
Frontiers in Ecology and Evolution

OPEN ACCESS

EDITED BY

Praveen Kumar Donta,
Vienna University of Technology, Austria

REVIEWED BY

Danfeng Hong,
Chinese Academy of Sciences (CAS), China
Tomasz Niedoba,
AGH University of Science and Technology,
Poland

*CORRESPONDENCE

Lijuan Hua

hualj@cma.gov.cn

RECEIVED 12 July 2023

ACCEPTED 14 August 2023

PUBLISHED 19 September 2023

CITATION

Wang B, Hua L, Mei H, Kang Y and Zhao N
(2023) Monitoring marine pollution for
carbon neutrality through a deep learning
method with multi-source data fusion.
Front. Ecol. Evol. 11:1257542.
doi: 10.3389/fevo.2023.1257542

COPYRIGHT

© 2023 Wang, Hua, Mei, Kang and Zhao.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 19 September 2023

DOI 10.3389/fevo.2023.1257542
Monitoring marine pollution
for carbon neutrality through
a deep learning method with
multi-source data fusion

Bin Wang1, Lijuan Hua2,3,4*, Huan Mei1, Yanyan Kang5

and Ning Zhao6

1School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology,
Jiangsu, Zhenjiang, China, 2Earth System Modeling and Prediction Centre, China Meteorological
Administration, Beijing, China, 3State Key Laboratory of Severe Weather (LASW), Chinese Academy of
Meteorological Sciences, Beijing, China, 4Key Laboratory of Earth System Modeling and Prediction,
China Meteorological Administration, Beijing, China, 5College of Oceanography, Hohai University,
Najing, China, 6Research Institute for Global Change, Japan Agency for Marine-Earth Science and
Technology, Yokosuka, Japan
Introduction: Marine pollution can have a significant impact on the blue carbon,

which finally affect the ocean’s ability to sequester carbon and contribute to

achieving carbon neutrality. Marine pollution is a complex problem that requires a

great deal of time and effort to measure. Existing machine learning algorithms

cannot effectively solve the detection time problem and provide limited accuracy.

Moreover, marine pollution can come from a variety of sources. However, most of

the existing research focused on a single ocean indicator to analyze marine

pollution. In this study, two indicators, marine organisms and debris, are used to

create amore complete picture of the extent and impact of pollution in the ocean.

Methods: To effectively recognize different marine objects in the complex

marine environment, we propose an integrated data fusion approach where

deep convolutional neural networks (CNNs) are combined to conduct

underwater object recognition. Through this multi-source data fusion

approach, the accuracy of object recognition is significantly improved. After

feature extraction, four machine and deep learning classifiers’ performances are

used to train on features extracted with deep CNNs.

Results: The results show that VGG-16 achieves better performance than other

feature extractors when detecting marine organisms. When detecting marine

debris, AlexNet outperforms other deep CNNs. The results also show that the

LSTM classifier with VGG-16 for detecting marine organisms outperforms other

deep learning models.

Discussion: For detecting marine debris, the best performance was observed

with the AlexNet extractor, which obtained the best classification result with an

LSTM. This information can be used to develop policies and practices aimed at

reducing pollution and protecting marine environments for future generations.

KEYWORDS

marine pollution, deep learning, deep CNN, marine organism detection, marine debris
detection, carbon neutrality
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1 Introduction

Marine pollution and carbon neutrality have commonly been

treated as two separate issues. The research articles simultaneously

examining marine pollution and carbon neutrality are few. Here, we

present an alternative view that these two issues are fundamentally

linked. It is widely known that both marine pollution and carbon

neutrality are linked to blue carbon. Marine pollution has a

significant impact on blue carbon (Moraes, 2019). Blue carbon is

important for achieving carbon neutrality as it provides a valuable

opportunity for carbon sequestration (Zhu and Yan, 2022).

Therefore, reducing marine pollution, directly or indirectly,

protects blue carbon, thereby achieving carbon neutrality. To

achieve carbon neutrality, monitoring and addressing marine

pollution are important. There are several common ocean

indicators that should always be used to monitor marine

pollution: marine organisms (Theerachat et al., 2019), marine

debris (Ryan et al., 2020), oil spill (Jiao et al., 2019), chlorophyll-a

concentration (Franklin et al., 2020), dissolved oxygen (Hafeez

et al., 2018), and the pH of seawater (El Zrelli et al., 2018). Most

of the existing research focused on a single ocean indicator to

monitor marine pollution. To better monitor marine pollution, two

ocean indicators have been introduced in this study. Marine

organisms and marine debris are selected to monitor marine

pollution. Specifically, detecting marine organisms is important

for understanding the effects of pollution on marine ecosystems.

Chemical contaminants are the main sources of marine pollution,

resulting from the nutrient runoff of chemicals into waterways

(Thompson and Darwish, 2019). It can harm the health of marine

organisms and reduce their ability to take up carbon dioxide and

sequester it in the ocean. To monitor chemical contaminants in the

marine environment, marine organisms are selected as one of the

ocean indicators. It is considered an indirect way to monitor marine

pollution. On the other hand, marine debris, such as plastics, fishing

gear, and other human-made materials, can harm marine life,

disrupt food webs, and damage habitats. It can negatively impact

the productivity and resilience of blue carbon ecosystems, reducing

their ability to sequester carbon (Duan et al., 2020). Also, the

production and disposal of marine debris can contribute to

greenhouse gas emissions, which finally weakens carbon

neutrality capacity (Lincoln et al., 2022). Thus, selecting marine

debris as the other ocean indicator is considered the most direct

measure of success in the campaign against marine pollution.

To detect marine debris and marine organisms, underwater

object recognition, an emerging technology, is used in this study.

With the help of an autonomous underwater vehicle, underwater

objects can be recognized from an image and captured and analyzed

to detect and identify marine organisms and marine debris (Ahn

et al., 2018; Chin et al., 2022). Generally, underwater object

recognition consists of two important steps, which are feature

extraction and classification (Wang et al., 2022). Compared with

the step of classification, feature extraction is more important and

difficult because of the complexity of the marine environment.

