significantly increased

owing to the implementation of major ecological restoration

projects such as the Yellow River Basin Ecological Protection Plan

(Ji et al., 2021). Thus, accurate and detailed LULC data are helpful

not only in understanding the LULC changes induced by human

activities in the basin and their accompanying ecological and

environmental effects but also in understanding the results of

major ecological implementation. Additionally, such data are

primary data for studies on biodiversity, sustainable resource use

and soil carbon stocks (Watson et al., 2001; Yang et al., 2023).

Over recent decades, many institutions and scholars have

developed multiple sets of LULC products with multi-

spatiotemporal resolutions that scanning of the YRB. However,

there are some disadvantages in the LULC datasets generated in

the early ages. First, the spatial resolution is 300–1000 m, which is too

coarse to map LULC types with smaller patches. Examples include

the UMD Land Cover Classification 1998 produced by the University

of Maryland based on AVHRR images (Hansen et al., 2000) and the

Land Cover Type/Dynamics data developed by Boston University

based on MODIS data (Friedl et al., 2002). Second, the temporal

resolution is 5 to 10 years, which is an interval that has failed to draw

the gradual changes in LULC over time. The development of remote

sensing and information technology has promoted LULC products

toward a high time-frequency and high spatial resolution and

released several sets of spatiotemporal data, such as the global land

cover data GLC_FCS30 (with a 30 m resolution, from 1985 to 2020,

5-year interval) (Zhang et al., 2020), Globeland30 (with a 30 m spatial

resolution, from 2000–2020, 10-year interval) (Chen et al., 2014b),

and the annual Chinese land use data CLCD released by Wuhan

University (1990–2021) (Yang and Huang, 2021). Furthermore, the
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spatial resolution of the specified LULC products can up to 10 m or

even 1 m, such as the 10 m global land use data LSV10 (2020)

released by the European Space Agency (ESA) (Zanaga et al., 2021),

the 10 m global land use data released by ESRI (2020) (Karra et al.,

2021), and the 1 m resolution China land use data SinoLC-1

(Supplementary Table S1) released by Wuhan University (Li et al.,

2023). These data provide a solid data basis for understanding

spatiotemporal LULC changes at multiple scales, including in the

YRB, and associated ecological environmental effects.

However, the remote sensing data sources of the current LULC

datasets differ in terms of the sensor type, the time the data were

acquired, and classification schemes and systems. These differences

have resulted in regional differences in classification accuracy

among the different LULC datasets (Hansen et al., 2000; Friedl

et al., 2002; Chen et al., 2014a; Zhang et al., 2020; Karra et al., 2021;

Yang and Huang, 2021; Zanaga et al., 2021; Li et al., 2023).

Additionally, they have led to considerable discrepancies in

drawing the land composition and temporal changes in LULC in

the YRB. For instance, the Chinese Land Use/Cover (CNLUCC)

data developed by the Institute of Geographical Sciences and

Resources of the Chinese Academy of Sciences show that the

LULC of the YRB was dominated by grasslands and croplands

during 1980 and 2020. Croplands, woodlands, and water bodies

declined until 2000 but increased after 2000. In contrast, the

continuous decreasing tendency of grasslands, the primary LULC

type in the basin, was halted until 2015 (Ji et al., 2021). Based on

GLC_FCS30, the LULC composition of the YRB and the tendency

of major LULC types, such as croplands, woodlands, and water

bodies, were similar to those in CNLUCC. However, the temporal

pattern of grasslands from 1985 to 2020 differed from that in

CNLUCC. That is, the decline in grasslands reached a turning

point in 2000, after which an increasing tendency was found (Xu

et al., 2018). When choosing the CLCD dataset, the area of different

LULC types in the YRB, as well as the temporal pattern of LULC

changes, showed enormous differences from CNLUCC and

GLC_FCS30 (Supplementary Figure 1).

In summary, uncertainties exist in the quantitative study of the

LULC composition of the YRB, making a comprehensive analysis of

the similarities and differences between different data products

necessary. Further, there is an urgent need to assess the

classification accuracy of the LULC data of the YRB to select the

optimal data. This work will be significant for improving the

reliability of the results of eco-environmental assessment based on

LULC data but also could support the formulation of scientific and

reasonable territorial spatial planning based on relievable LULC

data to support the sustainable development of the basin. In this

study, we evaluated five open access LULC datasets in 2020 with a

higher spatial resolution, namely, (1) ESAWorldCover 10 m – v100

(LSV10), with a 10 m spatial resolution and provided by the

European Space Agency; (2) ESRI10, with a 10 m resolution and

produced by the ESRI company; (3) the Global Geo-information

Public Product (Globeland30), produced by the National Geomatics

Center of China; (4) Global 30 m land-cover dynamic monitoring

products, with a fine classification system (GLC_FCS30) and

produced by the Aerospace Information Research Institute,

Chinese Academy of Sciences; and (5) China’s Land-use/cover
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Datasets (CLCD), annual data with a 30 m spatial resolution

released by Wuhan University. Three indicators, i.e., LULC

composition similarity, classification consistency, and accuracy

assessment, were selected for the comparative analysis of

multisource LULC data in the YRB. Our objectives were to

(1) present a reliable map of the LULC composition and spatial

patterns of the YRB, (2) verify the classification and spatial

consistency of five prevailing high-resolution LULC datasets in

the YRB, and (3) assess the classification accuracy of the five LULC

datasets in the YRB to provide a basis for data selection for further

spatiotemporal changes in LULC research on the YRB and for the

simulation of different scenarios in the future.
2 Data and methodology

2.1 Study area

The Yellow River is the second largest river in China. It

originates at the northern foot of the Bayan Har Mountains on

the Qinghai-Tibet Plateau and flows into the Bohai Sea in Kenli

County, Shandong Province. It flows from west to east through 9

provinces: Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia,

Shaanxi, Shanxi, Henan and Shandong. Additionally, it has a total

length of 5464 km and forms a total basin area of 79,500 km2, which

is the significant ecological barrier of China, spanning from 32°–

42°N to 96°~119°E (Figure 1). The terrain of the basin is high in the

west and low in the east, spanning three major terrain steps in

China. From west to east, it spans four different vegetation types:

Qinghai-Tibet Plateau vegetation, desert, grassland, and deciduous

broad-leaved forest. The soil in the study area is dominated by

primary loess and secondary loess (Figure 1). Most of the YRB is

classified as arid, semi-arid and semi-humid climate types, with an
Frontiers in Ecology and Evolution 03
annual average precipitation of 466.6 mm and a mean temperature

of 9.4°C (Wang et al., 2021).

The YRB is a substantial grain production base and a vital

region for economic development in China. The regional GDP of

the basin is approximately CNY 23.9 trillion, accounting for 26.5%

of the country’s total GDP. The YRB accounts for 21.8% of the

country’s total economic output with 27.3% of the national area.

