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Surveying wildlife and livestock
in Uganda with aerial cameras:
Deep Learning reduces the
workload of human
interpretation by over 70%
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Jérôme Théau3,4 and Philippe Lejeune1

1TERRA Teaching and Research Centre – Forest Is Life, Gembloux Agro-Bio Tech, University of Liège
(ULiège), Gembloux, Belgium, 2Department of Natural Resources, Faculty of Geo-Information Science
and Earth Observation (ITC), University of Twente, Enschede, Netherlands, 3Department of Applied
Geomatics, Université de Sherbrooke, Sherbrooke, QC, Canada, 4Quebec Centre for Biodiversity
Science (QCBS), Stewart Biology, McGill University, Montréal Québec, QC, Canada
As the need to accurately monitor key-species populations grows amid

increasing pressures on global biodiversity, the counting of large mammals in

savannas has traditionally relied on the Systematic-Reconnaissance-Flight (SRF)

technique using light aircrafts and human observers. However, this method has

limitations, including non-systematic human errors. In recent years, the Oblique-

Camera-Count (OCC) approach developed in East Africa has utilized cameras to

capture high-resolution imagery replicating aircraft observers’ oblique view.

Whilst demonstrating that human observers have missed many animals, OCC

relies on labor-intensive human interpretation of thousands of images. This study

explores the potential of Deep Learning (DL) to reduce the interpretation

workload associated with OCC surveys. Using oblique aerial imagery of 2.1

hectares footprint collected during an SRF-OCC survey of Queen Elizabeth

Protected Area in Uganda, a DL model (HerdNet) was trained and evaluated to

detect and count 12 wildlife and livestock mammal species. The model’s

performance was assessed both at the animal instance-based and image-

based levels, achieving accurate detection performance (F1 score of 85%) in

positive images (i.e. containing animals) and reducing manual interpretation

workload by 74% on a realistic dataset showing less than 10% of positive

images. However, it struggled to differentiate visually related species and

overestimated animal counts due to false positives generated by landscape

items resembling animals. These challenges may be addressed through

improved training and verification processes. The results highlight DL’s

potential to semi-automate processing of aerial survey wildlife imagery,

reducing manual interpretation burden. By incorporating DL models into

existing counting standards, future surveys may increase sampling efforts,

improve accuracy, and enhance aerial survey safety.

KEYWORDS

wildlife, aerial survey, Deep Learning, remote sensing, convolutional neural networks,
animal conservation, livestock, object detection
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1 Introduction

As pressures on biodiversity increase across the globe,

accurately determining key-species populations is seen as critical

in the ‘Essential Biodiversity Variables’ (EBV) approach to

monitoring ecosystem health (Brummitt et al., 2017; Jetz et al.,

2019). For over 60 years, the counting of large wildlife species in the

expansive savannas of eastern and southern Africa has been

addressed using light aircrafts and human counting crews

(Gwynne and Croze, 1975; Norton-Griffiths, 1978; Jachmann,

2001). The ‘Systematic Reconnaissance Flight’ (SRF) technique

involves flying an aircraft at low altitude along transects, whilst

Rear-Seat-Observers (RSOs) count animals to left and right in strips

of terrain defined by markers on the aircraft (Caughley, 1977;

Norton-Griffiths, 1978; Grimsdell and Westley, 1981; Stelfox and

Peden, 1981). The transects are the sample units, and analysis to

derive estimates and margins of error is conducted using the Jolly II

Method (Jolly, 1969; Caughley, 1977).

SRF ‘counting standards’ have been adopted by many eastern

and southern African countries to ensure that data meet minimum

quality requirements for national and continental-wide trend-

analysis of critical flagship such as elephants (Norton-Griffiths,

1978; Craig, 2012; PAEAS, 2014; CITES-MIKE, 2019). These

standards define inter alia the flying heights and strip-widths for

counting, the sampling intensities that should be used, the length of

time that RSOs should count animals before rest-breaks, the

recording methods and the statistical analysis techniques used.