Previous research pointed out that feature extraction is a

challenging task in underwater object recognition that requires

efficiency and accurate object identification for marine big data
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processing. To date, machine learning and deep learning methods,

such as MLP, RNN, and KNN, have been introduced for

underwater object recognition. But the main problem is the

inaccurate extraction of features, which leads to low accuracy of

classifiers. A deep convolutional neural network (deep CNN)

provides new possibilities for effective recognition of objects and

performs better in feature extraction than most machine and deep

learning methods (Chin et al., 2022). But as marine objects may

have a similar color, shape, and texture, these existing methods are

hardly effective in recognizing differences between marine objects.

Thus, our proposed method introduces an integrated data fusion

approach where a deep CNN is combined to conduct underwater

object recognition. By leveraging this multi-source data fusion

approach, we significantly improve the accuracy of object

recognition, particularly when dealing with similar marine objects

that share the same color, shape, and texture. This advanced deep

learning technique ensures a more comprehensive and accurate

assessment of marine pollution by effectively capturing the

distinguishing features of marine organisms and debris.

Furthermore, our proposed method goes beyond conventional

approaches by employing specialized training strategies to

enhance the performance of the deep CNN. We incorporate

techniques like data augmentation to address the challenges

associated with limited underwater training data and variations in

marine pollution scenarios. By effectively augmenting the training

data, we improve the network’s ability to generalize and recognize

diverse instances of marine objects, leading to superior performance

compared to existing approaches. The combination of our

integrated data fusion approach and specialized training strategies

enables our method to overcome the limitations of traditional

feature-based methods and achieve notable advancements in

underwater object recognition for marine pollution assessment.

Therefore, by combining feature extraction and classification

methods with multisource data fusion, our study aims to leverage

the strengths of each data source and achieve a more comprehensive

understanding of the marine environment’s pollution levels. This

integrated approach can potentially provide valuable insights for

assessing the effectiveness of carbon neutrality efforts and informing

decision-making processes related to environmental management.

The contributions of this paper are:
1. We adopted multi-source based data fusion and deep CNN

models together to conduct underwater object recognition.

By fusing information from multiple sources and

leveraging the power of deep CNNs for feature extraction

and classification, the approach overcomes the limitations

of using a single data source and achieves higher accuracy

in identifying marine organisms and debris. This

advancement is crucial for effective monitoring and

mitigation of marine pollution.

2. The second contribution of this work attempts to develop a

hybrid deep learning model that consists of deep CNN

extractors with AI algorithm for marine object recognition,

which monitoring marine pollution. This model combines

the strengths of different deep learning architectures or

techniques to improve the accuracy and robustness
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ofmarine object recognition. By leveraging the

complementary features and capabilities of multiple deep

learning approaches, the hybrid model offers enhanced

performance in identifying and classifying marine objects.

3. Our paper specifically contributes by integrating two

distinct ocean indicators, namely marine organisms and

debris, in the data fusion process. This integration provides

a more comprehensive and accurate assessment of marine

pollution, surpassing the limitations of considering a single

indicator alone.

4. The findings and techniques presented in our paper have

practical implications for addressing marine pollution and

achieving carbon neutrality. By accurately detecting and

monitoring marine pollution indicators through data

fusion and deep CNNs, our research contributes to the

development of effective policies and practices for reducing

pollution and protecting marine environments. This has

long-term benefits for carbon neutrality and the

preservation of marine ecosystems.
The rest of the paper is organized as follows: We provide a

literature review about underwater object recognition and its related

deep learning methods in Section 2. Section 3 provides details of

methodology. In Section 4, the results of the experimentation are

described and conducted to evaluate the performance of the

proposed model. Finally, conclusions and limitations are presented.
2 Related work

2.1 Underwater object recognition

Underwater object recognition is important for a variety of

applications, such as search and rescue operations, archaeological

exploration, environmental monitoring, and military operations

(Wang et al., 2022). By identifying and locating objects in marine

environments, these technologies can increase safety, protect the

environment, and advance scientific knowledge. Due to

the numerous advantages of underwater object recognition, the

development of techniques for underwater object detection and

recognition has attracted great research efforts. Computer vision

techniques are widely used to automatically detect underwater

objects. Around three decades ago, stereo photographic methods

were utilized to detect the locations and sizes of sharks in marine

environments (Klimley and Brown, 1983). Walther et al. (2004)

designed an automated system that is used by remotely operated

underwater vehicles (ROVs) to detect and track underwater objects

in the marine environment. Later, a trawl-based underwater camera

system using an automatic segmentation algorithm for fish acquired

was developed, which overcomes the low brightness contrast

problem in the underwater environment (Chuang et al., 2011).

However, these traditional techniques rely heavily on man-made

discriminant features, which are not able to recognize various

objects with similar colors, shapes, and textures in complex

marine environments. With the increasing availability of data and

the development of machine learning algorithms, there has been a
tiers in Ecology and Evolution 03
surge in the use of machine learning and deep learning methods for

object recognition in remote sensing. Researchers have explored

and implemented various advanced deep networks to tackle the

challenges associated with image analysis. Hong et al. (2020a)

developed a new minibatch graph convolutional network (GCN)

that has the ability to infer and classify out-of-sample data without

requiring the retraining of networks, thus enhancing the

classification performance. Meng et al. (2017) proposed a fully

connected network called FCNet that uses deep features to improve

the classification performance of images. Furthermore, Hong et al.

(2020b) introduced a comprehensive multimodal deep learning

framework called MDL-RS (Multimodal Deep Learning for

Remote Sensing Imagery Classification). The primary objective of

MDL-RS is to address the challenges of remote sensing (RS) image

classification. The framework combines pixel-level labeling guided

by an FC net design with spatial-spectral joint classification using a

CNN-dominated architecture. By integrating these approaches,

MDL-RS aims to achieve a unified and effective solution for RS

image classification. Li et al. (2023) applied sparse neural network

embedding to showcase the scalability of the LRR-Net framework.