The basin has a better agricultural and livestock base, including

major agricultural production areas such as the Hetao-Plain and the

North China Plain (Figure 1), which account for approximately

one-third of the country’s grain and meat production. Rich in

energy resources and metal reserves, it is a vital energy, chemical,

raw material, and essential industrial base in China.
2.2 Main data sources and preprocessing

Five prevailing and current (2020) LULC datasets, i.e., LSV10,

ESRI10, GLC_FCS30, Globeland30, and CLCD, were used in this

study (Table 1). The five data sets were all produced at pixel scale

but differed in their specific classification strategies. Among them,

LSV10 was generated based on a decision tree classifier; ESRI10 was

produced using a deep learning method; GLC_FCS30 and CLCD

were generated using a random forest classification model, while

Globeland30 was based on a Pixel-object-knowledge-based

approach (POK) method to accomplish the classification

(Supplementary Text 1). These datasets had a higher spatial

resolution (10–30 m) and officially declared overall accuracy (at

the global and/or national scale) that ranged from 72.27%

(GLC_FCS30) to 85.72% (Globeland30). Detailed information on

these five datasets is summarized in Table 1. We generated the

boundary of the YRB from a DEM with a 30 m resolution using the

hydrologic analysis method (Khan et al., 2014; Tang, 2019).
FIGURE 1

Location of the study area.
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Different academic institutions generate LULC datasets and thus

differ in remote sensing sensor types, data sources, imaging times,

spatial resolutions, classification systems, and classification methods.

Such differences do not facilitate subsequent analysis of spatial

consistency. This is primarily because different projections lead to the

non-overlapping display of pixels with identical positions. In addition,

disparities in spatial resolution result in varying total pixel counts

among the five LULC datasets. Furthermore, the classification accuracy

of higher-resolution remote sensing data may surpass that of lower-

resolution remote sensing data owing to the advantages offered by

remote sensing data sources (Sentinel-1,2 versus Landsat images, i.e.,

10m versus 30m spatial resolution) (Table 1), thereby impacting the

comparability of classification accuracy across different datasets.

Therefore, preprocessing was necessary for the subsequent analysis,

including image mosaicking and clipping, projection transformation,

upscaling, and classification systemmerging. One note should be made

that the global LULC datasets of LSA10, ESRI10, GLC_FCS30 and

Globeland30 were grouped by several regional tiles, except for the

CLCD dataset. Therefore, first, several images that covered the YRB

from each dataset should be mosaiced to acquire whole LULC images

of the YRB. The number of images spanning the study area can be

found in Table 1. Then, we transformed the projection to

Krasovsky_1940_Albers, of which the central meridian is 105°E, and

the longitude ranges from 27°N to 47°N. Third, the mosaiced images of

each dataset were extracted by the boundary of YRB. Subsequently, the

datasets with a finer resolution of LSV10 and ESRI10 were upscaled to

30 m using the resampling method to make the resolution consistent

with the GLC_FCS30, Globeland30, and CLCD datasets (Wang et al.,

2022). Finally, we reclassified the classification system of the five

datasets based on the comprehensive understanding of the actual

LULC represented by each classification code and corresponding

description (Table 2), and we merged and unified the classification

systems with the support of previous research (Table 3) (Hu et al., 2015;

Dai et al., 2017; Yang et al., 2017).

It should be noted that the shrubland in ESRI10 was removed

from its classification system. Hence, we combined the shrubland

into woodland to maintain the consistency of the classification

system of the five datasets. Additionally, some missing pixels were

found in the five obtained datasets after preprocessing, resulting in

differences from the original data. However, the missing pixels

could barely influence the research due to their small size. We set

these pixels null; thus, they are not part of the subsequent analysis.
2.3 Methodologies

Three indicators proposed by Hu et al. (2015), i.e., LULC

composition similarity, classification and spatial consistency and

accuracy assessment, were used to evaluate the classification

consistency and accuracy of the five datasets in the YRB (Hu

et al., 2015).

LULC composition similarity assesses the consistency of the

land composition of different datasets based on the area of different

LULC types based on the principle of correlation analysis. The area

of different LULC types could be calculated based on the total pixel

numbers recognized as a land type and the spatial resolution. Then,
T
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the LULC composition similarity could be calculated based on the

area of a land type from any two datasets (Equation 1).

RAB=
o8

k=1(Ak−�A)(Bk−�B)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o8

k=1(Ak−�A)
2o8

k=1(Bk−�B)
2

q (1)

where RAB is the land composition similarity for LULC datasets

A and B. k denotes the LULC type, AK and BK are the LULC areas of

datasets A and B, respectively. �A and �B are the mean areas of eight

LULC types in datasets A and B, respectively.

The essence of composition similarity is the correlation coefficients

between LULC areas of any two datasets, which can only quantitatively

describe the land composition. It only evaluates the consistency of the
Frontiers in Ecology and Evolution 05
LULC composition of multiple datasets and cannot reveal the

classification confusion among different datasets. For this reason, a

consistency analysis method was used to carry out consistency analysis

regarding the number of pixels and classification confusion by

considering their location. The main idea of this classification

consistency analysis is to compare any two datasets at the pixel scale.

If the same pixel from any two datasets has the same code, it is

considered a pure pixel. If not, then it is regarded as a mixed pixel. The

numbers of pure and mixed pixels were counted, and category

consistency was then analyzed based on Equation 2 and Equation 3.

DPAB(k)=
N(kk)
N(k)

(2)
TABLE 2 Classification system of the five LUCC datasets.

LSV10 ESRI10 Globeland30 GLC_FCS30 CLCD

Code
LULC
type

Code
LULC
type

Code
LULC
type

Code LULC type Code LULC type Code
LULC
type

10 Tree cover 1 Water 10 Cropland 10 Rain-fed cropland 120 Shrubland 1 Cropland

20 Shrubland 2 Trees 20 Woodland 11 Herbaceous cover 121
Evergreen
shrubland

2 Woodland

30 Grassland 4
Flooded
vegetation

30 Grassland 12
Tree or shrub
cover (orchard)

122
Deciduous
shrubland

3 Shrub

40 Cropland 5 Crops 40 Shrubland 20 Irrigated cropland 130 Grassland 4 Grassland

50 Built-up 7 Built area 50 Wetland 50
Evergreen
broadleaved
woodland

180 Wetlands 5 Water

60
Bare/sparse
vegetation

8
Bare
ground

60
Water
bodies

60
Deciduous
broadleaved
woodland

190
Impervious
surfaces

6 Snow/ice

70
Snow and
ice

9 Snow/ice 70 Tundra 61
Closed deciduous
broadleaved
woodland

140
Lichens and
mosses

7 Barren

80
Permanent
water
bodies

10 Clouds 80
Artificial
surfaces

62
Open deciduous
broadleaved
woodland

150
Sparse
vegetation

8 Impervious

90
Herbaceous
wetland

11 Rangeland 90 Bare land 70
Evergreen needle-
leaved woodland

152
Sparse
shrubland

9 Wetland

95 Mangroves 100
Permanent
snow and
ice

71
Closed evergreen
needle-leaved
woodland

153
Sparse
herbaceous
cover

100
Moss and
lichen

72
Open evergreen
needle-leaved
woodland

200 Bare areas

80
Deciduous needle-
leaved woodland

201
Consolidated
bare areas

81
Closed deciduous
needle-leaved
woodland

202
Unconsolidated
bare areas

82
Open deciduous
needle-leaved
woodland

210 Water body

90
Mixed-leaf
woodland

220
Permanent ice
and snow
fro
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where  DPAB(k) denotes the purity of LULC type k in datasets A

and B, N(kk) is the total number of pure pixels for LULC type a in

datasets A and B, and N(k) is the number of LULC type k in dataset

A.