Although these standards can ensure that important technical

criteria are met, they cannot account for all human counting bias.

Observers may miss cryptic animals, become overstretched when

faced with large herds or multi-species groups, and lose

concentration in long hot, turbulent flights over monotonous

landscapes (Caughley, 1974; Jachmann, 2002; Fleming and Tracey,

2008; Schlossberg et al., 2016). In regard to detection, they have very

little time to search and record animals; as the aircraft moves at a

ground-speed of 170–180 km.hr−1 along the transect, the RSO can

hold any particular feature in view for 5–7 seconds (Fleming and

Tracey, 2008). For this reason, an optimum RSO strip width of 150

m on each side of the aircraft was derived from experimental studies

in the 1970s, and this metric was subsequently embedded within

counting standards (Pennycuick and Western, 1969; Caughley and

Goddard, 1975; Norton-Griffiths, 1978; Stelfox and Peden, 1981;

Ottichilo and Khaemba, 2001).

Despite the long-recognized constraints of RSO-viewing,

consistency of method over decades is seen as key in determining

trends (Ogutu et al., 2016). Therefore, advances in methods will need

to be made incrementally to ensure harmonization with previous

surveys. A recent SRF advance in East Africa, known as the ‘Oblique-

Camera-Count’ (OCC), uses digital cameras to record the counting

strips to left and right of the aircraft (Lamprey et al., 2019; Lamprey

et al., 2020). This replicates the oblique view of the RSOs where

animals can be detected under tree canopies. WithOCC the observers

are not in the aircraft but in the laboratory, and their job is to

interpret the many thousands of images obtained in a flight mission.

In recent years, multiple RSO-OCC comparisons have been

conducted. Bröker et al. (2019) showed that the abundance estimate
Frontiers in Ecology and Evolution 02
of narwhal in Greenland (Monodon monoceros) based on oblique-

imaging was not significantly different from RSO one. However,

Lethbridge et al. (2019) found 30% higher oblique-imaging

estimates than RSO ones when surveying Kangaroos in Australia.

OCC counts in Kenya and Uganda over the last decade revealed that

RSOs had been missing up to 70% of large mammal species,

including key cryptic species such as giraffe (Lamprey et al.,

2019). Estimates for smaller animals were greatly increased. In

Murchison Falls National Park in Uganda for example, an RSO-

based survey estimated 600 oribi (Ourebia ourebi ssp. cottoni),

whilst an OCC survey the following year estimated 12,000

(Lamprey et al., 2020). Thus the use of cameras is important in

resetting baseline population estimates.

The primary advantage of camera-based counts is that time can

be spent in the lab to carefully study each image for animals, and

that interpreters can cross-check scenes for verification. Conversely,

the primary constraint of aerial imaging methods is that thousands

of images are acquired that need to be visually interpreted. This is a

time-consuming and costly exercise. For example, a standard

counting flight transect, involving just 30 minutes of RSO time

for detection and recording, would obtain 900 OCC images taken

each side of the aircraft. These images will take 4 days to interpret

by two interpreters (left and right cameras). It is therefore not

surprising that conservation agencies balk at the time and labour

costs of OCC counts and other imaging exercises (Bröker et al.,

2019; Peng et al., 2020).

Another limitation of the OCC approach is that a very high

percentage of aerial images will have no animals. In the arid Tsavo

NP in Kenya for example, just 2% of the 160,000 images acquired

had animals present (Lamprey et al., 2019). In Uganda’s sub-humid

national parks with higher density of wildlife, some 10% of images

are positive (Lamprey et al., 2020). In general, therefore, over 90% of

the time of OCC image interpretation is spent on True Negative

(TN) images – images with no animals – and if these can be

identified and eliminated then there can be significant reductions in

human labor.

The next incremental step up from RSO to image-based

counting is therefore to accelerate the detection of animals on

images. Deep Learning (DL) offers this possibility (Tuia et al., 2022).

