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Genetic connectivity constrained
by natural barriers in a key
agricultural pest: insights from
mitochondrial DNA analysis

Jinyu Li1,2*, Yi Mao1,2, Kai Li1,2, Wei Chen2, Linyang Sun2

and Bang Zhang2

1Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China, 2State Key
Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology,
Fujian Agriculture and Forestry University, Fuzhou, China
In the context of anthropogenic global change, the study of landscape effects on

species movement has garnered increasing attention. Landscape genetics offer

indirect yet attractive means to capture species dispersal events across

generations and their interaction with landscapes. However, landscape genetic

patterns tend to exhibit significant variations across taxa and rely on the

molecular makers adopted. Here, we investigated how landscapes influence

population connectivity of an important tea pest, Empoasca onukii, using

mitochondrial DNA sequences of 1,518 individuals from 57 locations in

mainland China and offshore islands. We analyzed the inter-population genetic

divergence and integrated multiple models to explicitly quantify their association

with geographic distance, environmental heterogeneity, and landscape barriers.

Analyses revealed a reduction in gene flow on islands, along the Yangtze River,

and across mountainous regions of Western China. Models explicitly detected

the predominant contributions of topographic complexity to population

divergence and evidenced that mountains may serve as effective dispersal

barriers for E. onukii. These results suggest that the limited gene exchange

resulting from low population connectivity among mountains might generate

the observed patterns of mitochondrial genetic variations, which contrasts the

climate-related pattern previously observed on microsatellites. The findings

enhance our comprehension of the evolutionary and epidemic dynamics of E.

onukii, and highlight the demand of considering species-specific traits when

studying population landscape genetic patterns. Moreover, the study emphasizes

the necessity of employing multiple molecular markers to comprehensively

elucidate landscape effects on population connectivity across diverse species

for valuable insights into biodiversity conservation, pest control, and other

management decisions.
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1 Introduction

Dispersal, a fundamental biological process, plays a pivotal role

in the spatial distribution, population dynamics, and functional

connectivity of organisms (Trense et al., 2021). Within naturally

diverse habitats where species navigate through a patchwork of

landscapes, certain landscape features facilitate dispersal, which

promotes genetic connectivity. However, other landscape features

can emerge as barriers. Hence, the investigation of landscape-

mediated effects on movement has become significant focus in the

fields of anthropogenic global change, encompassing conservation

biology (Bonnin et al., 2023) and the management of pest species

(Bishop et al., 2021).

Historically, investigations into dispersal have mainly relied on

traditional approaches, such as telemetry or tracking analyses

(Villemey et al., 2016). However, these direct methods present

challenges when studying species with small insects or when

attempting to reveal past dispersal events and estimate long-

distance movement (Trense et al., 2021). In this regard, molecular

genetic techniques employed within the field of landscape genetics

can offer alternative methods to capture dispersal events across

generations and explore their relationship with landscape features.

This indirect approach concentrates on the fact that dispersal

coupled with reproduction can lead to gene flow, thereby

enabling the investigation of how landscape features impede or

facilitate dispersal through linking genetic patterns to landscape

structure. Recently, an increasing number of studies have combined

high-resolution genetic markers with informative spatial data

through robust analytical models. This approach has proven

effective in the evaluation of landscape resistance to dispersal and

gene flow in diverse species (Bonnin et al., 2023). Although these

studies have highlighted the taxon-specific factors influencing

population connectivity (Myers et al., 2019), some of them have

revealed that landscape genetic patterns can also be influenced by

the molecular makers utilized (Balkenhol et al., 2015). For example,

nuclear loci, such as microsatellites, exhibit high variability and can

identify fine-scale contemporary patterns of gene flows and genetic

structures, which can provide insights into recent connectivity

losses (Blanton et al., 2019). In contrast, organelle DNA

sequences which evolve at comparably slower mutation rates are

more efficient at elucidating historical variations across extensive

spatial scales and can shed light on long-standing connectivity

losses (Blakney et al., 2014). Therefore, a comparative analysis of

these two marker types can offer a more integrative understanding

of the associations between population genetic connectivity and

landscape dynamics.

The tea green leafhopper, Empoasca onukii Matsuda, stands as

the predominant and widespread arthropod pest inflicting damage

upon tea plants (Camellia sinensis (L.) O. Kuntze) in East Asia (Li

et al., 2022). Nymphs and adult leafhoppers can employ their

piercing-sucking mouthparts to sap the vital fluids from tender

tea shoots and leaves. This can result in distinct symptoms, such as

yellowing or hennaing along leaf edges, curling or withering of leaf

tines, reddening of veins, and slowed or stunted growth of apical

shoots. Adult female leafhoppers lay eggs into tender tea shoots and

leaves, which can also stunt the growth of the tender shoots. Despite
Frontiers in Ecology and Evolution 02
its diminutive size, E. onukii inflicts severe declines in tea yield and

quality, leading to annual economic losses ranging from 15% to 50%

(Li et al., 2022). However, the interaction between this pest’s

movement patterns/genetic connectivity and heterogeneous

habitats remains poorly understood. Small insects, including

leafhoppers, are generally considered to have limited natural

dispersal capabilities (Lo et al., 2019), which suggests that

dispersal limitations enforced by landscape barriers might play a

prominent role in shaping population structure. Interestingly, our

previous landscape genetic study with the application of

microsatellite data revealed that climatic differences, rather than

landscape barriers, primarily structured the genetic divergence

among E. onukii populations (Li et al., 2023). Nonetheless, it

remains unknown whether analyses based on mitochondrial DNA

(mtDNA) sequences would indicate different landscape genetic

patterns and identify robust associations between long-standing

landscape features and genetic differentiation. The integration of

complementary analyses through applying both types of markers

can greatly enhance our understanding of the dispersal mechanisms

of this vital pest within natural populations. Such insights hold the

potential to facilitate the predictions regarding their spread and

damage potential, as well as can contribute to effective pest

management strategies (Bishop et al., 2021).