DCAB(ab)=
N(ab)
N(a)

(3)

where DCAB(ab) denotes the degree of category confusion of

any two LULC datasets, and a and b are the LULC type. N(ab) is the

total number of mixed pixels of datasets A and B, and N(a) is the

pixel number of LULC type a in dataset A.

Although the classification consistency analysis accounts for the

positional information of pixels, the final result is presented in

statistical form. Nevertheless, it cannot visualize the spatial

consistency and confusion of individual land types. Geospatial

analysis allowed the spatial consistency of the five datasets to be

portrayed and visualized on maps. Specifically, we binarized the five

sets of LULC data and then obtained the correspondence of pixels

for these datasets employing spatial overlay analysis. Then, for

pixels from the five LULC datasets, it was determined whether they

had the same values, and the numbers of these pixels were counted.

The spatial consistency of the five LULC datasets was then divided

into five levels based on the order of the pixel numbers recognized

with the same values.

If the pixels are identified as the same land type in the five

datasets, the spatial consistency of this land type is considered

entirely consistent (i.e., 100%). Similarly, suppose that a pixel is

simultaneously identified as the same land type by four, three, two

and only one dataset. In that case, the spatial consistency of a

particular land type is considered to be highly consistent (i.e., 80%),

basically consistent (i.e., 60%), low consistent (i.e., 40%) and

completely inconsistent (i.e., less than 20%). A spatial consistency

higher than or equal to 60% is collectively considered good

consistency (Equation 4).

Cp(k) =
o5

L=1(DL == k)

5
(4)

where C(p) denotes the spatial consistency of land type k at pixel

p. Dl is the land type of k identified by dataset L.

Composition similarity, classification, and spatial consistency

were analyzed by cross-referencing the five datasets. However, these
Frontiers in Ecology and Evolution 06
indicators could not present their classification accuracy. To

understand which dataset best represents the LULC of the YRB,

we used four indicators, i.e., overall classification accuracy (OA),

Kappa coefficients, user accuracy (UA) and producer accuracy

(PA), to assess the quality of the five datasets (Lyons et al., 2018).

Building upon previous studies (Tilahun, 2015; Zhang et al.,

2020), we assessed five datasets using the reference LULC

information extracted from Google Earth as our benchmark data.

First, we divided the study area into 0.25° × 0.25° grids and

extracted the geometric center points of each grid. A total of 895

points were generated, among which 184 were for croplands, 104

points for woodlands, 499 points for grasslands, 6 points for

wetlands, 10 points for water bodies, 32 points for construction

land, 59 points for bare land, and 1 point for ice and snow. The area

of wetland types in the study area is small (area proportion is less

than 1.03%), and less than five fall within the wetland types. In this

respect, only two sample points fall within the wetland types of the

GLC_FCS data, and no samples fall within the wetland types in the

CLCD data.

The small sample size of wetlands was not conducive to

determining accuracy in the GLC_FCS30 and CLCD data.

Therefore, we converted the wetlands of GLC_FCS30 and CLCD

(in raster) to points (4,220,009 points and 573,245 points,

respectively). We randomly selected 84 points for GLC_FCS30

(i.e., 0.002% of total wetlands) and 57 points for CLCD (i.e.,

0.01% of total wetlands). In addition, the area of the ice and snow

LULC type in the five datasets was smaller than 0.2%, and only one

sample point fell within the ice and snow. The influence of the

smaller area and the smaller ice and snow sample size on the overall

accuracy was negligible. Thus, this sampling point was removed,

and the ice and snow LULC type was no longer considered for

accuracy validation. Subsequently, we combined the added 141

samples for wetlands with the 894 existing sampling points, giving

1035 sampling points (Figure 2).

Then, the pixel values (i.e., the codes of the LULC types) of the

five datasets that corresponded with the center points were

extracted, and they could serve as the classified datasets. Third,

we loaded the classified datasets into Google Earth (the platform

can provide high-resolution remote sensing images with 0.5 m

online and no position offset). The actual LULC types were acquired

through visual interpretation, and they could serve as a reference
TABLE 3 Correspondence between the five sets of data classification systems and the new classification system in our study.

Code LULC types LSV10 ESRI10 GLC_FCS30 Globeland30 CLCD

1 Cropland 40 5 10, 20 10 1

2 Woodland 10 2 51–92 20 2,3

3 Grassland 20, 30, 95, 100 3,6 11, 12, 120–122, 130–150, 152, 153 30, 40 4

4 Wetland 90 4 180 50 9

5 Water body 80 1 210 60 5

6 Construction land 50 7 190 80 8

7 Bare land 60 8 200–202 90 7

8 Snow and ice 70 9 220 100 6
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dataset. Fourth, we generated the classification confusion matrix

based on the classified and reference datasets and further calculated

the four-accuracy metrics: OA, the Kappa coefficient, UA, and PA.
3 Results

3.1 The composition similarity of land use
land cover

The correlation coefficients for the area composition of any two

LULC datasets in the YRB were higher than 0.9 (Figure 3). The

highest correlation was found in the CLCD/GLC_FCS30

combination, of which the correlation coefficient reached 0.998.

The lowest correlation was between the ESRI10 and Globeland30

datasets, whose correlation coefficient was 0.926 (Figure 3). The

results suggest that although produced by different academic

institutions and differing in LULC classification systems and

methods, a high similarity among the LULC compositions was

found in the five datasets (Figure 3), which means that the five

datasets demonstrated the LULC consistency of the YRB. That is,

the LULC type in the YRB in 2020 was dominated by grasslands,

followed by croplands and woodlands, accounting for more than

88% of the total area. Construction land, bare land and water area
Frontiers in Ecology and Evolution 07
were the vital LULC types in the basin, occupying 10.84% of the

study area. Wetlands and ice and snow have a tiny distribution, with

a total area of less than 1% of the YRB (Table 4).

However, the areas of different LULC types given by the five

datasets showed enormous differences. The area proportion of

grasslands, the major LULC type, ranged from 45.22–64.42% in the

five datasets (Table 4) and was widely distributed in the basin

(Supplementary Figures 2A–E). The most considerable discrepancy

in grasslands was found between ESRI10 and Globeland30, with a

variance of nearly 1/5 (or 155,275.99 km2) of the total basin.

Croplands covered 18.70–30.83% of the basin in the five datasets,

constituting the second largest LULC type (Table 4), mainly in the

central and eastern flatter areas (Supplementary Figures 3A–E).