The proposed approach is evaluated on eight distinct datasets,

demonstrating its effectiveness and superiority compared to state-

of-the-art methods for hyperspectral anomaly detection. Recently,

vision transformer (ViT) can capture global interactions between

different patches in the image, enabling it to learn long range

dependencies, thereby yielding higher classification performance

(Bazi et al., 2021). While ViT has achieved impressive results in

image classification tasks, it suffers from high computational

requirements and struggles with capturing fine-grained spatial

information due to the fixed-size patches used in the model.

EViT builds upon the foundation of ViT to overcome Vit

limitations, yielding state-of-the-art performance (Yao et al.,

2023). Additionally, a multimodal fusion transformer (MFT)

network is developed based on ViT to achieve better

generalization (Roy et al., 2023). Similarly, in the marine

environment field, most of researchers have begun to use deep

learning methods to tackle their problem of identifying objects in

marine environment, which finally achieved significant success.

From the above discussion, the following section briefly reviews

the related works and presents the development of marine organism

detection and deep learning methods and the development of

marine debris detection and deep CNN models.
2.2 Marine organism detection and deep
learning methods

Marine organism detection is an emerging field that involves

using technology and artificial intelligence to identify and classify

marine organisms in underwater environments (Zhang et al., 2021).

However, it is difficult to obtain sufficient marine organism data in

underwater environments. Until 2018, the public datasets for deep-

sea marine organisms were provided by the Japan Agency for

Marine-Earth Science and Technology (JAMSTEC). Thus, there

had been few attempts to apply deep learning to marine organism

detection before 2018. Lu et al. (2018) used the filtering deep
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convolutional network (FDCNet) classifier to identify the most

relevant features. The results showed that FDCNet outperformed

several other state-of-the-art deep learning architectures, including

ResNet, VGG-16, and InceptionNet, achieving an accuracy of over

98%. Huang et al. (2019) first introduced deep convolutional

networks to marine organism detection. A Faster Region-based

Convolutional Neural network (Faster R-CNN) was used to detect

marine organisms. To improve the performance of the model, data

augmentation techniques are applied to increase the size and

diversity of the training dataset. To improve the performance of

the model, data augmentation techniques are applied to increase the

size and diversity of the training dataset. The Faster R-CNN

approach with data augmentation represents a promising

approach for marine organism detection and recognition and

demonstrates the potential of deep learning techniques combined

with data augmentation to improve the accuracy and efficiency of

object detection models. However, addressing underwater imaging

in a special underwater environment is a major challenge for marine

organism detection. To address this problem, Han et al. (2020)

suggested the introduction of a novel sample-weighted loss function

to mitigate the impact of noise on the detection network. Zhang

et al. (2021) used an image enhancement technique for underwater

images to improve their quality and visibility. This is followed by

object detection using a deep learning architecture, specifically the

RetinaNet object detection model. Szymak proposed a well-known

deep CNN model, AlexNet, for the recognition of underwater

objects and showed that pretrained CNN models can be fine-

tuned for specific tasks to achieve high accuracy (Szymak and

Gasiorowski, 2020). Sun et al. (2018) proposed a fine-tuned

VGG-16 model for object recognition in low-quality underwater

videos, which achieved high accuracy on the object recognition task.

Some researchers proposed VGG-16, ResNet, and GoogleLeNet as

attention mechanisms to highlight the important regions of the

image for classification (Heenaye-Mamode Khan et al., 2023).
2.3 Marine debris detection and deep
learning methods

Marine debris is mostly composed of processed materials that

are useful to human populations, such as plastics, metals, wood,

glass, rubber, and synthetic materials (Weis, 2015). In recent

years, many studies have utilized deep learning methods to

address the challenges of marine debris detection, classification,

and quantification. Valdenegro-Toro employed CNN to

automatically identify marine debris in forward-looking sonar

imagery (Valdenegro-Toro, 2016). Kylili et al. (2019) realized

floating plastic marine debris through the VGG-16 method.

Fulton et al. (2019) developed a robotic platform that combines

a camera and a manipulator arm to detect and collect marine

debris. They evaluate four different neural network architectures

based on the Faster R-CNN architecture to detect and classify

three different types of marine litter in underwater images. The

authors used a dataset of deep-sea images containing different
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types of debris, such as plastic waste and fishing gear (Xue et al.,

2021). They fine-tuned VGG-16 and evaluated its performance on

a separate test set. The study evaluated the performance of six

prominent architectures: VGG-19, InceptionV3, ResNet50,

Inception-ResNetV2, DenseNet121, and MobileNetV2. This

study demonstrated that deep convolutional architectures are

effective for the task of marine debris classification and that

different architectures can achieve high accuracy with varying

levels of computational resources.

According to the above discussions, it was found that deep CNN

models as feature extractors are a popular method for underwater

object recognition because they can better achieve illumination

invariance and better performance. Among different kinds of deep

CNN models, three common deep CNN models, AlexNet,

GoogLeNet, and VGG-16, are employed to detect marine

organisms and marine debris in this study.
3 Methodology

3.1 Research framework

In this study, we propose a research framework based on marine

organism and debris datasets to analyze and monitor marine

pollution, as shown in Figure 1. The whole process is divided into

seven parts. First, marine organism and debris data are collected

from different databases. Then data preprocessing is carried out,

which is primarily used to convert raw data into a computable

format. After data preprocessing, different databases are fused

together. Then the fused dataset is divided into a training set, a

validation set, and a test set. Next, features of images are extracted

based on deep CNNs. Finally, the most common classifiers,

including softmax, SVM, ANN, and LSTM, were applied when

trained on features extracted with deep CNNs. At the same time, the

performance of these models was evaluated and compared.
3.2 Data collection

In this research, we use two different databases for each indicators

that are publicly available for simulations and experimental work, as

depicted in Table 1. These two databases for each indicators are fused

together to evaluate the model. A few images of the underwater

objects are depicted in Figure 2. Table 2 shows the class-wise

distribution of the samples used in our experiments. In our

experiments, there are two major datasets. One is for marine debris

images, and the other is for marine organism images. Each dataset is

divided into six distinct categories, with each category being

represented by synapomorphies. The dataset is divided into three

subsets: 60% of the data to the training set, 20% to the validation set,

and 20%to the test set. In this study, a ten-fold cross-validation

approach is used. Moreover, considering the complexity of the

problem and the size of the dataset, the balance between positive

and negative samples in the training dataset, the validation dataset,
frontiersin.org
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and the test dataset is crucial to avoid biased learning and ensure the

model’s ability to generalize well, as shown in Table 3.
3.3 Preprocessing of data