DL is a subgroup of artificial intelligence approach regrouping

machine learning methods based on artificial neural networks,

capable of learning and integrating multi-level representation

from large datasets (LeCun et al., 2015). Significant progress has

already been made in identifying a range of key species in Africa

using DL-based object detectors and aerial imagery (Kellenberger

et al., 2018; Eikelboom et al., 2019; Naudé and Joubert, 2019; Torney

et al., 2019; Delplanque et al., 2021; Delplanque et al., 2023).

However, DL models produced biased counts because of their

current high false positive rate, usually generated by animal-look-

alike background objects. Thus, detections still need to be reviewed

by humans. Furthermore, the field of animal detection in oblique

aerial imagery is not yet as well developed as that of camera traps,

where models trained on large and varied datasets are available for

image (pre-)processing (Tabak et al., 2019; Shepley et al., 2021). At

the moment, it is therefore often necessary to develop one’s own

model for application in a given protected area.
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Being aware that current DL models need humans for

prediction verification, we conducted a study to determine the

potential of DL for reducing the interpretation workload of OCC

surveys. We asked two specific questions:
Fron
(1) When the model detects animals in an image that we know

are present, how well does it locate, count and identify

them?

(2) For a ‘practical’ evaluation to reduce interpretation, can the

model discriminate correctly the images which do not

contain animals?
2 Methods

We trained a DL model using annotations of a sample of images

obtained in an SRF-OCC survey of Queen Elizabeth Protected Area

in Uganda. These images had been previously visually interpreted to

count animals, with the counts entered into a meta-database. An

image could contain nothing and be a TN, or it could be a True

Positive (TP) image with (for example) a single warthog, and/or 20

elephants and/or 100 Uganda kob. Having trained the DL model on

a range of species from the annotated samples, we then tested the

model on a realistic dataset, i.e. visually interpreted images that had

not been used in the DL training, which contains both positive and

negative images.
2.1 Study area and dataset

The study area is the Queen Elizabeth Protected Area (QEPA)

located in southwestern Uganda. The census zone included the

Queen Elizabeth National Park and the contiguous Kyambura and

Kigezi Wildlife Reserves, covering 2,560 km² of bushed grassland,

thicket, open woodlands and forest. Our study is based on aerial

imagery acquired for a previous study of wildlife populations of

QEPA, conducted in 2018. Only the information necessary for the

understanding of the present paper is provided here, for more

details the reader is referred to the study of Lamprey et al. (2023).

High-resolution images were acquired using two 24-megapixel

Nikon DSLR cameras obliquely mounted at 45° through a camera

hatch of a Cessna 182 aircraft. At 600 ft (183 m) above ground level

coupled with an aircraft ground speed of 105 knots (194 km.hr−1), a

2 second timing interval on cameras provided a continuous sample-

strip of 150 m width on the ground (‘strip-width’) with a 40%

overlap between sequential images and frame footprint of 2.1

hectares. The cameras generated sequentially numbered images,

stored in incremental folders on the camera cards. Flight transects

were spaced at 1 km intervals and a total of 37,000 images were

collected with Ground-Sampling Distance (GSD) 2.4 cm at the

inner edge and 5.0 cm at the outer edge. These were manually

interpreted by a team of four Ugandan interpreters during a six-

week period. For each image, species name and numbers were

recorded into a data spreadsheet. Where large herds spanned

overlapping images, animals in the overlap area were counted

into Even-Number Images (ENIs), while animals were counted in
tiers in Ecology and Evolution 03
the center portion of Odd-Number Images (ONIs) to avoid any

possibility of double counting. Therefore, ENIs contained total

counts while ONIs contained partial counts (i.e. only the animals

within the gaps between ENIs).