Similar to grasslands, significant differences in croplands were

found among the five datasets. In particular, Globeland30 data

identified a high proportion of croplands, 30.83%, which was much

higher than the four LULC datasets. As described by the five LULC

datasets, woodlands, covering 7.20–13.31% of the study area

(Table 4), were the third largest LULC component in the basin,

concentrated in the middle reaches of the Yellow River

(Supplementary Figures 4A–E). The area of bare land in the five

datasets ranged from 2.58–14.70%, mainly in the western and

northern parts of the basin (Supplementary Figure 5A–E). A

difference in the area of bare land of approximately 5.7 times was

found among the five LULC datasets (Table 4).

Despite the smaller area of construction land, water bodies,

wetlands, and ice and snow, they constituted the vital LULC

composition of the basin. Except for construction land, there are

apparent differences among the five datasets in water areas,

wetlands, and ice and snow. For instance, wetlands account for

1.03% of the basin in Globeland30, compared to 0.06% in the CLCD

dataset, with a difference of up to 17 times (Table 4). In summary,

although the LULC composition of the YRB was consistent in the

five datasets, there were significant differences in the areas of

different LULC types.
3.2 Classification consistency

The five datasets provide a higher classification consistency in

the identification of croplands, woodlands, grasslands and water

bodies than the other LULC types, with the classification purities of

these four LULC types being higher than 60% in the combination of

any two datasets (Table 5, Figure 4). Specifically, the highest

classification consistencies of croplands (classification purity of

86.98%), woodlands (92.74%), grasslands (89.57%), and water

bodies (94.04%) were found in the ESRI10/Globeland30, ESRI10/

GLC_FCS30, ESRI10/LSV10, and ESRI10/CLCD combinations,

respectively (Table 5, Figure 4).

In contrast, the classification consistency of construction land,

bare land, and ice and snow showed a considerable discrepancy

(Table 5, Figure 4). For instance, the purity of construction land was

85.97% in the ESRI10/LSV10 combination and only 39.31% in the

GLC_FCS30/ESRI10 combination, with the remaining groups

having a classification consistency ranging from 50% to 86%

(Table 5, Figure 4). In particular, the classification consistency of
FIGURE 2

Distribution of sampling points for different LULC types.
FIGURE 3

The correlation coefficient among the five sets of LUCC products.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1275054
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Zhang et al. 10.3389/fevo.2023.1275054
bare land showed enormous differences among the combinations of

the five LULC datasets. The highest classification consistency of

bare land was found in the LSV10/CLCD combination, with the

purity reaching 94.11%. In comparison, the lowest consistency was

found in the combination of ESRI10/LSV10 combination, with a

purity of only 12.14%. The classification purities ranged from 23–

78% in the remaining LULC data groups.

The consistency of wetlands was the worst among the five

LULC datasets. Only three combinations, i.e., Globeland30/GLCD,

LSV/CLCD, and Globeland30/LSV, demonstrated higher

classification consistencies with purities over 61.33% (Figure 4).

In this respect, the highest purity, 96.83%, was found in

Globeland30/GLCD. The rest of the dataset combinations all had

low classification consistencies, with the lowest (0.01%) occurring in

the Globeland30/GLC_FCS30 combination, showing a vast

difference between the Globeland30/GLCD and Globeland30/

GLC_FCS30 combinations (Table 5, Figure 4).

It is particularly noteworthy that despite the higher classification

consistency of grasslands, woodlands and croplands, the classification

confusion of grasslands in the five datasets should not be ignored

(Table 5). Grasslands were confused with bare land (confusion degree

of 67.86% in ESRI10/LSV10), woodlands (confusion degree of

67.86% in ESRI10/LSV10), and croplands (confusion degree of

30.74% GLC_FCS30/ESRI10) (Table 5). In addition, there was a

high degree of classification confusion found in wetlands. The highest

rate of confusion was in the ESRI10/CLCD combination, in which the

confusion degree reached 87.71%. In contrast, the confusion of the

other LULC types in the five datasets was not as significant as that of

grasslands in the five datasets.
3.3 Spatial consistency

Considering the LULC composition of the YRB, we chose four

major LULC types, i.e., croplands, woodlands, grasslands, and bare

land (the total area of which accounts for more than 95% of the basin)

to assess the spatial consistencies of LULC in the five datasets. Similar

to classification consistency, the spatial consistencies of these four

LULC types were higher (Figure 5).

The spatial consistency of croplands showed a higher level

(Figure 5A). The region with better consistency could occupy 53.53%
Frontiers in Ecology and Evolution 08
of the average cropland area in the five datasets. In comparison, the

areas with complete inconsistency were 29.92% (Figure 5A). The areas

that were entirely consistent in croplands were mainly distributed in

the Hetao-Plain within Inner Mongolia, the southern part of the basin,

and Henan and Shandong Provinces, the traditional agricultural areas

in China. The areas with low or complete inconsistency of croplands

were concentrated in the Ordos Plateau, the Mu Us Desert, and the

southern and southwestern margins of the Loess Plateau (Figure 5B).

The areas with better consistency of woodlands accounted for

more than 50% of the average woodland area in the five datasets but

were lower than that of grasslands, showing a lower spatial

consistency (Figure 5B). Furthermore, the proportion of the

completely inconsistent area increased to 36.15% of the mean

woodlands in the five datasets. Woodlands with high spatial

consistency were in the mountainous regions distrusted in the

southeastern parts of the YRB, while less spatially consistent

woodlands were in the central Loess Plateau and the northern

and western parts of the basin (Figure 5B).

The spatial consistency of grasslands was the highest among the

four types (Figure 5C). The area with better spatial consistency

(consistency value was higher than 60%) accounted for 71.84% of

the average grassland area in the five datasets and was concentrated

in the western highlands and the central Loess Plateau. The region

with complete inconsistency covered only 16.16% of the mean

grassland area and was mainly distributed in the Hetao-Plain of

Inner Mongolia and the lower reaches of the Yellow River in the

southwestern parts of the basin (Figure 5C).

Bare land showed a lower spatial consistency than woodlands in

the five LULC datasets. The areas with high spatial consistency were

only 22.48% of the mean bare land of the five datasets, mainly in the

west and south of the Hetao-Plain (Figures 1, 5D). In contrast, the

area of poor spatial consistency for bare land accounts for up to

57.36% of the average bare land area of the five datasets. This area is

mainly found north of the Liu-p’an Mountains, south of the Helan

Mountains, on the Inner Mongolia Plateau and northwest of the

Ordos Plateau (Figures 1, 5D).

At the basin scale, 45.96% of the basin was entirely consistent

(i.e., defined with the same LULC types by the five datasets), 28.14%

of the basin was highly consistent (i.e., illustrated with the same

LULC types by the four datasets), 21.49% had better consistency

(i.e., defined with the same LULC types by the three datasets), 4.63%
TABLE 4 The LULC composition proportions of the five datasets in the YRB (%).