In this study, we employed mtDNA sequence data to delve deeper

into the characterization of spatially distinct genetic connectivity

among populations of E. onukii. Furthermore, we conducted

statistical assessments to determine the correspondence between this

genetic connectivity and dissimilarities in environmental conditions

(IBE), isolation driven by geographical distance (IBD), and landscape

resistances (IBR) through adopting landscape genetic models. We

tested the hypothesis that, in comparison to previous findings based

on microsatellites, mtDNA analyses would reveal different landscape

patterns and natural landscape features, such as mountains, rivers, and

ravines, would act as barriers which could impede dispersal in E. onukii

to consequently influence genetic connectivity.
2 Methods

2.1 Empoasca onukii sampling

During the outbreak season of E. onukii (June to October 2017),

individuals were collected from 59 sites encompassing all 22 tea-

growing provinces in China (Figure 1A; Supplementary Table S1).

This comprehensive sampling approach facilitated the inclusion of

a wide range of climate conditions, elevation gradients, and soil pH

variations. Furthermore, the sampled locations were characterized

by intricate topography, including towering mountains (e.g.,

Qinling Mountain), expansive plateaus (e.g., Tibetan Plateau),

large rivers (e.g., Yangtze River), as well as nearby seas. This

meticulous sampling scheme enabled the researchers to

disentangle the influences of IBD, IBE, and IBR on the

population genetic connectivity of E. onukii.

Field sampling was systematically conducted in old tea

plantations situated in the prominent and historically significant

tea-cultivating counties of each province. In each plantation, a
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minimum of 50 adult individuals were meticulously sampled from

five to ten randomly selected plots. These selected plots were spaced

at distances ranging from 20 to 100 m, and kept away from the

edges of the tea plantation to prevent unintended sampling of other
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leafhopper species. To preserve the collected leafhoppers, individual

specimens were placed in vials containing absolute ethanol.

Subsequently, these samples were transported back to the

laboratory and then stored at −80°C for further analyses.
FIGURE 1

Geography, sampling locations, and predicted genetic connectivity of Empoasca onukii. (A) Locations of the 57 collection sites (see Supplementary Table S1)
along with the main geographic barriers (rivers and mountains), shown by a mountain resistance (mouclass_res, the mountain resistance variable defining all
mountains as barriers but modeling the resistance increasing with the height of mountains) gradient from white-pink (low) to yellow-green (high).
(B) Variable importance plots for the final genetic connectivity models. Bio1-bio19 are the 19 bioclimatic variables, of which the detailed information are
presented on https://worldclim.org and also in Supplementary Table S3. Riv_res, ele_res, ensuit_res, and teasuit_res are the explanatory variables related with
landscape resistances, i.e., river, elevation, habitat suitability, and host availability, respectively. Mou300_res, mou900_res, and mouclass_res are the
explanatory variables related with mountain resistances, but differ in defining only the mountains above 300m, only the mountains above 900m, and all
mountains as barriers, respectively. (C–E) Scaled and transformed (1-scaled genetic distance) maps of genetic connectivity predicted by machine learning
(random forest) models, shown by a connectivity gradient from white-pink (lowest) to yellow-green (highest). (F–H) Maps displaying the local Pearson’s
correlations between the predicted genetic connectivity (1-scaled genetic distance) models and the top predictor variable (mouclass_res), shown by a
correlation gradient from pink-yellow (negatively high) to green (low) to blue (positively high). The connectivity models were constructed using PGD
(Prevosti’s genetic distance; C, F), EGD (Edward’s genetic distance; D, G), FST (pairwise FST; E, H) as response variables, respectively.
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2.2 Genetic data

Following a thorough morphological examination under a

stereomicroscope (Qin et al., 2015) to validate their taxonomic

identity, individual DNA extractions were performed with the

TIANamp Micro DNA Kit (TIANGEN, Beijing, China).

Subsequently, the extracted DNA was utilized for amplifying

three mtDNA genes (COI, COII, and 16S rRNA), which

successfully differentiated species of Empoascini leafhoppers or

exhibited variation among E. onukii populations in previous

studies (Demichelis et al., 2010; Fu et al., 2014; Zhou, 2014).

Following the primers and protocols described by Demichelis

et al. (2010), Zhou (2014), and Fu et al. (2014), the amplifications

were conducted with a BIO-RAD C1000 TOUCH Thermal Cycler

(Bio-Rad, Hercules, CA, USA). The resulting PCR products were

then subjected to the analysis with an ABI 3730XL capillary

sequencer (Applied Biosystems, Foster City, CA, USA). Each of

the successfully amplified sequences was blasted with the complete

mitochondrial genome (Liu et al., 2017) of E. onukii available in the

NCBI database, and multiple sequence alignments were performed

separately for each of the three genes through MAFFT (Katoh and

Standley, 2013). The sequence data obtained from 1518 individuals

sampled from 57 sites were utilized for subsequent analyses.

However, individuals from the ES (Enshi) and RC (Rongcheng)

sites were excluded from the analysis due to poor sequencing

quality. To maintain consistent sequence lengths and ensure

reliable alignment, the poorly aligned ends of the sequences were

filtered, resulting in sequence lengths of 763 bp, 679 bp, and 435 bp

for COI, COII, and 16S rRNA, respectively.
2.3 Environmental data

To obtain the most influential variables in predicting the

mitochondrial genetic divergence of leafhoppers, we conducted a

comprehensive analysis that simultaneously examined the impacts

of IBD, IBE, and IBR.

For IBD (geographic distance, Supplementary Table S2), we

employed the “Vincenty (ellipsoid)” method (Vincenty, 1975)

implemented in the R package ‘geosphere’ (Hijmans et al., 2022)

to calculate the shortest geographic distances between sites.

For IBE, we utilized climatic variables, elevation, and soil pH.