From the manual photo-interpretation, 12 wildlife and livestock

species were detected: elephant (Loxodonta africana), buffalo

(Syncerus caffer), topi (Damaliscus lunatus ssp. jimela), Uganda

kob (Kobus kob ssp. thomasi), waterbuck (Kobus ellipsiprymnus ssp.

defassa), warthog (Phacochoerus africanus ssp. massaicus), giant

forest hog (Hylochoerus meinertzhageni), hippopotamus

(Hippopotamus amphibius), crocodile (Crocodylus niloticus), cow

(Bos taurus), sheep (Ovis aries) and goat (Capra hircus). Since the

management of double counting is beyond the scope of this paper,

only ENIs were selected. From all ENIs (18,833), approximately

70% (12,806) were randomly selected for creating annotations, used

for training, validation and animal instance-based testing of the DL

model, keeping the remaining 30% (6,027) for image-based model

testing. Therefore two test sets were established to answer the 2

research questions: 1) the ‘animal instance-based’ test set, where the

annotated points are the ground truth; it was used to answer the first

question, and 2) the ‘image-based’ test set, containing less than 10%

of positive images and more than 90% of negative images, where the

species counts are the ground truth. This second test set served as a

case study and was used to answer the second question.

The animal instance-based dataset was initially annotated as

bounding boxes by a team of 4 experienced Ugandan interpreters,

using VGG Image Annotator (Dutta and Zisserman, 2019).

However, since point annotation has emerged as a faster and

better alternative for the detection of animals with DL-based

object detectors (Delplanque et al., 2022; Delplanque et al., 2023),

pseudo-points were created by selecting the center of the bounding

boxes. These pseudo-points were finally reviewed by an experienced

annotator to obtain body-centered points, as the camera’s viewing

angle, animal pose or tightness of bounding box drawn may result

in a point being outside the animal’s body. This has been done using

Label Studio software (Tkachenko et al., 2021). The images and

points of the animal instance-based dataset were randomly split

into training, validation and testing sets following a common

allocation of 70%–10%–20% respectively, while taking the species

numbers distribution into account (Table 1). Sheep and goat were

amalgamated as a single class due to their great similarity in shape

and color given the image resolution.
2.2 Deep Learning model

Given its better performances in detecting and counting animals

in oblique aerial imagery compared to common DLmodels, HerdNet

(Delplanque et al., 2023) was chosen to process the dataset. Briefly,

HerdNet is a single-stage point-based CNN consisting of two heads,

one dedicated to the accurate localization of animals in the image

(i.e., points), and the other to their classification, both trained in a

pixel-wise manner using the Focal and the Cross-Entropy losses

respectively. The training scheme was the same as that presented in

Delplanque et al. (2023) and consisted of two steps: 1) training the

architecture using positive patches only, and 2) harvesting and
frontiersin.org
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including Hard Negative Patches (HNPs) to further train the model

in order to reduce the number of false positives. The patch size was set

to 1,024 × 1,024 pixels and following original paper values and early

ablation studies, the hyperparameters were set as follows: the learning

rate to 10−5, the batch size to 2 and the number of epochs to 100.

Horizontal flipping was used for data augmentation, using a 50%

probability of occurrence and the Adam optimizer was used for

neural network’s parameters optimization. During testing, points

were obtained by extracting local maxima from the pixel map

produced by the localization head, in which a pixel value close to 1

indicates the presence of an animal. Each point was then used to pin

the classification maps and obtain the associated class and confidence

score. An image was considered as negative if the maximum pixel

value of the localization map did not exceed 0.1. Each full-resolution

test image was scanned in a moving-window fashion with a patch

overlap was set to 256 pixels. A radial distance threshold of 20 pixels

was used to compare ground truths and detections during animal

instance-based evaluation. Finally, only detections with confidence

score above 50% were retained for image-based evaluation. For more

details, the reader is referred to the reference paper. Operations were

performed on aWindows-10 workstation using a 64 GB AMDRyzen

9 5900X central processing unit (CPU) and an 8 GB NVIDIA

GeForce RTX 3070 graphics processing unit (GPU).