Land use/cover types LSV10 ESRI10 GLC_FCS30 Globeland30 CLCD

Croplands 19.68 18.70 22.20 30.83 23.62

Woodlands 10.70 7.20 12.90 13.31 11.92

Grasslands 51.02 64.42 54.56 45.22 57.02

Wetlands 0.37 0.23 0.47 1.03 0.06

Water bodies 0.97 1.11 0.69 0.90 0.79

Construction land 2.55 5.68 2.45 3.86 3.11

Bare land 14.70 2.58 6.70 4.66 3.45

Ice and snow 0.02 0.08 0.02 0.19 0.03
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TABLE 5 Classification consistency of LULC types in the five datasets in the Yellow River Basin.

LULC
datasets

CLCD

LULC
types

Cropland Woodland Grassland Wetland
Water
body

Construction
land

Bare
land

Ice and
snow

LSV10

Cropland 69.91 0.41 4.48 0.00 2.78 17.16 0.11 0.00

Woodland 3.69 71.76 2.07 0.00 0.16 2.92 0.20 0.00

Grassland 15.37 26.96 77.08 8.17 0.56 2.79 3.65 18.10

Wetland 0.19 0.21 0.39 91.53 0.98 0.14 0.01 0.00

Water body 0.21 0.06 0.18 0.26 91.47 2.22 0.62 0.37

Construction
land

1.98 0.04 0.79 0.00 0.06 50.73 1.26 0.00

Bare land 8.65 0.55 15.01 0.03 3.97 24.04 94.11 27.75

Ice and snow 0.00 0.00 0.00 0.00 0.02 0.00 0.04 53.78

ESRI10

Cropland 61.43 1.84 6.13 4.18 0.75 14.11 0.63 0.00

Woodland 1.15 55.98 0.45 0.24 0.01 0.12 0.00 0.00

Grassland 26.29 41.61 89.34 87.71 0.92 8.52 57.25 1.11

Wetland 0.09 0.12 0.31 7.16 1.45 0.04 0.03 0.01

Water body 0.55 0.10 0.19 0.49 94.04 3.50 0.45 0.13

Construction
land

10.21 0.26 1.62 0.00 0.17 72.36 1.83 0.00

Bare land 0.28 0.04 1.89 0.22 2.57 1.35 39.47 37.12

Ice and snow 0.00 0.04 0.07 0.00 0.08 0.00 0.34 61.63

GLC_FCS30

Cropland 66.18 1.69 10.02 0.07 2.53 19.79 0.43 0.02

Woodland 1.93 84.32 3.98 18.58 0.45 0.49 2.87 0.26

Grassland 28.51 13.83 78.87 81.29 2.18 17.53 16.90 14.19

Wetland 0.34 0.08 0.17 0.01 18.08 3.26 1.11 3.36

Water body 0.07 0.03 0.06 0.05 76.03 0.70 0.28 3.03

Construction
land

1.95 0.02 0.42 0.00 0.25 55.07 0.90 0.00

Bare land 1.01 0.01 6.46 0.00 0.47 3.17 77.36 23.81

Ice and snow 0.00 0.00 0.00 0.00 0.01 0.00 0.15 55.31

Globeland30

Cropland 82.32 5.96 17.04 0.73 7.59 27.44 1.29 0.00

Woodland 3.69 78.21 5.37 0.03 0.51 0.89 0.76 0.05

Grassland 8.55 15.29 70.47 2.23 3.89 5.58 28.48 3.10

Wetland 0.27 0.26 1.33 96.83 6.42 1.46 0.42 0.03

Water body 0.29 0.07 0.17 0.18 80.50 2.19 0.58 0.04

Construction
land

4.55 0.08 1.28 0.00 0.48 61.75 3.38 0.00

Bare land 0.32 0.11 4.11 0.00 0.55 0.69 63.82 22.38

Ice and snow 0.00 0.01 0.22 0.00 0.06 0.00 1.27 74.40
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TABLE 5 Continued

LULC
datasets

LSV10

LULC
types

Cropland Woodland Grassland Wetland
Water
body

Construction
land

Bare
land

Ice and
snow

ESRI10

Cropland 67.60 5.14 6.64 4.98 1.53 5.18 8.77 0.00

Woodland 0.16 59.83 1.47 0.24 0.01 0.06 0.13 0.00

Grassland 24.00 33.06 89.57 70.00 2.51 7.86 67.86 0.21

Wetland 0.02 0.02 0.23 19.54 2.46 0.01 0.06 0.00

Water body 0.37 0.11 0.06 4.45 88.23 0.23 0.84 0.01

Construction
land

7.62 1.78 0.60 0.22 0.70 85.97 10.10 0.02

Bare land 0.23 0.05 1.33 0.54 4.54 0.70 12.14 17.27

Ice and snow 0.00 0.02 0.09 0.04 0.02 0.00 0.09 82.50

GLC_FCS30

Cropland 69.61 6.63 10.14 4.96 3.51 16.20 14.68 0.03

Woodland 0.43 79.62 7.14 8.86 0.70 0.38 4.14 0.19

Grassland 27.25 13.12 81.06 77.72 6.70 16.08 38.59 3.61

Wetland 0.21 0.04 0.05 6.30 19.86 0.51 1.15 3.23

Water body 0.07 0.00 0.01 1.81 66.37 0.02 0.14 1.46

Construction
land

1.23 0.49 0.05 0.08 0.79 63.41 3.46 0.00

Bare land 1.21 0.09 1.54 0.26 2.04 3.39 37.80 16.20

Ice and snow 0.00 0.00 0.01 0.01 0.02 0.00 0.04 75.27

Globeland30

Cropland 86.98 10.16 17.35 8.06 9.36 21.36 21.16 0.00

Woodland 1.36 74.27 9.33 0.64 0.62 0.72 2.09 0.06

Grassland 6.94 14.06 69.34 26.99 6.52 5.45 45.34 2.26

Wetland 0.21 0.04 1.19 61.33 8.27 0.12 0.44 0.00

Water body 0.25 0.05 0.07 2.44 73.53 0.17 0.55 0.00

Construction
land

3.87 0.97 0.38 0.18 1.08 71.79 6.52 0.04

Bare land 0.39 0.46 2.06 0.34 0.61 0.38 23.58 15.07

Ice and snow 0.00 0.00 0.26 0.01 0.01 0.00 0.32 82.56

LULC
datasets

ESRI10

LULC
types

Cropland Woodland Grassland Wetland
Water
body

Construction
land

Bare
land

Ice and
snow

GLC_FCS30

Cropland 65.58 2.48 11.54 1.69 9.06 38.06 2.42 1.75

Woodland 1.50 92.74 9.06 6.07 1.02 0.73 1.09 17.39

Grassland 30.74 4.77 71.52 75.99 9.41 18.71 39.30 53.75

Wetland 0.27 0.00 0.10 8.78 19.25 0.44 3.65 0.60

Water body 0.03 0.00 0.01 6.48 58.43 0.02 0.30 1.03

Construction
land

0.68 0.01 0.10 0.07 1.14 39.31 0.60 0.00

Bare land 1.20 0.00 7.68 0.90 1.67 2.73 52.36 6.10

Ice and snow 0.00 0.00 0.00 0.01 0.03 0.00 0.28 19.38
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had low consistency (i.e., defined with the same LULC types by the