The soil pH was particularly selected due to its significant

association with tea plant growth (Han et al., 2018), which, in

turn, can influence the productivity, distribution, and evolutionary

dynamics of the leafhopper populations. For climatic and elevation

factors, we obtained data of the current 19 bioclimatic variables

(Supplementary Table S3; Fick and Hijmans, 2017) and elevation at

a resolution of 30 s (approximately 1 km) from https://

worldclim.org. Soil pH data at a resolution of 250 m (at a depth

of 30 cm) were acquired from http://data.isric.org specifically for

the pH analysis. The soil pH data were subsequently transformed to

a resolution of 30 s in the R package ‘raster’ (Hijmans et al., 2023)

for analyses. To mitigate collinearity or autocorrelation issues, we

initially examined the correlations among these 21 variables in the R

package ‘enmtools’ (Warren et al., 2010). Variables with
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correlations (|r|) below 0.7 were remained, while for the two

variables with correlations (|r|) above 0.7, the one known to be

important determinants of insect growth was selected for the

following analyses. The selection ultimately resulted in the

retention of soil pH and five bioclimatic variables (Supplementary

Table S2): Isothermality, Max Temperature of Warmest Month,

Precipitation Seasonality, Precipitation of Warmest Quarter, and

Precipitation of Coldest Quarter. Through applying the R package

‘raster’, we extracted the environmental variation associated with

each sampling site from these six layers at a resolution of 30 s.

For IBR, we generated seven resistance surfaces (Supplementary

TableS2) to represent the hypothesized resistance of specific

landscape features to leafhopper gene flow. These surfaces were

created for mountains, rivers, elevation, habitat suitability of E.

onukii, and availability of tea plants. Rivers and mountains were

selected due to their known influence as barriers to gene flows in

previous studies, particularly the Yangtze River, Huaihe River,

Qinling Mountain, and Tibetan Plateau (e.g., Wei et al., 2015).

For the rivers, we obtained a shape file of rivers from https://

www.naturalearthdata.com and assigned a value of 1 to rivers and 0

to land, with the rivers defined as barriers, so as to generate a

resistance surface (“riv_res”). For the mountain resistance surfaces,

we utilized the K1 and K3 mountain resources from https://

rmgsc.cr.usgs.gov/gme/. Three types of resistance surfaces were

generated as follows: (a) through utilizing the K3 resource, we

defined mountains above 300 m as barriers and employed this

criterion as a threshold to assign low versus high resistance

(assigning values of 0 and 1 to mountains below and above

300 m, respectively) (“mou300_res”); (b) with the K3 resource,

we defined mountains above 900 m as barriers and used this

criterion as a threshold to assign low versus high resistance

(assigning values of 0 and 1 to mountains below and above

900 m, respectively) (“mou900_res”); (c) based on the K1

resource, we defined all mountains as barriers, with resistance

increasing proportionally to mountain height, as well as assigning

normalized values ranging from 0 to 1 (“mouclass_res”). In

addition to investigating elevation dissimilarity in IBE, we

generated a resistance surface to model the potential impact of

topographic complexity on dispersal routes and gene flow patterns.

Through the application of the same digital elevation data, we

defined resistance values based on elevation, assigning normalized

values ranging from 0 to 1 to generate a surface (“ele_res”). Finally,

habitat suitability and tea plant availability were selected as

resistance surfaces because these factors tended to restrict the

potential dispersal routes and gene flows among populations. To

obtain resistance surfaces related to habitat suitability and tea plant

availability, we employed MaxEnt 3.4.1 (Phillips et al., 2006) to

construct ecological niche models for E. onukii (“ensuit_res”) and

C. sinensis (“teasuit_res”) as detailed in Li et al. (2023). From the

seven generated resistance surfaces at a resolution of 30 s (ele_res,

riv_res, mou300_res, mou900_res, mouclass_res, ensuit_res, and

teasuit_res; Supplementary Table S2), we calculated resistance-

distance values between each pair of the 57 locations through

applying Circuitscape 5.0 (McRae et al., 2016) implemented in

Julia, based on circuit theory. In the analysis, rivers, mountains, and

elevation were considered as dispersal barriers, and thus regarded as
frontiersin.org
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“resistance” in the Circuitscape analysis, where higher surface

values indicated increased limitation rates of leafhopper gene

flows. Regarding habitat suitability and tea plant availability, we

assumed that E. onukii could be more likely to occur (or to exist) in

its suitable habitats and in habitats suitable for its host plant (tea). In

addition, we assumed a stepping-stone dispersal model for E.

onukii, based on its limited flight capabilities (Bian et al., 2014),

and considering the observed patterns of isolation by geographic

distance among the sampled populations. Consequently, high

values of habitat suitability and tea plant availability were

regarded as facilitators of dispersal and were employed as

“conductance” parameters in the Circuitscape analysis. Greater

surface values of these two factors indicated higher rates of gene

flows in E. onukii.
2.4 Analyses of population genetic diversity

Genetic diversity was firstly evaluated for each population

through calculating the number of haplotypes (H) and haplotype

diversity (h) in DnaSP 6.12.1 (Rozas et al., 2017), and estimating

nucleotide diversity (p) with ARLEQUIN 3.5.2 (Excoffier and

Lischer, 2010).
2.5 Analyses of population
genetic differentiation

Previously, population differentiation was examined through the

calculation of pairwise FST values (FST) in ARLEQUIN 3.5.2, with

coalescent tree construction and phylogenetic relationship analysis

conducted (Li et al., 2022). In this study, to further capture discrete

genetic variation and explore potential correlations with geographical

and landscape factors, we additionally calculated pairwise Prevosti’s

genetic distance (PGD; Prevosti et al., 1975; Kamvar et al., 2014) and

Edwards’ genetic distance (EGD; Cavalli-Sforza and Edwards, 1967)

using the R package ‘adegenet’ 2.0.0 (Jombart et al., 2010), based on

the concatenated three mitochondrial genes. PGD has been recognized

as an absolute genetic distance (Prevosti et al., 1975), while EGD has

been estimated as a Euclidean distance and has demonstrated robust

performance in the presence of missing data (Bishop et al., 2021).

Notably, FST differed from PGD and EGD in that it exclusively

considered the data pertaining to only the two populations

concerned, rather than encompassing the entire pool of population

data simultaneously (Weir, 1990). Hence, all three distinct measures

of genetic distance were estimated and subsequently utilized as

response variables associated with spatial data.

