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The great tit abdominal stripe
contains a sexually dichromatic
colour patch hidden from
the human eye
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Information on the exact nature of sexual dichromatism might be incomplete,

often leading to the treatment of dichromatic species as monochromatic. This

error is evident when the two sexes of a species look identical to the human eye,

as in the great tit (Parus major). We measured reflectance in three sections

(throat, breast, belly) of the abdominal black stripe of great tits during the pairing

and nestling feeding periods and assessed differences between patch sections,

sexes, and seasons using visual models. We found that the stripe, which had

previously been considered a single, contiguous patch, consists of multiple

patches. In males, the breast section differed markedly from the throat and

belly sections in having higher total brightness and ultraviolet chroma, while the

female’s breast seemed to be less bright than the two other regions, resulting in

strong sexual dichromatism hidden from the human eye. Colouration was more

pronounced in winter, but dichromatismwas present in both periods. The hidden

breast ultraviolet patch we discovered in males may act as a sexual ornament or a

signal amplifier.
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1 Introduction

Sexual dichromatism is frequently invoked in evolutionary biology (Kodric-Brown,

1998; Kimball and Ligon, 1999; Pérez i de Lanuza et al., 2013; Dale et al., 2015; Shultz and

Burns, 2017; Miller et al., 2021). Dichromatism could imply sexual selection on a trait,

hence, its degree is often used as an index of sexual selection (Kraaijeveld et al., 2011;

Seddon et al., 2013; Cally et al., 2021; but see Badyaev and Hill, 2000; Price, 2019). Cryptic
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dichromatism (invisible to the human eye) is widespread

(Cummings et al., 2003; Hofmann et al., 2007; Font et al., 2009;

Pérez i de Lanuza et al., 2013; Hernández-Palma, 2016), which is

typically known to be linked to the ultraviolet (UV) component of

colouration (Eaton, 2005; Stella et al., 2018). However, its

investigation in the achromatic dimension (colour-independent

intensity) is rare (Eaton and Lanyon, 2003; Armenta et al., 2008;

Burns and Shultz, 2012). Additionally, studies generally a priori

define a patch as one that has a colour distinguishable by the human

eye from the rest of the adjacent areas (Eaton, 2005; Burns and

Shultz, 2012; Amézquita et al., 2017; Negro et al., 2018a; but see

Rossi et al., 2019).

It is known from flowers and butterflies that human-visible and

human-invisible patterns can be different (Lunau, 1992; Stella et al.,

2018; Koski, 2020). In birds, only Eaton and Lanyon (2003)

considered the potential existence of hidden UV patterns within a

seemingly contiguous colour patch, and found evidence for this in

two species, namely in the UV–violet throat patch of the superb

fairywren (Malurus cyaneus) and the orange nape patch of the

streaked bowerbird (Amblyornis subalaris). Such observations could

become especially meaningful to the inspiring studies on the origin,

function, or consequences of integumental patch pattern diversity

(Rojas, 2017; Mason and Bowie, 2020; Cally et al., 2021; Miller et al.,

2021; Emberts and Wiens, 2022; Luro and Hauber, 2022). Another

overlooked phenomenon is the temporal plasticity of colouration.

In birds, feather reflectance can change without moult within a

short time interval (Delhey et al., 2006; Surmacki et al., 2011; Hegyi

et al., 2019; Laczi et al., 2020). These changes can differ between

sexes (Örnborg et al., 2002), which may potentially affect the

observed magnitude of dichromatism depending on sampling time.