two datasets), and only 0.05% was completely inconsistent (i.e., only

occurred in one dataset but not consistent with any of the other four

datasets) (Figure 6). The regions with high consistency included the
Frontiers in Ecology and Evolution 11
Qinghai-Tibet Plateau, the North China Plain and the Hetao-Plain,

while the Loess Plain and the central part of the YRB showed lower

classification spatial consistency in the five LULC datasets

(Figures 1, 6). Approximately 73.83% of the land cover
TABLE 5 Continued

LULC
datasets

ESRI10

LULC
types

Cropland Woodland Grassland Wetland
Water
body

Construction
land

Bare
land

Ice and
snow

Globeland30

Cropland 83.77 5.07 19.03 2.18 17.24 39.38 4.33 0.41

Woodland 2.38 87.43 10.01 0.25 1.37 1.33 0.97 4.43

Grassland 11.09 7.31 63.86 42.01 7.60 5.08 37.71 48.77

Wetland 0.19 0.02 1.19 49.32 6.66 0.06 1.42 0.05

Water body 0.21 0.02 0.10 5.50 65.06 0.17 1.68 0.10

Construction
land

1.93 0.05 0.55 0.14 1.27 53.76 2.93 0.01

Bare land 0.44 0.11 5.09 0.60 0.78 0.21 48.65 14.63

Ice and snow 0.00 0.00 0.17 0.00 0.00 0.00 2.33 31.61

LULC
datasets

GLC_FCS30

LULC
types

Cropland Woodland Grassland Wetland
Water
body

Construction
land

Bare
land

Ice and
snow

Globeland30

Cropland 55.39 2.82 37.68 0.44 0.12 1.69 1.86 0.00

Woodland 5.32 68.85 24.90 0.07 0.03 0.10 0.72 0.00

Grassland 7.02 5.85 79.70 0.12 0.07 0.11 7.12 0.00

Wetland 4.42 3.09 80.13 6.90 3.51 0.47 1.48 0.00

Water body 6.61 0.77 9.36 16.35 63.69 0.99 2.22 0.01

Construction
land

25.56 0.70 19.45 0.67 0.09 48.02 5.50 0.00

Bare land 3.25 3.14 38.23 0.47 0.09 0.04 54.65 0.14

Ice and snow 0.90 5.71 76.06 0.99 0.51 0.00 7.87 7.97
f

FIGURE 4

The overall classification consistency of LULC types among five datasets.
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information in the Yellow River Basin was credible, while 26.17% of

the regions were less spatially consistent and credible.
3.4 Accuracy assessments

The overall accuracy (OA) of the five LUCL datasets in the YRB

exceeded 70%. However, the classification accuracy of all datasets in the

YRB was below the officially declared accuracy, except for LSV10

(Table 1). Nevertheless, LSV10 showed the best performance in the

LULC classification of the YRB among the five datasets, with an overall

classification accuracy of 79.32% (Table 6, Supplementary Table 2),
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which is in contrast to GLC_FCS30, with an overall accuracy of

70.14%, which is the lowest among the five datasets (Table 6,

Supplementary Table 2). The five LULC datasets have higher

accuracy for croplands, woodlands, water bodies, and grasslands (of

which the producer and user accuracy ranged from 60 to 90%),

moderate accuracy for construction land and wetlands (with the two

kinds of accuracy ranging from 50 to 70%), and lower accuracy for bare

land (with the two kinds of accuracy ranging from 30 to 60%) (Table 6,

Supplementary Table 2).

LSV10 has the best performance in describing the LULC in the

YRB. The producer accuracy (PA) and user accuracy (UA) of the

LULC types are generally higher than 74%, except for the lower PA

of construction land (66.67%) and wetlands (63.24%) and the lower

UA of bare land (36.97%) (Table 6, Supplementary Table 2).

In ESRI10, even though the PA of woodlands and wetlands

exceeds 90%, enormous differences were found between the PA and

UA of the remaining LULC types in this dataset. For instance, the

UA of wetlands in this dataset reached 100%, but the PA was only

8.82%. Similar situations were found in woodlands and wetlands in

ESRI10 (Table 6, Supplementary Table 2).

In Globeland30, grasslands and woodlands were classified better

than other LULC types (Table 6, Supplementary Table 2). The UA of

grassland reached 87.76%, and the PA of woodland was 83.65%. In

addition, the UA of croplands was higher than 90% but differed

considerably from the UA (59.66%) (Table 6, Supplementary Table 2).

This dataset had general accuracy in identifying other LULC types.

For GLC_FCS30, this dataset had the highest classification

accuracy for grasslands, with UA and PA values of 77.64% and

83.14%, respectively. Construction land in GLC_FCS30 had a higher
A

DC

B

FIGURE 5

Spatial consistency of four major LULC types in the five datasets (the percentage in the legend is the area proportion of the LULC type with different
spatial consistencies in the whole basin).
FIGURE 6

Overall spatial consistency of all LULC types in the five datasets (the
percentage in the legend is the area proportion of the LULC type
with different spatial consistencies in the whole basin).
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UA of 78.95% but had a lower PA of only 45.45%, showing enormous

differences between the UA and PA of construction land.

Furthermore, this dataset had lower classification accuracy for the

remaining LULC types, even having a lower UA of 26.74% in wetland

classification (Table 6, Supplementary Table 2).

CLCD draws the grasslands and woodlands of the YRB more

accurately than other LULC types andmore reliably than most datasets

(except LSV10). The differences between the UA and PA of grasslands

(81.04% and 83.52%, respectively) and woodlands (81.00% and 77.88%,

respectively) were also slighter than the other datasets (i.e., ESRI10,

GLC_FCL30, etc.) (Table 6, Supplementary Table 2). For croplands,

although the UA was 68.84%, which was lower than that of grasslands

and woodlands, it was still comparable to the GLC_FCS30 and

Globeland30 datasets, which had the same spatial resolution as

CLCD (Table 6, Supplementary Table 2). Compared to GLC_FCS30

and Globeland30, the classification accuracy of CLCD for the other

LULC types was higher, but the accuracy for construction land needs to

be improved.

In summary, the LSV10 dataset performed best in terms of the

OA, Kappa coefficients, UA and PA of a single LULC type among

the five datasets. In contrast, the ESRI10 dataset with the same

spatial resolution of 10 m had poorer accuracy in portraying the

LULC of the YRB, even lower than the CLCD data product with a

lower resolution (Table 3, Supplementary Table 2). Concurrently,

among the three Globeland30, GLC_FCS30 and CLCD datasets

with a 30 m spatial resolution, CLCD had a higher OA and Kappa

coefficient and a mostly higher UA and PA for individual LULC

types (excluding construction land) than the other two datasets.