In this research, data preprocessing included two parts: image-

size standardization and data augmentation. In order to mitigate the

impact of different properties and numerical differences in the data,

the raw data were standardized. By standardizing the image size,

We can input the images to the model without additional resizing,

regardless of their original dimensions. Also, standardizing the

image size can help reduce computational complexity and

memory usage during training as well as improve the overall

performance and accuracy of the model.

Data augmentation aims to increase the number of training samples

and enhance the dimension and diversity of the data. After conducting

image-size standardization, data augmentation was employed to

artificially increase the size of the dataset and effectively prevent

overfitting. In this study, we employ four distinct types of image set

augmentation, such as flip, crop, translation, and affine transformation.

These methods enable transformed images to be created with the same

label as the original images. Firstly, we vertically flip all images to

recognize underwater and surface objects regardless of their orientation.

Next, we crop the images by removing about one-fifth of the right and

left edges. Thirdly, we randomly shift images by certain amounts of

pixels, which could assist in recognizing the object or segment regardless

of its position in the image. Lastly, we apply an affine transformation

based on sine transforms to each training image, generating multiple

images of each object from different view angles.
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3.4 Multi-source data fusion

Multi-source data fusion refers to the process of integrating and

combining information from multiple diverse sources to derive

comprehensive insights and make informed decisions. By

harnessing the power of various data streams, multi-source data

fusion enables a more holistic understanding of complex

phenomena. This fusion process involves data preprocessing,

feature extraction, and integration techniques, which aim to

improve the quality of the data and enhance the accuracy of the

analysis. In this study, the image datasets of marine organisms and

debris were selected. Once the data is collected, it needs to be

preprocessed to ensure consistency and quality. Data preprocessing

aims to make the data suitable for further analysis and fusion. Next,

their dimensional data was fused using data fusion algorithms. As

the input values varied, they were multiplied by distinct weights to

account for these differences. The resulting input map can be

obtained by combining the data as illustrated:

Xoutput = (Wturb � Xturb) +Wpose + Xpose) +Wvariety � Xvariety (1)

where X is applied for element wise multiplication and Xturb,

Xpose, Xvariety represent the input, Wturb, Wpose, Wvariety depict the

learning parameters classifying numerous impact degree of

these factors.

To normalize the output values, a hyperbolic function presents

in Equation 2. It is utilized to define a particular range (−1, 1). The

value at the t time interval is represented by X̂t .

bX t   =   tanh  (Xoutput) (2)
TABLE 1 Datasets for marine organisms and marine debris.

Target Dataset Type Providers

Marine Organism Kyutech-10K Images+Videos JAMSTEC

NWFSC Data Sets Images NOAA

Marine Debris Deep-sea Debris Database Images+Videos JAMSTEC

Marine Debris Program Images NOAA
* JAMSTEC is the Japan Agency for Marine-Earth Science and Technology; NOAA is the National Oceanic and Atmospheric Administration.
FIGURE 1

The general framework of the proposed methodology.
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3.5 Feature extraction

Deep CNNs are a type of neural network that is specifically

designed for processing images and other spatial data. They consist

of multiple layers of convolutional and pooling operations, followed

by fully connected layers for classification or regression tasks.

Currently, deep CNNs are widely used in various computer vision

applications for object detection, image segmentation, and image

classification. Features extracted by deep CNNs always achieve

better performance than other methods. AlexNet, GoogLeNet,
Frontiers in Ecology and Evolution 06
and VGG-16, which are the most frequently used in previous

research, are selected and used in this study.

3.5.1 AlexNet
AlexNet is one of the well-known deep CNN architectures, which

was developed by Alex Krizhevsky, Ilya Sutskever, and Geoffrey

Hinton in 2012. AlexNet won the championship in the ImageNet

Large Scale Visual Recognition Challenge 2012 (ILSVRC)

competition, achieving a top-5 error rate of 15.3%. The architecture

of AlexNet is composed of eight layers, which are five convolutional
TABLE 2 Distribution of categories in the dataset.

Objects Categories Total Images Training Set Validation set Test Set

Marine Organisms Plankton 12,112 7267 2422 2,422

Fish 18,112 10867 3622 3,622

Crab 4049 2429 810 810

Shrimp 8049 4829 1610 1,610

Shark 98 59 20 20

Urchin 399 239 80 80

Marine Debris No trash 4901 2941 980 980

Other trash 3601 2161 720 720

Plastic 7,112 4267 1422 1,422

Rubber 849 509 170 170

Metal 48875 29325 9775 9,775

Glass 1783 1070 357 357

Total 109,940 65964 21988 21,988
FIGURE 2

Sample of images from the datasets.
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layers and three fully-connected layers (see Figure 3). The network,

except the last layer, is divided into two copies, which are processed

on the GPU (Krizhevsky et al., 2017). More specifically, In the first

layer, the size of a convolutional layer of 11 × 3 and a stride of 4 pixels

are used. The second convolutional layer filter size was reduced to 5 ×

5 × 48, and the convolutional stride was reduced to 1. The third

convolutional layer consists of 384 kernels with a size of 3 × 3 × 256

applied with a stride of 1. The fourth and fifth convolutional layers

have 384 kernels with a size of 3 × 3 × 192 and 256 kernels with a size

of 3 × 3 × 128 respectively. These layers also have a stride of 1. The

two first and last convolutional layers are followed by max-pooling

layers, where the size of the pooling layer is 3 × 3 and a stride of 2.