If the zebra finch (Taeniopygia guttata) is ‘the ultimate

Australian supermodel’ of behavioural ecology (Griffith and

Buchanan, 2010), the great tit (Parus major) is the Eurasian

supermodel. It has a composite plumage pattern usually marked

as sexually monochromatic to the human eye (Soler and Moreno,

2012; Negro et al., 2018b). However, spectrometry revealed sexual

dichromatism in the yellow breast and black crown (Hegyi et al.,

2007; Evans et al., 2010; Laczi et al., 2019). Additionally, the

obviously dichromatic size of the abdominal stripe (black to

humans) could reflect information on social status, survival and

parental abilities (Järvi and Bakken, 1984; Norris, 1990; Senar et al.,

2014). We observed in the field that the middle (breast) section of

the stripe looked glossy in males and dull in females, similarly to the

crown (Figure 1A), which is dichromatic with regards to brightness

and UV chroma (Hegyi et al., 2007; Laczi et al., 2019). Here, we

tested whether cryptic dichromatism with hidden within-patch

pattern and seasonal effects is present in great tits’ fitness-linked

abdominal stripe, measuring three stripe regions (throat, breast,

belly; Figure 1B) in two seasons (winter, spring).
2 Materials and methods

Data were collected in the Pilis-Visegrádi Mountains, Hungary

(47°72’N, 19°01’E), in 2022. We captured birds during winter
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(territory establishment and pairing period) and spring (nestling

feeding period) (winter/spring n♀ = 34/44, n♂ = 48/43; 10 females

and 12 males were recaptured from winter to spring). We recorded

reflectance curves (Supplementary Figure 1) in the field from the

throat, breast, and belly regions of the abdominal black stripe using an

USB2000 spectrometer, DH-2000 light source, R400-7 detector, and

WS-1-SS white standard (Ocean Optics Europe). We then calculated

brightness (average intensity between 320–700 nm, R320–700) and

ultraviolet chroma (R320–400/R320–700; hereafter UVC). For additional

details, see the Supplementary Material.

We tested for colour differences during the pairing season using

generalized linear mixed models with backward stepwise model

simplification, normal error, identity link function, and

Satterthwaite estimation for degrees of freedom, using the

‘lmerTest’ package (Kuznetsova et al., 2017) in R 4.2.1 (R

Development Core Team, 2022). Brightness, or UVC was used as

the response variable. Individual identity was fitted as a random

effect. Sex and patch region (repeated measures factor) were fixed

categorical effects. Two-way interactions between fixed factors were

also tested. Binary age (yearling or older) had no consistent effect on

any spectral characteristic examined here (results not shown), and

its distribution was skewed within and inhomogeneous across

groups, violating the assumptions of parametric analyses. We

therefore did not include age in the models reported here.
A

B

FIGURE 1

Great tits: (A) as seen in nature, depicting that under direct sunlight,
the male black breast section of the abdominal stripe is moderately
glossy, in contrast to females; (B) showing the measured plumage
parts with false-colouring differences in reflectance as seen by
humans and tits. (Credit: ML).
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As a next step, we performed across-season comparisons. The

initial main model included sex, patch region (repeated measures

factor), season and their two- and three-way interactions as fixed

effects, and identity as a random effect. To avoid pseudoreplication,

we excluded the spring repeats of individuals caught in both

seasons. We also analyzed within-individual changes, but these

are not reported here in detail due to the small numbers of

recaptured birds (see Supplementary Material for details).

We estimated if statistical differences were perceptible to the

birds using the ‘pavo 2’ package (Maia et al., 2019). We calculated

quantum cone catch values for each spectrum by the ‘vismodel’

function using the blue tit visual system data. These parameters of

the great tit are currently not known in detail, but rod and cone

spectral sensitivities among songbirds show only moderate

variation (Bowmaker et al., 1997; Hart et al., 2000). We then

averaged the values for combinations of season, sex, and plumage

region. On these averaged values, we used the ‘coldist’ function to

get discriminability contrast values between patches, expressed in

units of ‘just noticeable differences’ (JNDs), where JND > 1 indicates

that two stimuli are distinguishable (Siddiqi et al., 2004). For details,

see Supplementary Material.
3 Results

3.1 Colour differences during the
pairing season

Among-patch patterns differed significantly between sexes, and

they were significant in both sexes for both brightness and UVC. In

detail, the sex × patch interaction was significant in brightness

(F2,240 = 103.75, p < 0.001) and UVC (F2,160 = 10.70, p < 0.001). The

main effect of patch was significant in both sexes for both brightness

(males: F2,141 = 125.58, p < 0.001; females: F2,66 = 33.24, p < 0.001)