4 Discussion

4.1 Evaluation of the five land use
land cover datasets from the
classification accuracy

Our results show that the most accurate identification of LULC

in the YRB among the five datasets was made by LSV10, which has
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the highest overall accuracy (79.32%), followed by CLCD (75.46%),

ESRI10 (75.07%), and Globeland30 (74.11%), while the worst

performance was by GLC_FCS30 (70.14%) (Table 6). In contrast,

the classification accuracy that was officially declared for LSV10 was

74.40% (Zanaga et al., 2021), 79.31% for CLCD (Yang and Huang,

2021), 85.96% for ESRI10 (Karra et al., 2021), 85.72% for

Globeland30 (Chen et al., 2014a), and 72.27% for GLC_FCS30

(Zhang et al., 2020). Except for the LSV10 data, the OA of all the

datasets is lower than the officially declared accuracy by

approximately 2.23–11.61% (Table 1). The probable reason for

this discrepancy is the uneven spatial distribution of the training

samples for the LULC classification, resulting in the lower accuracy

of the multiple LULC types within the basin. Additionally, the

officially claimed classification accuracy for the five datasets is

assessed at the global (LSV10, ESRI10, Globeland30, GLC_FCS30)

or national scale (CLCD), whereas our study was conducted on the

basin scale. Therefore, it is possible that our results differ somewhat

from the official results. This also further suggests that accuracy

assessments of LULC datasets in a specific region are necessary

before conducting land cover change and related studies.

Grasslands constitute the dominant land cover type in the YRB,

accounting for more than 75% of the basin (Table 2), and they are

widely distributed in the basin (Supplementary Figure 2). For

grasslands, the overall accuracy in the five datasets is generally high

(higher than 70%) (Table 3). Meanwhile, the classification consistency

of grasslands is also higher than that of the other LULC types in the five

datasets (Figures 4, 5A). Similarly, woodlands are identified

comparably accurately in the five datasets. As major LULC types in

the basin, grasslands and woodlands are distributed spatially

continuously and have a unique spectrum that can easily be

recognized with the assistance of digital elevation model (DEM) data

and image texture (Lu et al., 2014). Likewise, water bodies are easily

distinguishable from other LULC types due to their strong absorption

of wavelengths other than the blue-green band, which presents a lower

reflectance spectrum (Huang et al., 2018).

The average UA and OA of 71.62% and 79.79% for croplands,

respectively, which are lower than those of woodlands (80.96% and
TABLE 6 Accuracy assessments of the five LULC datasets in the YRB (%).

Datasets LSV10 ESRI10 Globeland30 GLC_FCS30 CLCD

Accuracy
LULC

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Croplands 87.93 80.95 73.23 76.72 59.66 93.12 68.82 67.72 68.47 80.42

Woodlands 88.76 75.96 94.83 52.88 70.73 83.65 69.49 78.85 81 77.88

Grasslands 90.38 81.03 75.91 91.76 87.76 72.8 77.64 83.14 81.04 83.52

Wetlands 74.14 63.24 100 8.82 67.14 69.12 26.74 33.82 68.42 57.35

Water bodies 75.47 80 68.97 80 72.73 48 100 14 77.14 54

Construction land 78.57 66.67 61.7 87.88 63.89 69.7 78.95 45.45 37.21 48.48

Bare land 36.97 88.41 62.16 33.33 66.67 43.48 61.67 53.62 75 43.48

OA (%) 79.32 75.07 74.11 70.14 75.46

Kappa 0.71 0.61 0.64 0.56 0.64
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73.84%, respectively) and grasslands (82.55% and 82.45%,

respectively) but higher than those of the remaining LULC types

in the basin (Table 6). Croplands have the same spectral

characteristics as grasslands and woodlands. Additionally,

croplands are a type of land that has been disturbed to a greater

extent by humans and that has textural characteristics in images

that differentiate croplands from grasslands and woodlands, making

it possible to be identified more accurately (Phalke et al., 2020).

However, seasonal farming activities and the time remote sensing

data are acquired may cause some croplands to be confused with

grasslands and bare land, thus reducing their classification accuracy

(Tariq et al., 2022) (Figure 4A, Supplementary Figure 3), which is

evident in the GLC_FCS30 data. In addition, the classification of

croplands is easily confused with woodlands, i.e., some fruit trees,

and the current classification system of several LULC data does not

always distinguish this LULC type in detail (Xu et al., 2018). Thus, it

is essential to clarify the distinction between croplands and terraces,

economic fruit forests and other land types in the future.

The classification accuracy of bare land shows a vast difference

in the five datasets (Table 6, Supplementary Table 2). For instance,

the numbers of pixels recognized as bare land in LSV10 and ESRI10

show enormous differences of approximately 108 times. Despite the

vast differences in the pixel numbers, bare land is mainly in the

northwestern part of the YRB (Supplementary Figure 5). Bare land

interacts most closely with the other LULC types, such as

grasslands, croplands, and construction land. The significant

ecological restoration projects of large-scale afforestation,

reforestation, and rapid urbanization in the basin could result in

rapid displacements of bare land with other LULC types in a short

period (Zhang et al., 2019). In addition, the temporal differences

between the remote sensing data sources of different datasets may

lead to poor consistency in bare land assessment (Li et al., 2017;

Nguyen et al., 2021). Furthermore, the small patches (Table 4) and

discrete distribution of bare land (Supplementary Figure 5) in the

study area increase the uncertainty of the classification results due

to the small sample size when selecting the training sample,

resulting in considerable differences in the classification results

among the five different datasets (Lu et al., 2014).

The classification accuracy of wetlands in the five datasets was

generally low, with UA and PA values of 26.74% and 33.82%,

respectively, in GLC_FCS (Table 6). In particular, a significant

difference of 91.81% was found in the UA and PA of ESRI10

(Table 6). The lower classification accuracy of the wetland stems

from the confusion with grassland, woodlands and croplands

(Table 5). For example, classification confusion can reach 81.29%

in the GLC_FCS30/CLCD combination (Table 5). The different

definitions of wetlands in different datasets could influence the

classification result. For instance, wetlands in LSV10 were defined

as areas dominated by natural herbaceous vegetation (with vegetation

coverage of no less than 10%) and inundated permanently or

periodically by fresh, brackish or salt water, excluding mangroves

(Zanaga et al., 2021). In contrast, wetlands in the Globeland30 data

were defined as land located in the border zone between land and

water, with shallow standing water or excessively wet soils, mainly

growing with marsh or aquatic vegetation, including mangroves

(Chen et al., 2014a). In addition, the conversion of wetlands to
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other LULC types, such as croplands, grasslands and construction

land, is faster due to a combination of natural and anthropogenic

drivers, all of which affect the classification results of wetlands (Zong

et al., 2009). Moreover, wetlands occupy a small proportion of the

basin. Only six points for accuracy assessment fall within wetlands in

the ESRI data, while most of these points were misclassified in

ESRI10, all of which led to considerable differences between the

UA and PA of ESRI10. In conclusion, all five datasets, i.e., LSV10,

ESRI10, CLCD, GLC_FCS30, and Globeland30, could be more

suitable when studying spatiotemporal changes in grasslands and

associated ecological and environmental effects. Corrections are

required when revealing woodlands, croplands and bare land based

on these datasets, and caution should be taken when studying

spatiotemporal changes in wetlands, a vital LULC type of the basin.
4.2 Evaluation of the five land
use land cover dataset from
classification consistency

The five datasets consistently identify grasslands (Figure 5).