Hence, the output size is reduced by half in each of these pooling

layers. Following the three fully connected layers, AlexNet outputs

1000 classes in the ImageNet dataset. AlexNet achieves remarkable

performance due to data augmentation, dropout, ReLU,

standardization, and overlapping pooling.

3.5.2 GoogLeNet
GoogLeNet is a 22-layer deep convolutional neural network that

was proposed by Szegedy et al. (2015) at Google in 2014 (see

Figure 4). It was designed to reduce the number of parameters in

the model, thereby reducing computational complexity and

improving the accuracy and efficiency of image classification tasks.

Hence, the GoogLeNet achieved state-of-the-art performance in

classification and detection, used fewer parameters, and ran faster

than previous models, with a top-5 test error rate of 6.7% in the

ILSVRC-2014 competition. GoogLeNet employs a unique type of

network block called an inception module, which consists of multiple

parallel convolutional and pooling layers, as shown in Figure 2. The

Inception module consists of parallel convolutional layers with

different filter sizes, including 1 × 1, 3 × 3, and 5 × 5 filters, as well

as pooling operations. These parallel paths capture information at

various spatial scales and enable the network to learn both local and
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global features. Additionally, 1 × 1 convolutions are used to reduce

the dimensionality of the input data and control computational

complexity. GoogLeNet employs a 1 × 1 convolutional layer as a

bottleneck layer to minimize input channels. Then the convolutional

layer put into multiple parallel convolutional and pooling layers of

different sizes, which could solve the alignment issues. To combat the

issue of vanishing gradients in deep networks, GoogLeNet introduced

auxiliary classifiers at intermediate layers. These auxiliary classifiers

provide additional supervision during training and help propagate

gradients back to earlier layers, aiding in the training of

deeper networks.

3.5.3 VGG-16
VGG-16 is a kind of deep CNN model that was developed by

Alberto et al. from the Visual Geometry Group at the University of

Oxford in 2014 (Garcia-Garcia et al., 2017). The VGG-16 method

achieved state-of-the-art performance on ILSVRC 2014, achieving

92.7% top-5 test accuracy on the ImageNet dataset. The architecture

of VGG-16 consists of 16 layers, which are 13 convolutional layers

and 3 fully connected layers. VGG-16 receives an image input size

of 224 × 224. Then it is processed by a series of convolutional layers

with 3 × 3 filters, followed by max-pooling layers with 2 × 2 filters

with stride 2. After a stack of convolutional layers, there are two

fully-connected layers with 4096 channels each and one output

layer with 1000 channels. The structure of VGG-16 is described by

the following Figure 5.
3.6 Deep feature classification with
conventional machine and deep
learning classifiers

The most common classifiers have gained excellent results,

which are KNN, SVM, softmax, and LSTM. These four classifiers
TABLE 3 The numbers of positive and negative of training dataset, validation dataset, and test dataset among twelve categories.

Objects

Categories Training Set Validation Set Test Set

Positive Negative Positive Negative Positive Negative

Marine Organisms Plankton 3634 3633 1211 1211 1211 1211

Fish 5434 5433 1811 1811 1811 1811

Crab 1215 1214 405 405 405 405

Shrimp 2415 2415 805 805 805 805

Shark 30 29 10 10 10 10

Urchin 120 119 40 40 40 40

Marine Debris No trash 1471 1470 490 490 490 490

Other trash 1081 1080 360 360 360 360

Plastic 2134 2133 711 711 711 711

Rubber 255 254 85 85 85 85

Metal 14663 14662 4888 4887 4888 4887

Glass 535 535 179 178 179 178
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were trained on deep features extracted with the best performing

feature extraction scheme.

3.6.1 KNN
KNN is a simple and effective algorithm for classification in

machine learning. Generally, KNN has better performance than
Frontiers in Ecology and Evolution 08
neural networks on a training dataset. The performance of the KNN

classifier is mainly influenced by the key parameter k. When

introducing the KNN classifier, setting a higher K value can

produce a smoother decision boundary that could reduce the

impact of noisy data and lead to overgeneralization. Conversely, a

lower K value may lead to a more complex decision boundary that
FIGURE 4

GoogLeNet architecture.
FIGURE 3

AlexNet architecture.
FIGURE 5

VGG-16 architecture.
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may cause overfitting. Euclidean distance is the most commonly

used distance function when dealing with fixed-length vectors of

real numbers. the equation is

d(x, y) = jjx − yjj  =  
ffiffiffiffiffiffiffiffiffiffiffiffi
(x − y

p
  · (x − y)  =   o

m

i=1
(xi − yi)

2

 !1=2

(3)

KNN is a widely employed supervised learning technique

utilized in various domains, such as data mining, statistical

pattern recognition. KNN operates by classifying objects based on

their proximity to the nearest training examples in the feature

vector. The classification of an object is determined by a majority

vote of its closest neighbors, with K being a positive integer that

signifies the number of neighbors considered. These neighbors are

selected from a set of known correct classifications. While the

Euclidean distance is commonly used, alternative distance

measures like the Manhattan distance can also be employed.
3.6.2 SVM
SVM uses a linear model to implement nonlinear boundaries

between classes by mapping the original data from the input space

to a high-dimensional feature space. This mapping constructs a new

space by using a set of kernel functions. After this mapping, an

optimal separating hyperplane is achieved by maximizing the

margins of class boundaries with respect to the training data

(Tajiri et al., 2010). For the case of linearly separable data, a

separating hyperplane about the binary decision classes can be

represented as the following equation:

yi½wxi + b�  ≥  1,∀ i (4)

where xi and b represent the attribute values and bias,

respectively, and wis a coefficient vector that determines the

hyperplane in the feature space. This formula constructs two

hyperplanes that find the optimal hyperplane with a maximal

margin by minimizing ∥w∥2, subject to constraints. The above

formulation could cause a particular dual problem called the Wolfe

dual (Fletcher and Shawe-Taylor, 2013). Therefore, the formula will

be formed as follow:

LD ≡o
N

i=1
ai −

1
2o

N

i=1
o
N

j=1
aiajyiyjK(xi, xj) (5)

Subject to

0  ≤ ai ≤ C,∀ i (6)

o
N

i=1
aiyi  =  0 (7)

where k(xi,xj) is a kernel function representing the inner

product between xi and xj in the feature space. Four types of

kernel functions are often used to solve different problems which

are the linear kernel, the polynomial kernel, the radial basis kernel

(RBF), and the sigmoid kernel. The choice of kernel function is based

on the problem type. The final SVM classifier will be in the form of:
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f (x)  =  sign o
N

i=1
aiyiK  (x,  xi)  +  b

 !
(8)
3.6.3 Softmax
The softmax classifier is a widely used method for multi-class

classification in machine learning and deep learning that achieves

excellent performance for multi-class tasks. In the context of deep

learning, the softmax classifier is a neural network architecture that

employs the softmax function as the final layer for classification

tasks. The softmax function takes an input vector and normalizes it

into a probability distribution whose total sums up to 1. The

softmax function can be used in a classifier only when the classes

are mutually exclusive. The softmax function formula is as follows:

s (~z)i =
ezi

oK
j=1e

zj
(9)

where all zi values are the elements of the input vector and

can take any real value. The term at the bottom of the formula

is the normalization term, which ensures that all the output

values of the function will sum to 1, thus constituting a valid

probability distribution.
3.6.4 LSTM
LSTM is a variant of Recurrent Neural Network (RNN), which

is designed to solve the vanishing gradient problem of RNN. A

memory cell in the LSTM model is an important reason for

addressing the problem of RNN. The memory cell is controlled

by three gates, which are a forget gate ft, an input gate it, and an

output gate ot. These three gates assist in regulating the

information flow through the memory cell. In LSTM, the forget

gate plays an important role in deciding what information should

be forgotten or remembered from its memory. It controls the

information flow through cell state, and its calculation is shown

in Equation:

ft  =  s  Wi½ht−1,xt �  +  bf ) (10)

Here, s denotes the sigmoid function, which maps the input

values to the interval (0, 1). ht−1 is the previous hidden state. xt is the

current node.Wf represents the weight parameters. bf represents the

bias parameters. The weight and bias parameters are learned during

the LSTM training process.

The Input gate is employed to fresh data into the memory cell

through element-wise multiplication with the new input. The input

gate consists of the input activation gate and the candidate memory

cell gate, which allow the LSTM to update and govern the data in

the memory. The input gate is calculated by the equation in the

LSTM network, which determines values of the cell state should be

modified based on an input signal. This modification is carried out

using a sigmoid function and a Hyperbolic tangent (tanh) layer, as

shown in Equation (11), and results in the creation of a candidate

memory cell vector Eqation (12).

it   =  s   Wi½ht−1, xt �  + bf ) (11)
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tanh   =  
ex   −  e−x

ex   +  e−x

� �
(12)

~ct =  tanh(Wc½ht−1, xt �  + bc) (13)

To update the previous memory cell ct−1, the input vector and

the candidate memory cell vector are combined, which is

represented as:

ct = ft ⊙ ct − 1 + it ⊙~ct (14)

where ⊙ denotes element-wise multiplication.

The output gate is used to combine with the current memory

cell to produce the current hidden state, and the current hidden

state influences the output at the next time step. The calculation

process is shown as:

ot = s (Wo½ht−1, xt , ct � + bo) (15)

The structure of LSTM is shown in Figure 3. The LSTM

method addresses the problem of long-term dependence in

learning, which provides good forecasting results.
3.7 Model performance evaluation

In examining the performance of monitoring marine pollution,

we adopted the accuracy, precision, sensitivity, and F1-score based

on their suitability for the performance measures of different

classifiers in this study. The four estimators are described and

calculated as follows:

Accuracy  =  
TP  + TN

TP  +  TN   + FP  +  FN
(16)
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 Precision  =  
TP 

TP  +  FP
(17)

 Sensitivity  =  
TP 

TP  +  FN
(18)

F1  =  
2TP

2TP  +  FN   +  FP
(19)

where TP presents True Positive, FN refers to False Negative,

TN is True Negative and FP is False Positive.
4 Experimental results

All the experiments, including data processing, feature

extraction, and data classification are carried out on MATLAB

2018a and Python3.6 programming implementation.

4.1 Features extracted by different deep
CNN architectures

According to our proposed framework, deep CNN models are

utilized to extract image features. Figure 6 illustrates the training

and validation losses for all employed deep CNN models trained

under the same training dataset. The validation loss curves closely

follow the corresponding training loss curves, showing the ability of

the deep CNN models in generalization.

We compare the performance of AlexNet, GoogLeNet, and

VGG-16 for marine organism and debris detection. We can see that

VGG-16 achieves the best performance of marine organisms in

Table 4, which obtained the best results of all considered metrics,

including 93.39% accuracy, 95.34% precision, 90.74% sensitivity,
B

A

FIGURE 6

Average loss per epoch for training and validation steps. (A) Loss of the training and validation with respect to epoch of marine organism detection.
(B) Loss of the training and validation with respect to epoch of marine debris detection.
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and 93.54%F1-score. Table 4 and Figure 7 show four estimators for

each deep CNN architecture for different categories of marine

organism detection. The VGG-16 extractor for plankton detection

shows the best performance with 98.57% accuracy, 97.76%

precision, and 96.92% F1-score. The AlexNet extractor for

plankton detection achieves a highest sensitivity of 93.76%. In

contrast, The GoogLeNet extractor shows the weakest

performance in crab detection with 82.05% accuracy and 86.45%

precision. The AlexNet extractor for shrimp recognition obtains the

lowest sensitivity of 78.06% and the lowest F1-score of 79.89%.