and UVC (males: F2,94 = 31.39, p < 0.001; females: F2,66 = 27.82, p <

0.001). In males, brightness was highest in the breast and lowest in

the throat (all p < 0.001), and the pattern was similar for UVC (all

p < 0.001). In females, brightness was highest in the belly and lowest

in the breast (breast-throat p = 0.048; other comparisons p < 0.001),

while UVC increased from the throat to the belly (breast–belly p <
Frontiers in Ecology and Evolution 03
0.01; other comparisons p < 0.001). The detailed results of the

pairwise tests are shown in Table 1.
3.2 Across-season patterns of
colour differences

The sex × season × patch interaction was significant for

brightness (Supplementary Table 1). The season × patch

interaction was significant in both males (F2,231 = 13.93, p < 0.001)

and females (F2,133.72 = 4.73, p < 0.001). We were particularly

interested in the across-season stability of the patch differences, so

we ran separate tests of the season × patch interaction for patch pairs,

revealing the detailed pattern behind the overall interaction.

In males, breast brightness decreased, while the brightness of

the throat and belly increased from winter to spring. This resulted

in lower differences in brightness across patches in spring, In

females, the breast had lower brightness than either the throat or

belly irrespective of season, and the pattern change concerned the

relative brightness of the other two areas (Figure 2A, Supplementary

Table 1). In more details, in males, the interaction was significant

for the breast–throat (F1,154 = 20.12, p < 0.001) and breast–belly

comparisons (F1,87.33 = 15.76, p < 0.001), but not for the throat–

belly comparison (F1,96.33 = 2.31, p = 0.13). The throat was less

bright (darker) than the belly, irrespective of season (main effect

F1,97.73 = 11.12, p < 0.01). The breast was brighter than the other two

areas, but this difference declined from winter (breast–throat: F1,94
= 167.44, p < 0.001; breast–belly: F1,94 = 146.80, p < 0.001) to spring

(breast–throat: F1,60 = 25.71, p < 0.001; breast–belly: F1,30 = 26.01,

p < 0.001). For females, the situation was reversed. The breast had

lower brightness than the other areas (main effect breast–throat:

F1,69.76 = 10.33, p < 0.01; breast–belly: F1,67.63 = 42.42, p < 0.001),

with no seasonal change in the differences (season × patch

interaction breast–throat: F1,68.73 = 2.75, p = 0.10; breast–belly:

F1,66.701 = 2.24, p = 0.14). The season × patch interaction was

significant only for the throat–belly comparison (F1,67.67 = 8.42, p <

0.01). The throat showed lower brightness than the belly in winter

(main effect F1,66 = 31.81, p < 0.001), but it became brighter with

time, and therefore the patch difference disappeared by spring

(main effect F1,33 = 0.23, p = 0.64).
TABLE 1 Pairwise comparisons of abdominal stripe patches in great tits in different contexts.

Season Sex Trait
Throat vs breast
F(df)

Throat vs belly
F(df)

Breast vs belly
F(df)

Pairing Female Brightness 4.19(1,33) * 31.81(1,66) *** 52.70(1,33) ***

Pairing Female UV chroma 16.97(1,33) *** 55.14(1,33) *** 11.50(1,33) **

Pairing Male Brightness 167.44(1,94) *** 13.70(1,94) *** 146.80(1,94) ***

Pairing Male UV chroma 44.83(1,47) *** 18.95(1,47) *** 20.58(1,47) ***

Pooled Female UV chroma 46.00(1,62.64) *** 48.21(1,66.11) *** 0.00(1,63.33)

Pooled Male UV chroma 102.48(1,81.26) *** 43.75(1,82.59) *** 41.82(1,83.33) ***
Results obtained from linear mixed models with backward stepwise model simplification. One colour variable (brightness, ultraviolet chroma) was the response variable, individual identity used
as a random effect, sex and patch region (repeated measures factor) were fixed categorical effects.
*P<0.05, **P<0.01, ***P<0.001.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1263974
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Laczi et al. 10.3389/fevo.2023.1263974
Seasonal change in the among-patch pattern of UVC did not

differ between sexes, and all patches declined similarly in both sexes.