However, the classification accuracy of some datasets for grassland

types is lower (i.e., ESRI10, GLC_FCS30). Grasslands in the

GLC_FCS30 data are abnormal in the Mu Us Desert, and there is

an apparent boundary between croplands and grasslands within the

Mu Us Desert. Croplands are more densely distributed on the left

side of the boundary than on the right side (Supplementary

Figure 6). In contrast, the distribution of grassland on the right

side of the boundary is significantly denser than that on the left side

(Supplementary Figure 6). Given the large extent of the anomalies

and the absence of similar anomalies in the other data, it is possible

that GLC_FCS30 may have been confused in determining

grasslands versus croplands and that the spatial consistency of

croplands and grasslands was also affected. The main reason for

this confusion originates from the similar spectrum of grasslands

and croplands, which leads to the misclassification or omission of

these two LULC types (Qin, 2000), thus forming a boundary effect,

which is especially apparent when there were fewer satellite data

before 2000 because most LULC datasets were generated using a

method that first obtained the base data of a period and then

detected the dynamics (Supplementary Figure 6).

The five datasets showed a lower classification consistency for

woodlands and croplands and poorer consistency in identifying

bare land in the YRB compared with grasslands (Figures 5B, C,

Table 5, Figure 4). The lower classification consistency of the five

datasets in woodlands and croplands is mainly due to the wide

distribution of terraces and fruit trees in the southeastern part of the

basin, the spectrum of which is similar in the multispectral data (Ji

et al., 2021) and presents similar textural patterns that usually

confuse LULC classifications. For bare land, this category is a high

albedo LULC type, the spectrum of which is similar to that of

construction land and ice and snow. In particular, bare land is easily

confused with impervious surfaces, which makes accurate

classification of bare land difficult (Li et al., 2017). In addition, we

upscaled the original ESRI10 and LSV10 data. Although this data

processing ensured the consistency of the five LULC datasets, data
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precision might be lost. Considering the small size of patches and

the more dispersed spatial distribution, bare land in the basin is

easily overshadowed by other features after upscaling, which is one

of the critical reasons for the poor consistency of bare land.
4.3 Implication and limitations

Our study identified the strengths and weaknesses of five LULC

datasets based on accuracy assessments and classification consistency

analysis. According to our study, the classification accuracy of

grasslands in the LSV10 and CLCD datasets is higher than that in

the other datasets, while it is lower in classifying wetlands. In contrast,

Globeland30 provides high accuracy for wetland identification.

Mining this helpful information can be a reliable basis for selecting

different data for subsequent research on land cover change and

related studies in the YRB (Ran et al., 2009). This study can also

provide adequate support for the fusion of information frommultiple

datasets to improve the classification accuracy of current LULC data

products (Bai and Feng, 2018). Based on this study, the LSV10 data

outperformed the other four datasets in terms of both overall

accuracy and classification accuracy for a single LULC type. This

dataset can be the preferred data for future land cover prediction in

the YRB. However, given that the dataset has been released for only

two periods (2020, 2021), it is insufficient for the long-term time

series characterization of land cover change in the basin over the

historical period. However, the area composition correlation of the

LSV10 data with the other four datasets could be used as one of the

criteria for selecting other data. For example, the two datasets with

high correlation coefficients with the LSV10 data are GLC_FCS30 (R

= 0.984) and CLCD (R = 0.971) (Figure 3). Considering the temporal

resolution and data accuracy, CLCD and Globeland30 may be more

suitable for long-term time series land cover change studies in the

basin, with CLCD having the advantage due to its annual scale

resolution (Supplementary Table 1).

Some limitations of our study should not be overlooked. Only

one period, 2020, for the five LULC datasets was selected for accuracy

assessment and classification consistency analysis in this study. The

results provide the basis for data selection for future land-use

modeling studies in the YRB. However, the results cannot be used

for data selection for research on long-term time series LULC changes

and the resultant ecological effects. This study is a preliminary study

to conduct subsequent long-term time series research on LULC

changes and future simulations in the YRB and to assess the

ecological and environmental effects of LULC changes. Therefore, it

is essential to evaluate multisource LULC datasets at different periods

to better demonstrate the long-term spatiotemporal changes in LULC

or to perform data fusion to generate more highly accurate LULC

data to support subsequent research.

Furthermore, the upscaling method is a prerequisite for accuracy

assessment and consistency analysis of multisource LULC data.

However, this method may introduce some uncertainties. The

method usually has limited effects on LULC types with large areas

and a continuous distribution, such as grasslands in the YRB, while it

could trigger finer changes in the spatial information and quantitative

characteristics of LULC types with small patches and complex mosaic
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distributions (Yang et al., 2001; Hu et al., 2013). In addition, the

reclassification of LULC types might influence the study. However,

the uncertainty introduced by reclassifying classification systems

could be minimized to LSV10, ESRI10, CLCD, and Globeland30

since the old LULC classification systems match well with the

reclassification system (Tables 2, 3). In comparison, the uncertainty

originating from the reclassification of LULC types in GLC_FCS

might be higher than that in the other four LULC types. It is also

noteworthy that some uncertainty may exist in accuracy assessments

based on the high-resolution data provided by Google Earth. The

high-resolution images provided online by Google Earth are

composed of remote sensing images from multiple sensors and

different seasons in the same year, and there are likely to be some

temporal differences. For example, grasslands and water bodies are

susceptible to interconversion in different seasons, which may also

impact the results of accuracy assessments.
5 Conclusion

The consistency (in terms of classification and spatial consistency)

of multisource LUCC data in the Yellow River Basin varies widely, as

does the overall classification accuracy and the classification accuracy of

a single LULC type. Given the importance of the YRB in ecological

security and economic development in China, an accurate

understanding of the spatial and temporal changes in LULC is vital

to grasp the situation of resources and the environment and to ensure

the sustainability of regional development. To determine the most valid

LULC data for the YRB, five mainstream LULC datasets were selected

and tested for classification consistency and accuracy in terms of land

composition similarity, classification and spatial consistency, and

classification accuracy. Our results indicate that although the five

datasets showed good consistency in the land cover composition of

the YRB, significant differences in the area of each land cover type were

identified by the different datasets. The five datasets have good

classification consistency for the main land cover types in the YRB,

such as grasslands, croplands, and woodlands, and approximately 74%

of the basin can be considered to be accurately identified. The LSV10

dataset exhibited the best classification accuracy (both overall and for a

single LULC type) and Kappa coefficient among the five datasets.

However, considering the time series and temporal resolution, the

CLCD data, which showed substantial similarity to LSV10, may be

ideal for conducting studies related to LULC in the YRB.
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