In terms of marine debris detection, AlexNet achieves the best

result with 92.41% accuracy, 92.04% precision, 93.08% sensitivity,

and 91.95% F1-score, as shown in Table 5. Figure 8 shows four

estimators for each deep CNN architecture for different categories

of marine debris detection. The best performance is observed on

rubber detection using the AlexNet extractor, which achieves a

highest accuracy of 95.37%, a highest precision of 96.27%, a highest

sensitivity of 96.59%, and a highest F1-score of 96.24%. In contrast,

the weakest performance is observed on other trash detection using

the GoogLeNet extractor, with a lowest accuracy of 78.06%, a lowest

precision of 83.05%, and a lowest sensitivity of 82.48%. The VGG-

16 extractor shows the worst performance in no trash recognition

with the lowest F1-score of 78.45%.

In this study, the receiver operating characteristics (ROC) curve

and the area under curve (AUC) is employed in these two scenarios

to determine the validity of the proposed method. The ROC curve is

a way of displaying the true positive rate (TPR) against the false

positive rate (FPR) at different thresholds, which reflect sensitivity

and 1-specicity value of the proposed method. Figure 9 shows the

ROC curve of all subjects and the average AUC of all subjects in

marine organism and debris detection. In marine organism

detection, ROC analysis showed that the average AUC of the

VGG-16 method is 0.80 and is significant (p¡0.05), which
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outperform than other deep CNNs. In terms of marine debris

recognition, the average AUC of AlexNet is around 0.88 and is

significant (p¡0.05). According to the results, it shows that the

AlexNet method had the best performance among three

deep CNNs.

In this study, t-SNE is used to visually compare differences

among these three deep CNN architectures in marine organism and

debris detection. Figure 10 shows two-dimensional t-SNE training

feature projections for the best-performing VGG-16 architecture

for marine organism detection and AlexNet architecture for marine

debris detection when three different schemes of transfer learning

are used.
4.2 Performance of machine and deep
learning classifiers

In this study, KNN, SVM, Softmax, and LSTM classifiers are

trained on deep features extracted with the best-performing feature

extraction methods for a given CNN architecture. As we can see

from Table 6, the LSTM classifier with VGG-16 for detecting

marine organisms outperforms other deep learning models with

95.99%, 95.21%, 97.48%, and 98.24% for accuracy, precision,

sensitivity, and F1-score, respectively. As shown in Table 7, the

best performance was observed with the AlexNet extractor, which

obtained the best classification result with an LSTM with an

accuracy of 98.68%, precision of 96.76%, sensitivity of 95.42%,

and F1-score of 96.24%.

Figure 11 shows the accuracy on the test set when each

algorithm performs ten-fold cross validation on the marine

organism dataset. It can be seen in the figure that the

classification effect of VGG-16-LSTM algorithm with green line is

the best in all ten-fold test sets. In terms of the marine debris
TABLE 4 Results of performance with different deep CNNs of marine organism detection.

Estimators Deep CNNs Plankton Fish Crab Shrimp Shark Urchin Average

Accuracy(%) AlexNet 89.54 93.12 86.27 88.06 86.27 82.48 87.62

GoogLeNet 93.76 89.54 82.05 87.05 83.08 88.06 87.26

VGG-16 98.57 93.76 90.59 89.59 95.37 92.48 93.39

Precision(%) AlexNet 90.06 92.56 90.09 92.69 86.27 94.05 90.95

GoogLeNet 86.78 87.67 86.45 90.45 88.27 89.97 88.27

VGG-16 97.76 96.92 92.92 94.62 95.08 94.76 95.34

Sensitivity(%) AlexNet 93.76 88.84 86.38 83.82 75.06 84.78 85.44

GoogLeNet 89.78 83.07 85.06 78.06 78.56 88.06 83.77

VGG-16 92.37 93.76 90.27 89.78 88.06 90.18 90.74

F1-score(%) AlexNet 90.27 87.75 90.18 84.78 86.45 88.46 87.98

GoogLeNet 93.59 84.52 89.78 79.89 89.89 90.59 88.04

VGG-16 96.92 88.96 96.24 90.18 92.69 96.24 93.54
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FIGURE 7

The performance of four estimators of marine organism detection. (A) The Accuracy of deep CNNs. (B) The Precision of deep CNNs. (C) The
Sensitivity of deep CNNs. (D) The F1-score of deep CNNs.
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dataset, the classification effect of AlexNet-LSTM algorithm with

yellow line is the best in all ten-fold test sets and the result

fluctuation is small.

Normalized confusion matrices in Figure 12 display the

performance of deep CNNs with machine and deep learning

classifiers on marine organism and debris detection. The

confusion matrices for the best-performing VGG-16-LSTM for

marine organism detection and AlexNet-LSTM for marine

debris detection.
5 Discussion and conclusions

Marine pollution is a major environmental challenge that affects

the health of the world’s oceans and the creatures that live in them,

thereby negatively impacting carbon neutrality. The sources of

marine pollution are diverse, including land-based sources such

as industrial and municipal waste, agricultural runoff, and litter, as

well as ocean-based sources such as oil spills and ship discharges.

Due to the complexity of monitoring marine pollution, most

previous research used a single ocean indicator to monitor

marine pollution. In this paper, we used marine organisms and

marine debris as two ocean indicators for monitoring marine

pollution. Motivated by the need for automatic and effective

approaches for marine organism and debris monitoring, we

employ machine and deep learning techniques together with deep

learning-based feature extraction to identify and classify marine

organisms and debris in a realistic underwater environment.