Principal coordinates analysis (PCoA) was then performed

using GenAlEx 6.503 (Peakall and Smouse, 2012) to better

understand how the populations genetically grouped. Analyses

were conducted based on the generated matrices of the PGD, EGD,

and FST, respectively.

To identify non-IBD patterns in genetic differentiation across

China, we employed the Estimated Effective Migration Surface

(EEMS; Petkova et al., 2016) based on matrices of the PGD, EGD,

and FST, respectively. The EEMS can model genetic variation by
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considering migration rates in relation to geographic factors, which

can generate an estimated effective migration surface to reveal the

regions where population divergence and gene flows deviated from

the expected patterns of the IBD. By utilizing EEMS as an

exploratory tool, we aimed to identify regions of the landscape

that could potentially serve as dispersal corridors, exhibiting higher-

than-expected gene flows, as well as those acting as biogeographic

barriers which might impede gene flow. To capture the explicit and

continuous genetic variations, we partitioned the landscape into

demes and modeled the dispersal of individuals between

neighboring demes. The EEMS analysis was run with a deme size

of 1,200. Each analysis consisted of three independent chains,

running for 5 × 106 Markov chain Monte Carlo (MCMC)

iterations, after a burn-in of 1 × 106 iterations. The thinning was

performed at intervals of 5,000 iterations, and distinct starting seeds

were adopted for each run. To ensure convergence, posterior plots

from independent runs were compared with the R package

‘rEEMSplots’ (Petkova et al., 2016). Subsequently, outputs from

the three runs were combined and visualized.
2.6 Effects of ecological factor on
population genetic differentiation

In landscape genetics analyses, it has been recommended to

employ various approaches and models to ensure robust

conclusions (Balkenhol et al., 2015). Thus, to elucidate the

relationship between dissimilarity in leafhopper mitochondrial

variation among sites and the environmental distance (IBE), as

well as the degree of isolation between these sites (IBD and IBR), we

adopted a comprehensive approach which combined Mantel tests,

multiple regression models, and machine learning methods.

2.6.1 Mantel tests
To examine the presence of IBD, we initially conducted simple

Mantel tests to evaluate the correlation between leafhopper genetic

distance (PGD, EGD, and FST) and geographic distance.

Subsequently, we performed partial Mantel tests to investigate the

relationships between genetic distance and all landscape and

environmental dissimilarity matrices, when controlling for the

geographic distance. We separately applied the Mantel analyses

for PGD, EGD, and FST using the R package ‘ecodist’ (Goslee and

Urban, 2007) with 10,000 permutations.

2.6.2 Multiple regression models
Multiple regression on distance matrices (MRM) The matrices

representing landscape resistance, environmental dissimilarity, and

geographic distance were simultaneously subjected to the

application of MRM analysis with the R package ‘ecodist’, against

the genetic distance matrices (PGD, EGD, and FST). Prior to the

MRM analyses, all matrices underwent correlation testing by the cor

function in R. Only the matrices without strong correlations (r <

0.8) were retained for subsequent analysis. In the initial full MRM

model, we thus included 10 matrices (Isothermality, Precipitation

Seasonality, Precipitation of Warmest Quarter Precipitation of

Coldest Quarter, mou300_res, mou900_res, mouclass_res, riv_res,
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ensuit_res, and geographic distance; Supplementary Table S2) as

the predictors of genetic distance. To identify the final models, a

backward elimination procedure was implemented, incorporating

10,000 permutations. Non-significant variables (P > 0.05) were

progressively eliminated from the initial full model, and the

significance of the remaining variables was reevaluated until no

additional variable achieved statistical significance.

Generalized dissimilarity modelling (GDM) In addition to the

MRM analysis, we employed GDM (Ferrier et al., 2007) to fit non-

linear relationships between environmental and distance variables

and leafhopper genetic variation. Similar to MRM, GDM aimed to

identify the variables that significantly contributed to genetic

divergence and assess the model fit by reporting the percentage of

deviance explained. We utilized it to estimate the percentage of

leafhopper genetic variation explained by a specific predictor or a

set of predictors. Seven independent models were constructed, each

incorporating different combinations of predictor variables:

(1) IBD, IBE, and IBR; (2) IBD and IBE; (3) IBD and IBR;

(4) IBE and IBR; (5) IBD only; (6) IBE only; and (7) IBR only.

These models were implemented through applying the R package

‘gdm’ (Fitzpatrick et al., 2022), with separate analyses conducted for

PGD, EGD, and FST as response variables.

Redundancy analysis (RDA) We also utilized distance-based

redundancy analyses (dbRDA; Legendre and Anderson, 1999), a

constrained linear ordination technique, to further investigate the

impact of geography and environment on leafhopper genetic

differentiation. The dbRDA analysis was performed with the R

package ‘vegan’ (Oksanen et al., 2022). To perform dbRDA, the

genetic distance matrices (PGD, EGD, and FST) were initially

transformed into continuous rectangular vectors using principal

coordinates analyses with the cmdscale function. These vectors

served as response variables, while the predictors included point

estimates of the five bioclimatic variables (Isothermality, Max

Temperature of Warmest Month, Precipitation Seasonality,

Precipitation of Warmest Quarter, and Precipitation of Coldest

Quarter), soil pH, habitat suitability (ensuit_res), and host

availability (teauit_res) at each sampling site. Additionally, the

coordinates of sampling sites (latitude; longitude) were included

as predictors to account for the influence of IBD, as distance

matrices cannot be directly used in RDA. Furthermore,

considering its significance in other analyses, the matrices related

to mouclass_res were transformed into principal components of

neighborhood matrices (PCNM) through utilizing the pcnm

function. The first half of positive eigenvectors (PCNM1–14) was

retained as explanatory variables for the RDA. To mitigate high

multicollinearity among predictors, a series of RDAs were

performed. Initially, all 24 variables were included in the first

model. In subsequent rounds, the variable with the highest

variation inflation factor (VIF) was excluded until all VIFs were

below 10. Forward model selection was employed with the

ordiR2step function to identify a minimal (optimal) model, with

the estimation of variable importance. The significance of both the

initial full model and the final optimal model were independently

assessed with 9,999 permutations through the anova.cca function,

and the percentage of genetic variation explained by these models

was reported. With the optimal model, partial RDAs
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were conducted to estimate the independent effects of the

environmental variables while controlling for geographic location,

as well as the effect of geographic location when controlling for

environmental variables.