HerdNet was evaluated in two ways: 1) The ‘standard’ machine

learning way, by calculating common detection metrics on the

animal instance-based test set, containing positive images only; and

2) The ‘practical’ way, by running the model on unseen images of

the image-based test set, containing both negative and positive

images, and comparing the DL model’s counts with interpreters’

visual counts. Recall, precision, and F1 score were calculated for

each species on the animal instance-based test set for the standard

evaluation:
Frontiers in Ecology and Evolution 04
recall =
TP

TP + FN

precision =
TP

TP + FP

F1score =
2� recall � precision
recall + precision

where #TP, #FN, and #FP are the number of true positives (i.e.,

exact detection and identification), false negatives (i.e., missed

animals) and false positives (i.e., wrong detections) respectively.

Recall, also referred to as ‘true positive rate’, measures the

proportion of animals correctly detected and identified by the

model, while precision measures the proportion of true animals

among all detections. The F1 score is the harmonic mean of these

two metrics and is higher when recall and precision are balanced.

Concerning the practical evaluation on the image-based test set,

only counting comparisons were made as no annotated points were

available for calculating the above metrics. The true counting rate,

representing the proportion of the human count found by the DL

model, and the counting precision, representing the ratio of human

count by DL model count, were calculated for each species.

3 Results

3.1 Animal instance-based performance

All species combined, HerdNet reached 85% for both recall,

precision and F1 score with little variation in performance

according to distance from the aircraft (Figures 1A, B). Kob,

buffalo, waterbuck and elephant were particularly well detected

and located, as expressed by recall above 80% in Figure 1C.
TABLE 1 Details of the dataset split.

Number of

Animal instance-based dataset Image-based dataset

Probability of occurrenceTraining Validation Test Total Test

Elephant 406 58 116 580 299 7.6%

Buffalo 1,258 180 359 1,797 858 23.0%

Topi 172 10 43 225 118 3.0%

Kob 1,526 218 436 2,180 1,137 28.8%

Waterbuck 504 72 143 719 335 9.1%

Warthog 196 28 56 280 172 3.9%

Giant Forest Hog 27 5 8 40 25 0.6%

Hippopotamus 497 71 142 710 351 9.2%

Crocodile 14 2 4 20 16 0.3%

Cow 376 38 227 641 441 9.4%

Sheep/Goat 353 51 100 504 81 5.1%

24MP1 positive images 717 95 200 1,012 494 –

24MP1 negative images 0 0 0 11,778 5,533 –
1MP, Megapixel.
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Hippopotamus and topi stood just after with a recall close to 60%,

and the other species were much less detected. Except for the

crocodile and the giant forest hog (i.e., minority species), the

precision varied from 44 to 90%, meaning that the model

produced respectively between 1.3 and 0.1 false positives per true

positive. The least confused species were elephant, hippo and kob

while the most confused were cow, warthog and topi. The highest

confusions were between cow and buffalo and between topi and

kob (Figure 2).
3.2 Image-based performance

From the image-based test set of 6,027 images, the DL model

correctly identified 81.1% of the negative images (4,486/5,533), thus
Frontiers in Ecology and Evolution 05
reducing the manual interpretation workload by 74.4% (4,486/6,027).

The same tendency was observed when applying themodel to the whole

set of ENIs: HerdNet identified 80.1% of the negative images (9,487/

11,778), reducing the workload by 74.1% (9,487/12,806). In addition, it

is worth mentioning that the DL model processed images on the

workstation at a rate of about 2.8 seconds per 24-megapixel image,

which corresponded to around 10 hours for the entire ENI dataset.

Focusing on detection by species, the model guides the

interpreters to 95% or more of the animals for almost all the

species studied except warthog, as expressed by the high detection

rate in Table 2. Overall, the model detected 98.2% of animals

previously identified in the original 2018 count by interpreters.