This paper provides a comparative analysis of common deep

conventional architectures used as feature extractors for underwater

image classification. Furthermore, it explores the best ways to use

deep feature extractors by analyzing three different modes for
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utilizing pretrained deep feature extractors and examining the

performance of different machine and deep learning classifiers

trained on top of extracted features. Our results show that VGG-

16 achieves the best performance of marine organism detection,

which obtained the best results of all considered metrics, including

95.99% accuracy, 95.21% precision, 97.48% sensitivity, and 98.24%

F1-score.However, the AlexNet extractor for marine debris

detection shows the best performance with 92.41% accuracy,

92.04% precision,93.08% sensitivity, and 91.95% F1-score. Our

results also show that four common classifiers are used to train

on features extracted with deep CNNs. The LSTM trained on the

VGG-16 extractor achieves the best performance with 95.99%

accuracy, 95.21% precision, 97.48% sensitivity, and 98.24% F1-

score for detecting marine organisms, while the LSTM classifier

trained on the AlexNet extractor obtains accuracy of accuracy of

98.68%, precision of 96.76%, sensitivity of 95.42%, and F1-score of

96.24%. Considering the inherent challenges that come with

automatic marine organism and debris classification in

underwater imagery, the obtained results demonstrate the

potential for further exploitation of deep-learning-based models

for marine organism and debris identification and classification in

complex marine environments.

However, three major limitations of our study should be

mentioned. First, this study only selected six categories for each

dataset. It is relatively limited. Future studies should consider

expanding the range of categories for marine organism and debris

recognition and classification. Including a broader spectrum of

categories would allow for a more comprehensive understanding

of the marine ecosystem and pollution dynamics. This expansion

can be achieved by collecting more diverse datasets and

incorporating advanced classification techniques. Second, most

underwater videos have limited discriminative information due to
TABLE 5 Results of performance with different deep CNNs of marine debris detection.

Estimators Deep CNNs No trash Other trash Plastic Rubber Metal Glass Average

Accuracy(%) AlexNet 93.37 90.45 92.92 95.37 91.78 90.59 92.41

GoogLeNet 89.78 78.06 88.09 90.06 83.08 88.06 86.19

VGG-16 93.12 87.05 86.27 92.48 86.27 82.48 87.95

Precision(%) AlexNet 89.78 88.45 92.92 96.27 91.08 93.76 92.04

GoogLeNet 84.56 83.05 92.09 88.06 90.45 88.45 87.78

VGG-16 83.82 87.05 86.27 90.38 88.27 89.54 87.56

Sensitivity (%) AlexNet 92.48 89.76 95.37 96.59 88.06 96.24 93.08

GoogLeNet 89.78 82.48 89.78 88.06 84.48 90.59 87.53

VGG-16 87.41 82.54 93.12 82.48 87.05 88.06 86.78

F1-score (%) AlexNet 87.56 88.96 93.77 96.24 92.92 92.24 91.95

GoogLeNet 80.06 84.52 89.78 80.06 90.59 90.59 85.93

VGG-16 78.45 87.75 88.06 84.78 86.27 88.46 85.63
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FIGURE 8

The performance of four estimators of marine debris detection. (A) The Accuracy of deep CNNs. (B) The Precision of deep CNNs. (C) The Sensitivity
of deep CNNs. (D) The F1-score of deep CNNs.
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FIGURE 9

The ROC curves and AUC values of three different deep CNNs. (A) Marine organism detection. (B) Marine debris detection.
B

A

FIGURE 10

Two-dimensional t-SNE projections of three deep CNNs. (A) t-SNE of marine organism detection. (B) t-SNE of marine debris detection.
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their low resolution and low saturation. Enhancing the quality of

data collection is crucial for improving the accuracy and reliability

of classification models. Future studies may explore the use of

higher-resolution underwater cameras and advanced imaging

technologies to capture more detailed and informative data.

Additionally, considering variations in lighting conditions, water

clarity, and camera positioning can further improve the quality and

representativeness of the collected data. Third, it is the first time to

detect two ocean indicators for marine pollution. It might cause
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uncertainty, which impacts the experiment due to a lack of

experience. In the future, we could incorporate multi-modal data,

such as acoustic or hydrodynamic information, which can provide a

richer context for marine organism and debris recognition.

Combining visual data with other sensor modalities can enhance

the accuracy of classification models and provide a more

comprehensive understanding of marine ecosystems and

pollution dynamics. Future research can explore the fusion of

different data sources to improve classification performance.
TABLE 6 Results of performance of AI methods on deep feature extractor of marine organism detection.

Deep CNNs Classifiers Accuracy(%) Precision (%) Sensitivity (%) F1-Score(%)

AlexNet KNN 89.15 87.05 82.48 88.06

SVM 92.48 90.45 90.78 92.09

Softmax 89.15 86.27 86.27 86.27

LSTM 94.68 93.76 94.48 96.24

GoogLeNet KNN 89.54 90.45 92.92 90.59

SVM 95.78 92.54 90.78 94.06

Softmax 93.12 87.05 86.27 82.48

LSTM 93.24 91.74 90.21 90.48

VGG-16 KNN 95.37 90.45 92.92 90.59

SVM 89.78 89.54 92.09 88.06

Softmax 93.12 87.05 86.27 82.48

LSTM 95.99 95.21 97.48 98.24
TABLE 7 Results of performance of AI methods on deep feature extractor of marine debris detection.

Deep CNNs Classifiers Accuracy(%) Precision (%) Sensitivity(%) F1-Score(%)

AlexNet KNN 89.15 92.92 88.06 88.06

SVM 92.48 90.78 93.18 92.09

Softmax 90.15 91.77 90.78 86.27

LSTM 98.68 96.76 95.42 96.24

GoogLeNet KNN 90.34 90.45 92.92 89.15

SVM 94.86 95.54 90.78 92.48

Softmax 92.58 92.05 86.27 89.15

LSTM 96 94.24 93.44 92.48

VGG-16 KNN 92.92 86.27 92.92 90.59

SVM 97.37 95.21 94.6 93.24

Softmax 93.12 90.59 90.27 92.48

LSTM 96.09 92.09 93.09 92.76
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FIGURE 12

Confusion matrices. (A) Confusion matrices of marine organism detection. (B) Confusion matrices of marine debris detection.
B

A

FIGURE 11

Ten-fold test set classification accuracy. (A) Marine organism detection. (B) Marine debris detection.
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