2.6.3 Machine learning approach
In contrast to the conventional link-based approaches utilized

in our studies, machine learning methods offer an alternative

approach to enhance our comprehension of landscape impacts on

genetic variation within species. These methods can directly model

the genetic connectivity of species through adopting ecological

raster layers and distinguish the true layers that contribute to

genetic differentiation. This approach can eliminate the reliance

on calculating ecological distances, such as geographic distance, cost

distance, or environmental dissimilarity, without subsequently

relating them to pairwise genetic distances between individuals

or populations.

In this study, we adopted random forest regression (RF), a

widely employed machine learning technique, which has been

known for its ability to model nonlinear relationships in

landscape analysis without overfitting, while accommodating

correlated ecological variables and data (Bishop et al., 2021). Our

RF model was constructed based on the predictors derived from

ecological raster layers at a 30-s (1-km) resolution, encompassing 21

IBE variables (i.e., 19 bioclimatic variables, elevation, and soil pH)

and 6 IBR variables (i.e., mou300_res, mou900_res, mouclass_res,

teasuit_res, ensuit_res, and riv_res). Considering the distinct

representation of surface values between suit_res (i.e., ensuit_res

and teasuit_res) and other IBR layers, we transformed the suit_res

projection to 1-suit_res, and generate new layers where increasing

values indicated higher limitation rates of connectivity.

Additionally, IBD was incorporated by creating a uniform raster

where each 1 × 1 km pixel was assigned a value of 1. For each of the

21 IBE variables, we extracted the median value along straight paths

(n = 1,596 paths) between sampling sites (n = 57 sampling sites).

Similarly, for IBR and IBD variables, we calculated the sum of

resistance values along the 1,596 straight paths. Through applying

this extracted spatial dataset encompassing 28 variables, 57

sampling sites, and 1,596 paths, we constructed an RF model with

genetic distance (PGD, EGD, and FST) between pairs of sampling sites

serving as a proxy for genetic connectivity. The model was projected

to generate a map depicting predicted genetic connectivity with

certain R packages, including ‘random Forest’ (Liaw and Wiener,

2001), ‘raster’, ‘spatstat’ (Baddeley and Turner, 2005), and ‘sp’

(Pebesma and Bivand, 2005). To assess the performance of the

model, we employed the R-squared metric which was generated

through a bootstrapping procedure that involved randomly

selecting training sets and comparing the average predictions with

the respective testing sets excluded from the model. Furthermore, to

evaluate the model’s performance across different subsets of the

data, we employed leave-one-out cross-validation, calculating the

root mean square error (RMSE) for each of the 57 cross-validation

runs (representing all 57 sampling sites; Figure 1). We also

calculated RMSE values to reflect the accuracy of our projected

connectivity map for each run of leave-one-out cross-validation,

through extracting the predicted median genetic distance values
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along straight paths between sampling sites from the testing data

and comparing them to the observed genetic distance values.

Additionally, variable importance was evaluated based on the

increase in node purity, a parameter that remains unaffected by

correlations between variables. This measure was estimated by

assessing the decrease in the residual sum of squares resulting

from splitting on each variable, and the values were averaged across

all trees in the RF model. To better understand the ecological drivers

of genetic connectivity, we used the corLocal function in the R

package ‘raster’ to compute the Pearson’s correlation coefficient

between projections of genetic connectivity and the top predictor

variables reported by our RF models.
2.7 Correlation between elevation and
population genetic diversity

To gain a better understanding of the interaction between the

top predictor variable (mountain resistance) and genetic

connectivity, we constructed generalized linear models (GLM)

between populations genetic diversity (H, h, and p) and elevation

using the R package ‘stats’ (R Core Team, 2022).
3 Results

3.1 Population genetic diversity

The genetic diversity (Supplementary Table S1) varied among

populations, with H ranging from 7 (MH, BF) to 34 (TS), h from

0.639 (YX) to 1 (DY), and p from 0.0014 (MH) to 0.0102 (BS). The

mean values of H, h, and p across populations were 16.842 (SD =

5.441), 0.898 (SD = 0.097), and 0.005 (0.001), respectively.
3.2 Spatial pattern of population
genetic differentiation

The estimations of PGD, EGD, and FST between sampling sites

ranged from 0.02 to 0.30, 0.07 to 0.42, and −0.03 to 0.55,

respectively, with the mean values of 0.07 (SD = 0.05), 0.16 (SD =

0.06), and 0.10 (SD = 0.12), respectively (Supplementary Figure S1).

The YX population was genetically unique in all of the three

Principal Coordinate Analyses (PCoA; Figure 2). Additionally,

results showed that most of the populations from the

mountainous regions of Wester China (e.g., MH, PE, TC, PJ, MT,

QR, MY, BS, DY) and some populations located at the South China

region (e.g., BF, WZS, HZ, NC) tended to be genetically segregated

from each other and also from other populations.

The EEMS analysis conducted on PGD, EGD, and FST
(Supplementary Figure S3) consistently revealed the notable

reductions in gene flows, across the majority of the populations

inhabiting the mountainous regions of Western China, as well as

the islands of Taiwan and Hainan. Additionally, similar patterns

were observed among the populations situated along the middle and

lower reaches of the Yangtze River.
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3.3 Effects of ecological factors on
population genetic differentiation

The results from the simple Mantel tests indicated a significant

correlation between the geographic distance and all three genetic

distance measures. When controlling for the impact of geographic

distance through applying the partial Mantel tests, the variables

significantly associated with all three genetic distance measures

consisted of isothermality, max temperature of warmest month,

mou300_res, mouclass_res, and ele_res (Table 1).

The MRM analyses (Table 2) utilizing PGD, EGD, and FST
yielded similar results, with the final model including only

geographic distance and mouclass_res after the backward

selection procedure. These two predictors significantly explained

27.38% of the variation in PGD, 32.08% in EGD, and 35.39% in FST.