Meanwhile, the counting precision of the model was low overall at<

50%, but was reasonable for elephant (50.1%) and buffalo (54.1%),

and high for topi (92.9%) and cow (90%).
A

B C

FIGURE 1

Animal instance-based detection performance of the DL model (HerdNet): (A) Example of model detection on a full oblique image, (B) model
performance relative to the horizontal distance to the aircraft, and (C) species precision-recall curves.
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4 Discussion

In the context of improving multi-species SRF surveys in Africa,

we trained a DL model based on aerial imagery of a Ugandan

protected area acquired under standardized criteria for OCC
Frontiers in Ecology and Evolution 06
surveys, specifically pixel density, camera angles, image footprint

size and ground-sampling distance. Our DL model detected

human-identified wildlife in positive images at high recall and

precision rates (85%). It showed equivalent or better performance

than previous DL models developed in similar conditions or
FIGURE 2

Animal instance-based identification performance of the DL model (HerdNet). Each species was assigned a letter for referencing in the confusion
matrix (bottom right): (A) Elephant, (B) buffalo, (C) topi, (D) kob, (E) waterbuck, (F) warthog, (G) giant forest hog, (H) hippopotamus, (I) crocodile,
(J) cow, and (K) sheep/goat. The confusion matrix shows the comparison between the identification assigned during annotation by the human
(‘Ground truth’) and that predicted by the DL model (‘Model prediction’).
TABLE 2 Results of the DL model (HerdNet) on the image-based test images (N=6,027).

Species NH
1 NH|M

2 NM
3 NH|M/NH

4 NH/NM
5

Elephant 299 (65) 292 (58) 597 (313) 97.7% 50.1%

Buffalo 858 (51) 852 (46) 1,587 (527) 99.3% 54.1%

Topi 118 (16) 117 (15) 127 (44) 99.0% 92.9%

Kob 1,137 (152) 1,137 (152) 4,092 (1,706) 100.0% 27.8%

Waterbuck 335 (100) 329 (96) 1,348 (841) 98.2% 24.9%

Warthog 172 (61) 143 (46) 701 (514) 83.1% 24.5%

Giant Forest Hog 25 (8) 25 (8) 55 (45) 100.0% 45.5%

Hippopotamus 351 (60) 332 (49) 1,468 (508) 94.6% 23.9%

Crocodile 16 (3) 16 (3) 97 (85) 100.0% 16.5%

Cow 441 (19) 440 (18) 490 (109) 99.8% 90.0%

Sheep/Goat 81 (14) 81 (14) 994 (515) 100.0% 8.1%
1Animal numbers in images as determined by human counts (‘interpretation’) in survey year 2018.
2Animal numbers in images from 2018 interpretation, where these images were later classified as animal-positive by the DL model.
3Numbers estimated by the DL model; indicating the ‘overcount’ by the DL model.
4True counting rate of the model; the proportion of the 2018 count found by the DL model.
5Counting precision of the DL model, where 1/precision is the ratio of the overcount.
The absolute numbers indicated correspond to the number of animals detected, followed by the number of images that contained the species in parentheses.
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habitats (Kellenberger et al., 2018; Eikelboom et al., 2019;

Delplanque et al., 2021; Delplanque et al., 2023). The CNN used

here (i.e., HerdNet) revealed better performance than the study of

the original paper (Delplanque et al., 2023). This may be explained

by the higher resolution of current images and their more

controlled and standardized acquisition, which should allow for

better differentiation of animals in the landscape and within herds

and reduced scale variation among individuals.

As previously observed, our model struggles to detect minority

species (i.e., crocodile and giant forest hog) certainly due to a lack of

training samples for the CNN to develop robust features. In

addition, the inherently small test sample sizes for these species

reduce the statistical credibility of the performance. Some of the

species showed a low recall while they do not seem more

challenging to detect at first sight. This is explained by the

difficulty for the model to differentiate visually related species,

causing confusion between detected animals. As an example, cow

and topi seemed to be poorly detected, but their recall may rise from

47% to 83%, and from 63% to 100% respectively, considering the

entire group of confused detected animals (i.e. amalgamated cow

and topi). Thus, majority species weighting appears to confuse

identification of look-alike species (e.g., cow-to-buffalo confusion).

In fact, this phenomenon is common in object detection tasks and is

related to ‘foreground–foreground class imbalance’ (Oksuz et al.,

2020), inherent to the imbalance of objects frequencies in nature.