In details, the sex × season × patch interaction was not significant

for UVC, and the only significant two-way interaction was between

sex and patch (Supplementary Table S1), with a consistent seasonal

change (decline) across sexes and patches (main effect of season in

Supplementary Table 1). The effect of patch was significant in both

males (F2,161.01 = 71.13, p < 0.001) and females (F2,125.92 = 32.85, p <

0.001). Pairwise comparisons of patches were all significant in males

(all p < 0.001), with UVC increasing from the throat to the belly to

the breast. In females, the throat showed lower UVC than the other

areas (p < 0.001), with no difference between the breast and the belly

(p = 0.98). All of the seasonal differences are presented in Figure 2B,

and detailed results of the pairwise tests are shown in Table 1.

An across-seasons repeated measures analysis with the

recaptured individuals was largely congruent with the above-

described patterns (see Supplementary Table 3).
3.3 Visual models

As judged from the JNDs (Table 2, Supplementary Table 2), the

male breast was distinguishable from both the throat and the belly

in terms of both brightness and chromaticity in both seasons. In

females, the breast was distinguishable in terms of brightness from
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the belly in both seasons and from the throat only in spring. In

terms of chromaticity, however, the female breast was visually

similar to the throat and the belly in both seasons. Finally, the

breast patches of males and females were distinguishable in both

seasons in terms of both brightness and chromaticity.
4 Discussion

Sexual dichromatism in melanic colouration is less frequent than

in structural-based or other pigment-based colouration (Bradley and

Mundy, 2008; Taysom et al., 2011), and comparative studies in birds

suggest that it is also weaker (Delhey and Peters, 2017). Studies of the

abdominal black stripe of great tits considered it as a single trait,

sexually monochromatic except for its size (e.g. Norris, 1993). We

found that the stripe contains distinct patches, and shows marked

sexual dichromatism and seasonal changes.

From a proximate viewpoint, males may have feather barbs and

barbules with higher light-absorbing melanin content and a higher

density of melanin-containing barbules (Galván, 2011; D’Alba et al.,

2014; Laczi et al., 2019). The glossiness (higher specular reflectance)

and UV richness in the male breast may be caused by the

nanostructure, where the outermost melanin granules in barbules

form a continuous layer, allowing the keratin on top of the melanin

layer to function as a thin layer (Maia et al., 2011), similarly to the

male crown (see Laczi et al., 2019). Additionally, surface

smoothness may play a role in glossiness too (Iskandar et al., 2016).

Seasonal colour changes were also prominent. Although sample

size and sample composition were slightly different between the two

periods, which may potentially have an effect on the results, but the

high agreement between the non-redundant horizontal data set and

the within-individual data suggests that the seasonal changes in

across-patch reflectance patterns were due to within-individual

degradation and that sampling bias played a negligible role.

Previously, in great tit yellow feathers, a seasonal decline within a

moult cycle was found in UVC but not in brightness (Evans et al.,

2012), which could partly be explained by soiling and preen oiling

(Surmacki and Nowakowski, 2007), but there could be other

confounding factors as well (e.g. feather wear, photobleaching).

Delhey et al. (2010) showed a parallel change between sexes across

the whole year in colour of other plumage parts, with sexual

dichromatism being present throughout the year. Temporal

changes in plumage colouration were revealed, but this study

used visual judgment and not spectrophotometry (Figuerola and

Senar, 2005). Here, we found that sexual differences in the breast

stripe persisted from winter to spring. Brightness became higher in

all stripe parts in both sexes, except for the male breast, which was

less bright in spring, whereas UVC was uniformly lower in spring.