The GDM models (Table 3; Supplementary Tables S4–S6)

combining all possible predictor variables significantly explained

37.71%, 38.95%, and 42.65% of the variation in PGD, EGD and FST,

respectively. The variables contributing significantly to the full models

remained consistent irrespective of the genetic indices, including

geographic distance and mouclass_res. The GDM models

incorporating IBR variables demonstrated similar predictive power to

the full model, while those exclusively utilizing IBD, IBE or both tended

to be insignificant and accounted for a smaller proportion of the

variation. Among models incorporating IBR variables, mouclass_res

consistently emerged as the main predictor, effectively explaining a

substantial portion of the observed genetic dissimilarity. In models

formed solely by IBD, IBE, or both, the variables of importance were

geographic distance, isothermality, and max temperature of warmest

month, though their significance was not consistently observed.

The RDA models (Supplementary Figure S3; Supplementary

Table S7) incorporating all variables and the optimal models with

selected minimal variables exhibited significant associations with

the three genetic distance measures. Moreover, the optimal models,

in particular, accounted for a considerable proportion of the genetic

variance, explaining 29.34% in PGD, 28.49% in EGD, and 13.32%in

FST. When controlling for geographic location (longitude) with

partial RDAs, the environmental variables included in the optimal

models consistently predicted nearly the same amount of genetic

variance as the full optimal models (22.19% for PGD, 20.88% for

EGD, and 8.36% for FST). In contrast, when controlling for

environmental factors, the percentage of variation explained by

geographical location was substantially lower (4.64% for PGD, 5.35%

for EGD, and 2.50% for FST), while still statistically significant. The

variables involved in the optimal models varied depending on the

specific genetic indices, with PCNM4, PCNM2, and longitude being

consistently present for all three indices.

The RF models demonstrated a substantial R-squared value of

0.63 for PGD, 0.65 for EGD, and 0.69 for FST, which indicated that the

predictor variables accounted for 63% of the genetic variance in PGD,

65% in EGD, and 69%in FST. While the increase in node purity

analyses consistently highlighted the prominent role of mouclass_res

in the RF models (Figure 1B), irrespective of the genetic indices, the

projected maps vividly illustrated diminished genetic connectivity

across the mountainous region of Western China (Figures 1C–H).

For assessing the performance of the models through leave-one-out
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TABLE 1 Simple and partial Mantel tests between Empoasca onukii genetic differentiation and geographic distance/environmental dissimilarity/
landscape resistance.

Explanatory predictor Analysis
PGD EGD FST

r P r P r P

Geographic distance Simple Mantel 0.3199 0.0002*** 0.3668 0.0001*** 0.3839 0.0001***

Isothermality Partial Mantel 0.1102 0.0340* 0.1274 0.0142* 0.1448 0.0063**

Max temperature of warmest month Partial Mantel 0.0938 0.0484 0.0992 0.0353 0.1113 0.0211*

Precipitation seasonality Partial Mantel 0.0338 0.2475 0.0349 0.2550 0.0759 0.1273

Precipitation of warmest quarter Partial Mantel 0.0116 0.3210 0.0635 0.1818 0.0704 0.1892

Precipitation of coldest quarter Partial Mantel −0.0703 0.8743 −0.0853 0.9270 −0.0330 0.6691

soil pH Partial Mantel 0.0883 0.0607 0.0954 0.0423 0.1071 0.0241

mou300_res Partial Mantel 0.1912 0.0247* 0.2004 0.0284* 0.2331 0.0147*

mou900_res Partial Mantel 0.1863 0.0956 0.1830 0.0870 0.1534 0.1156

mouclass_res Partial Mantel 0.4370 0.0019** 0.4640 0.0008*** 0.5339 0.0002***

riv_res Partial Mantel −0.0025 0.3475 −0.0067 0.3904 −0.0638 0.6261

ele_res Partial Mantel 0.2917 0.0354* 0.2857 0.0251* 0.2988 0.0139*

ensuit_res Partial Mantel −0.0727 0.9052 −0.0992 0.9789 −0.1064 1.0000

teasuit_res Partial Mantel −0.0733 0.9164 −0.0998 0.9890 −0.1055 1.0000
F
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Partial Mantel analysis shows correlation coefficient (r) and P value when partialling out geographic distance. PGD, Prevosti’s genetic distance; EGD, Edwards’ genetic distance; FST, Pairwise FST.
Values in bold represent statistical significance (P < 0.05); *P < 0.05, **P < 0.01, ***P < 0.001. Riv_res, ele_res, ensuit_res, and teasuit_res are the explanatory variables related with landscape
resistances, i.e., river, elevation, habitat suitability, and host availability, respectively. Mou300_res, mou900_res, and mouclass_res are the explanatory variables related with mountain resistances,
but differ in defining only the mountains above 300m, only the mountains above 900m, and all mountains as barriers, respectively.
B

C

A

FIGURE 2

Principal Coordinate Analysis (PCoA) of Empoasca onukii based on (A) EGD (Edward’s genetic distance); (B) PGD (Prevosti’s genetic distance); and
(C) FST (pairwise FST). Populations from different sample sites are indicated by circles with different colors. Information for sampling sites is presented
in Figure 1 and Supplementary Table S1.
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cross-validation, the mean RMSE for model evaluation

(Supplementary Figure S4A) across all 57 runs was 0.03 (SD =

0.00), 0.04 (SD = 0.00), and 0.06 (SD = 0.00) for PGD, EGD, and

FST, respectively. Furthermore, the spatial evaluation (Supplementary

Figure S4B) yielded RMSE values of 0.03 (SD = 0.02), 0.04 (SD =

0.02), and 0.07 (SD = 0.04) for PGD, EGD, and FST, respectively.
3.4 Correlation between elevation and
genetic diversity

The GLM analyses (Figure 3; Supplementary Table S8)

demonstrated that both the number of haplotypes (H; r = –0.350,
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R2 = 0.106, P = 0.008), haplotype diversity (h; r = –0.365, R2 = 0.117,

P = 0.007) significantly decreased with increasing elevation.
4 Discussion

In this study, we employed complementary analytical models to

integrate spatial data with the mtDNA sequences of 1518

individuals of E. onukii sampled from 57 geographic locations

across mainland China and offshore islands. Our findings

revealed a distinct landscape genetic pattern in comparison to a

previous study conducted on microsatellites (Li et al., 2023), with

features of mountains detected to constrain dispersal and genetic
TABLE 3 Generalized dissimilarity modelling analyses (GDM) demonstrating the proportion of genetic divergence explained by geographic distance,
environmental dissimilarity and landscape resistance, the statistical significance, and the particular variable that best explains genetic divergence in
each of the models.