Future research should investigate other approaches such as

efficient sampling strategies, progressive fine tuning or generative

methods (e.g., Wang et al., 2017) to reduce such bias.

We were surprised by the low detection performance of sheep/

goat, considering the good results of previous studies involving

these species (Sarwar et al., 2021; Delplanque et al., 2023). We

suspect that the use of the HNP mining method during training

degraded the sheep/goat detection ability of the model. In this area

in Uganda, sheep and goats were mostly found in the villages, where

they are not herded (as in arid lands) but roam in small groups

around households; villages were an major source of false positives

due to the particular bright items found in them, appearing as ‘white

shapes’ of various sizes. Training the model to discard these sheep-

or goat-like objects certainly confused the model, as expressed by

the 25% drop of recall obtained on the validation set after the

second training step.

HerdNet thus correctly detects and counts our studied species

in positive images, but what about its performance on a realistic

dataset, i.e. containing less than 10% of positive images and more

than 90% of negative images? We observed that our DL model

succeeded in guiding interpreters to 98.2% of the animals (all

species combined). It discriminated more than 80% of negative

images, reducing the workload of manual interpretation by 74%.

Nevertheless, the counting performance is not yet satisfactory as the

model tended to overestimate the true number of animals. This is

the result of a high number of false positives, typically generated by

unknown or animal-like landscape items such as particular shapes

of trunks, shadows, rocks, termite mounds and mud. This model

behavior was expected as such landscape items have previously

shown to be the main cause of false positives (Kellenberger et al.,

2018; Delplanque et al., 2021). Precision could be improved by
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items, following a short-time human verification session.

At this time, a sufficient annotated wildlife training dataset

acquired of the target area, or of areas with the same wildlife species

is required to process all the image data. This training and

verification can be accelerated by using point detections, because

adding, deleting or moving points is much faster than adjusting

bounding boxes, which makes our model more appropriate for

processing aerial surveys images.

Our results confirm and validate that we have entered the era of

using DL as a tool to semi-automatically process aerial survey wildlife

imagery acquired under standard SRF conditions, with demonstrated

effectiveness to reduce human interpretation workloads by over 70%.

Humans must remain in the process to study positive images, as

filtered by the DLmodel. Annotated image databases and models will

also improve with each new acquisition, and we can therefore

anticipate a growing improvement in DL models. Current counting

standards such as CITES-MIKE V3 (CITES-MIKE, 2019) can now

evolve further to prescribe image-based animal detection based on a

combination of manual interpretation and high-performance DL

models. Following surveys can invest in increased sampling effort,

as the DL model is insensitive to fatigue unlike humans. This can be

effected by increasing sampling strip widths, flying higher and using

higher resolution cameras, such as the new generation of 40–60 MP

mirrorless cameras (Lamprey et al., 2020). On one hand, this would

allow for the transfer of the observers’ real-time visual counting work

to the verification of the model detections. On the other hand, this

would decrease the human-life risks associated with traditional aerial

surveys while increasing the sampling effort at no extra costs.

In our study we have emphasized the potential use of DL for

detection in strip transects. However, the method also has potential

for detection in line transects where the population is calculated from

a function of the drop-off of observations with distance from a line

defined to the side of the aircraft (Eberhardt, 1978; Buckland et al.,

2004). To date, problems in measuring distance to aircraft, together

withmeeting a key assumption of 100% animal detection by observers

on the line itself, have precluded the wide use of line transects in Africa

(Kruger et al., 2008). However, where pixel position can define the

distance from the aircraft, and detection through DL is improved, our

approach has the capability to greatly enhance line-transect counts.

Next work will consist of manually verifying detections and

producing population estimates. This will enable us to assess the

performance of our semi-automated detection model at the scale of

an entire aerial survey. On a more general scale, it would be

important to develop efficient semi-automated approaches to

process large volumes of aerial survey images, integrating Deep

Learning and humans with minimal verification time investment, to

ensure accurate and precise derived estimates.
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