According to the visual model, it is possible that only the

achromatic seasonal changes are visible for birds. The detected

seasonal changes can be easily explained if we refer again to the

crown. If barbs shorten due to feather wear, and barbule loss occurs

along the remaining barb segments, this can lead to elevated

brightness and reduced UVC due to the loss of light-absorbing

components (see Laczi et al., 2019). In the special case of the male

breast, the seasonal brightness reduction may occur due to barbule
A

B

FIGURE 2

Differences (mean ± SE) in brightness (A) and ultraviolet (UV)
chroma (B) of the throat, breast, and belly region of the black
abdominal stripe of the great tit, between sexes, and winter (W)
and spring (S).
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loss, reducing the reflective area that creates glossiness. These

explanations align with the seasonal breakdown in stripe size

(Adamıḱ and Vaňáková, 2011), which can only be caused by wear.

From an ultimate perspective, the sex-related colour pattern may

be meaningful as an amplifier of sex identity, combined with the

stripe width differences between sexes. Such an explanation has been

suggested, for example, for the whole-plumage colouration and stripe

size in the green-backed tit (Parus monticolus) (Hofmann et al.,

2007), or in Salamandrina species where both the gular patch

morphology and brightness were sex-dependent (Ancillotto et al.,

2022). Amplifiers are traits that enhance the perceived differences in

traits signalling quality (Hasson, 1991). This may be particularly

important for the great tit abdominal stripe considering that the true

size of the stripe probably cannot be estimated reliably by conspecifics

due to a high degree of error, as apparent width is significantly

affected by the actual positions of individual feathers (i.e. we can

‘comb’ greater or smaller patch size to an individual in the hand by
Frontiers in Ecology and Evolution 05
adjusting the feathers). It is also possible that the hidden UV breast

patch of males serves as an ornament, and the less bright and less

UV-saturated black throat and belly regions serve as amplifiers by

forming heightened within-pattern contrasts (Doucet and Meadows,

2009). The inverse female colour pattern (darker breast with brighter

surroundings) may specifically play a role in female–female

interactions or male mate choice, for example. Systematic

differences in contrast to the surrounding yellow feather areas are

unlikely to confound the patterns we described here, because yellow

feather reflectance seems to vary largely independently of melanin-

based colour in our population (Hegyi et al., 2015).

It is important to underline that the appearance with regards to

glossiness of the breast of males slightly depends on the angle of the

plumage surface to the incoming light (pers. obs.), similarly to other

species (Reed et al., 2020). This phenomenon gives the signaller an

opportunity to change the conspicuousness of its ornament via

behavioural adjustments according to the ambient light orientation

(Sicsú et al., 2013; Simpson and McGraw, 2018). This could be

important in great tits too, as during frontal encounters such as

courtship or aggressive displaying (for display repertoire in great

tits, see figures in Jones, 1968), the black stripe is elevated and it may

be more exposed to iridescence-generating light, playing important

roles in social interactions in both sexes (e.g. Järvi and Bakken,

1984; Wilson, 1992; Thys et al., 2020).

From the viewpoint of patterns, it could be conceivable that not

only the colour of the single patch itself may have signal value, but

also the contrast between integumental regions [see manakins

(Heindl and Winkler, 2003), humans (Lu et al., 2022) or tamarins

(Moreira et al., 2023)], as contrast may increase signal transmission

and conspicuousness or attractiveness. In other animals, where

sexes share the same colour pattern (as in the great tit), humans may

perceive sex-differences in pattern contrast, as, for example, among

vipers (Shine and Madsen, 1994). However, our findings highlight

that such contrast-related dichromatism will be judged as more

common if we consider cryptic colour differences, including not

only its chromatic but also the overlooked achromatic dimensions.

The absolute change in colouration of bird plumage between two

time periods can also be a signal (e.g. Laczi et al., 2021), or the

degree of its actual expression can convey different information at

different times (Hegyi et al., 2019). Based on this, it is possible that,

for example, at the time of pairing and territory establishment

period (i.e. in winter), the breast patch could be a courtship signal,

while later, during the incubation and nestling rearing period, it

may reflect the parental abilities due to the variation of actual state

and hence different colour properties of feathers. In addition, the

coherence of expression of the components of a complex signalling

system and the change in relative component expression may also

be informative (Hegyi et al., 2022).