Model

PGD EGD FST

R2 P
Important
variables

R2 P
Important
variables

R2 P
Important
variables

GD~IBD
+IBE+IBR

0.3771 0.0400*
Geographic distance,

mouclass_res
0.3895 0.0452*

Geographic distance,
mouclass_res

0.4265 0.0100*
Isothermality,
mouclass_res

GD~IBD
+IBE

0.2197 0.1709
Max temperature of
warmest month,

geographic distance
0.2417 0.0700

Isothermality,
geographic distance

0.2681 0.0350*
Isothermality, max

temperature of warmest
month

GD~IBD
+IBR

0.3654 0.0455*
Geographic distance,

mouclass_res
0.3720 0.0781

Geographic distance,
mouclass_res

0.3748 <0.001***
Geographic distance,

mouclass_res

GD~IBE
+IBR

0.3685 0.0300* mouclass_res, riv_res 0.3787 0.0300*
Isothermality,
mouclass_res

0.4247 <0.001***
Isothermality,
mouclass_res

GD~IBD 0.1441 <0.001*** Geographic distance 0.1600 <0.001*** Geographic distance 0.1351 <0.001*** Geographic distance

GD~IBE 0.2021 0.1350
Isothermality, max

temperature of warmest
month

0.2230 0.0800
Isothermality, max

temperature of warmest
month

0.2657 0.0500
Isothermality, max

temperature of warmest
month

GD~IBR 0.3387 0.0465* mouclass_res, riv_res 0.3375 0.1020 mouclass_res, riv_res 0.3531 <0.001*** mouclass_res, riv_res,
GD, Prevosti’s genetic distance (PGD)/Edwards’ genetic distance (EGD)/Pairwise FST (FST). IBD, isolation by geographic distance; IBE, isolation by environmental dissimilarity; IBR, isolation by
landscape resistance. Mouclass_res, the explanatory variable related with mountain resistance (defining all mountains as barriers but modeling the resistance increasing with the height of
mountains). Riv_res, the explanatory variable related with river resistance. Values in bold represent statistical significance (P < 0.05); *P < 0.05, **P < 0.01, ***P < 0.001.
TABLE 2 Multiple regressions on distance matrices (MRM) with the inclusion of the explanatory variables and the proportion of the variation they
contribute in the final model.

Response variable Model Explanatory predictor R2 b P

PGD GD ~ geographic distance + mouclass_res 0.2738 0.0008***

Geographic distance 1.3210E-08 0.0231*

Mountain resistance 2.4105E-01 0.0023**

EGD GD ~ geographic distance + mouclass_res 0.3208 0.0001***

Geographic distance 2.1103E-08 0.0082**

Mountain resistance 3.2130E-01 0.0006***

FST GD ~ geographic distance + mouclass_res 0.3539 0.0002***

Geographic distance 3.1413E-08 0.0093**

Mountain resistance 6.5396E-01 0.0003***
fron
GD, Prevosti’s genetic distance (PGD)/Edwards’ genetic distance (EGD)/Pairwise FST (FST). Mouclass_res, the explanatory variable related with mountain resistance (defining all mountains as
barriers but modeling the resistance increasing with the height of mountains). Values in bold represent statistical significance (P < 0.05); *P < 0.05, **P < 0.01, ***P < 0.001.
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connectivity in E. onukii and resistances from mountains identified

as the predominant variable structuring mitochondrial variation in

E. onukii populations.
4.1 Predominant role of mountains
resistances in shaping mitochondrial
genetic connectivity of Empoasca
onukii populations

Previous studies have extensively documented the significance of

long-standing landscape features, such as mountains and rivers, as

prominent barriers to gene connectivity and drivers of genetic

variation in various organisms (e.g., Noguerales et al., 2016; Trense

et al., 2021). In the case of small-sized insect species characterized by

limited dispersal capacity, strong associations between biogeographic

barriers and genetic differentiation have been expected. Within our

study region, the Yangtze River, as well as the complex topography of
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the Qinling Mountains and Tibetan Plateau, which are characterized

by deep valleys and high mountains, have been previously recognized

as effective impediments to gene flow in diverse species (e.g., Chilo

suppressalis in Meng et al., 2008; Grapholita molesta in Wei et al.,

2015; Pinus tabuliformis in Xia et al., 2018). Through our EEMS

analysis, we observed distinct patterns of reduced gene flow on

islands, along the course of the Yangtze River, and in the

mountainous regions of Western China. Building upon these

findings, in conjunction with our spatial clustering-based

population structure analysis of E. onukii (Li et al., 2022), we

postulated that landscape features might play a crucial role in

driving genetic differentiation among E. onukii populations in China.