Taken together, colouration of different parts of the great tit

abdominal stripe should be examined as sexual ornaments or signal

amplifiers. From a methodological viewpoint, revealing the

existence of (for the human eye) hidden patches may also help us

to choose more accurate methods for quantifying patch size,

including selecting the approximate boundaries of the trait in

question (see Figuerola and Senar, 2000), and helping detect

composite signals.
TABLE 2 Visual model-based chromatic (colour) and achromatic
(brightness) differences between throat (1), breast (2), and belly (3) in the
abdominal black stripe of great tits in winter (W) and spring (S).

Focus Patch1 Patch2 Chromatic Achromatic

Patch W♀1 W♀2 0.65 0.83

Patch W♀1 W♀3 0.39 3.49

Patch W♀2 W♀3 0.45 4.31

Patch W♂1 W♂2 1.47 8.10

Patch W♂1 W♂3 0.27 2.22

Patch W♂2 W♂3 1.31 5.88

Patch S♀1 S♀2 0.59 1.90

Patch S♀1 S♀3 0.32 0.38

Patch S♀2 S♀3 0.41 2.28

Patch S♂1 S♂2 1.39 3.41

Patch S♂1 S♂3 0.39 0.32

Patch S♂2 S♂3 1.06 3.09

Sex W♂1 W♀1 0.86 1.21

Sex W♂2 W♀2 1.72 7.71

Sex W♂3 W♀3 0.69 2.48

Sex S♂1 S♀1 0.76 3.17

Sex S♂2 S♀2 1.54 2.14

Sex S♂3 S♀3 0.89 3.22

Season W♀1 S♀1 0.49 5.44

Season W♀2 S♀2 0.45 4.36

Season W♀3 S♀3 0.60 2.33

Season W♂1 S♂1 0.55 3.48

Season W♂2 S♂2 0.63 1.21

Season W♂3 S♂3 0.38 1.58
Values are presented in ‘just noticeable difference’ units, and values in bold suggest
differences that possibly detectable by the birds’ tethrachromatic, ultraviolet-sensitive
visual system (JND>1).
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Font, E., Pérez I de Lanuza, G., and Sampedro, C. (2009). Ultraviolet reflectance and
cryptic sexual dichromatism in the ocellated lizard, Lacerta (Timon) lepida (Squamata:
Lacertidae). Biol. J. Linn. Soc 97, 766–780. doi: 10.1111/j.1095-8312.2009.01251.x

Galván, I. (2011). Feather microstructure predicts size and colour intensity of a
melanin-based plumage signal. J. Avian Biol. 42, 473–479. doi: 10.1111/j.1600-
048X.2011.05533.x

Griffith, S. C., and Buchanan, K. L. (2010). The zebra finch: the ultimate Australian
supermodel. Emu 110, v–xii. doi: 10.1071/MUv110n3_ED

Hart, N. S., Partridge, J. C., Cuthill, I. C., and Bennett, A. T. D. (2000). Visual
pigments, oil droplets, ocular media and cone photoreceptor distribution in two species
of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.).
J. Comp. Physiol. A 186, 375–387. doi: 10.1007/s003590050437

Hasson, O. (1991). Sexual displays as amplifiers: practical examples with an emphasis
on feather decorations. Behav. Ecol. 2, 189–197. doi: 10.1093/beheco/2.3.189

Hegyi, G., Laczi, M., Boross, N., Jablonszky, M., Kötél, D., Krenhardt, K., et al. (2019).
When to measure plumage reflectance: a lesson from collared flycatchers Ficedula
albicollis. Ibis 161, 27–34. doi: 10.1111/ibi.12609
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Reflectance in relation to macro-and nanostructure in the crown feathers of the
great tit (Parus major). Biol. J. Linn. Soc 127, 113–124. doi: 10.1093/biolinnean/blz016
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