Our comprehensive analyses employing multiple models have

consistently indicated the potential prominence of IBR in driving

population divergence within E. onukii. Although the resolution of

the raster layer representing river resistance (at 30-s resolution,

approximately 1,000 m) may limit our ability to detect a direct

association between functional connectivity and river permeability in
B

A

FIGURE 3

Linear correlation between elevation and mitochondrial genetic diversity (A, the number of haplotypes H; B, haplotype diversity h).
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this study, it is noteworthy that resistances associated with

mountainous emerged as significant and predominant drivers of

genetic variation in E. onukii. Additionally, our GLM analysis

revealed that elevation was significantly and negatively associated

with the number of haplotypes and haplotype diversity. And although

the analysis did not detect a significant correlation between

nucleotide diversity and elevation, populations at higher elevation

tended to exhibit slightly higher nucleotide diversity. Nucleotide

diversity is known as the average number of nucleotide differences

per site in pairwise comparisons among DNA sequences, while

haplotype diversity (also defined as gene diversity) refers to the

probability that two randomly sampled alleles differ (Nei, 1987; de

Jong et al., 2011). These lines of information suggest that the E. onukii

populations at higher elevations show fewer haplotypes but greater

nucleotide sequence difference from other populations, pointing

towards genetically distinct populations with smaller effective size

at high mountains compare those within low elevations. While this

pattern observed here may be attributable to that the populations in

high mountains more frequently experience sharp population

contraction and strong environment selection due to the more

variable climate there, it could also be a phenomenon formed

because gene flow is restricted by mountain ridges as had

previously been observed in other organisms (e.g., Rana

luteiventris; Funk et al., 2005). Hence, mountains may impede

genetic connectivity among E. onukii populations, aligning with the

situations observed in other insect species that inhabit regions

characterized by pronounced landscape heterogeneity (e.g.,

Noguerales et al., 2016).

Interestingly, the significant role of IBR in driving genetic

divergence is not a universal outcome observed in numerous other

organisms. For example, in Tetragonisca angustula bees across

southern Brazil, the population divergence is primarily associated

with ecological conditions and geographic distance rather than

physical barriers (Francisco et al., 2017). Similarly, for 13 snake

species across western North America, environmental heterogeneity

rather than biogeographic barriers has been identified as the main

driver of the population divergence (Myers et al., 2019). These

findings suggest that species-specific traits play a crucial role in

shaping population structure (Zamudio et al., 2016), and landscape

genetic patterns are closely linked to life-history traits, dispersal

capacities, and habitat preferences of each species (Myers et al.,

2019). In the case of the leafhopper species we studied, the

observed isolating mechanism of mountains in its populations

could be attributed to its limited long-distance migration and weak

dispersal ability. E. onukii serves as a small-sized insect, with adults

measuring only about 3 mm in length (Qin et al., 2015). Although

long-distance migration with the assistance of air streams has been

documented in certain small insects such as Nilaparvata lugens (Hu

et al., 2019), no such behavior has been observed in E. onukii. Due to

their small size, E. onukii adults tend to be able to actively fly for only

a few kilometers. Indoor tethered flight mill tests have confirmed the

sedentary nature of E. onukii, as they tend to feed or perch behind tea

leaves for most of their time and fly distances of less than 6 m (Bian

et al., 2014). Furthermore, the species’ short generation time (9–15

generations per year; Qin et al., 2015) may also contribute to the

observed patterns. It is widely recognized that species with short
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generation times are more likely to retain genetic signals left by

historical dispersal routes interacting with habitat barriers and

corridors (Noguerales et al., 2016). Additionally, the species’ limited

feeding preferences likely augmented the pronounced isolating effects

of mountains on its populations. E. onukii exhibits a marked

preference for tea trees as its primary host plants (Shi et al., 2015).

Feeding on other plants is sparsely reported, while elevation gradients

have been evidenced as an important factor influencing the

distribution of tea plants. Consequently, these host–plant

associations may further limit population connectivity among

mountain barriers (Noguerales et al., 2016). In addition to these

species-specific traits, the successful detection of mountain

resistances in this study may also be relevant with the marker type

we employed, which will be discussed further in the following section.

Collectively, it is crucial to emphasize the significance of

understanding species-specific traits in elucidating the landscape

features that can promote gene flow and functional connectivity

among populations, though determining the exact traits that

contribute to these processes can be challenging. Furthermore, in

theory, our findings can provide insights for E. onukii management

strategies. Our multiple landscape genetics models demonstrated that

mountains can serve as effective barriers to dispersal for E. onukii,

which indicated a high likelihood of low population connectivity

among mountainous regions. The potential for high isolation among

mountains suggested that internal management efforts can be

effective and highlight the demand of focusing on and controlling

human-mediated dispersal from outside regions into these areas.

Additionally, the presence of low-connected populations among

mountains presented an opportunity to explore innovative pest

control methods and to locally eradicate the leafhoppers. Moreover,

the knowledge of mountains acting as dispersal barriers can aid in

identifying regions with a low risk of reinvasion when planning

spatially explicit management strategies. This information can also

guide the placement of treatment technologies to block human-

mediated dispersal from outside regions, such as the inter-regional

transportation of tea plants. In fact, the recognition of isolated tsetse

fly populations through population genetics has previously been

applied to successfully plan pest control efforts in Senegal, which

has led to the eradication of tsetse flies in specific areas and the

opening of new agricultural zones (Bishop et al., 2021).
4.2 Understanding of the difference in
landscape genetics patterns between
mtDNA sequences and microsatellites

In contrast to the climate-related pattern observed in our

previous study on microsatellites (Li et al., 2023), where ecology

was proved to play a more prominent role than biogeography in

population diversification, our mitochondrial analyses indicated that

geography and gene flow were of more significance than ecology and

selection in driving population differentiation. The combination of

microsatellites and mtDNA sequences has been widely employed in

population genetics studies across various species (e.g., Bonnin et al.,

2023). However, a recent debate has emerged regarding the

incongruence of the results obtained from these two markers and
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the preferred marker for population structure analysis or long-term

monitoring of species in management programs (Muñoz-Valencia

et al., 2023). Certain researchers have raised concerns about the utility

of single-locus mtDNA and argued that limited mtDNA sequence

data may not provide sufficient information to determine spatial

genetic structure and a species’ true dispersal potential (e.g., Teske

et al., 2018). On the other hand, others have reported that mtDNA

still serves as an effective tool for broad-scale geographic studies, and

simple mtDNA studies can serve as powerful initial surveys to gain

insights into phylogeographic patterns and demographic history

across environments. These insights can then guide more detailed

investigations of selection and local adaptation in populations using

nuclear genomic approaches (e.g., Bowen et al., 2014; Fonseca

et al., 2023).

Despite the challenge of mitochondrial-nuclear microsatellite

discordance and the criticism of single-locus studies, it has been

widely acknowledged that these two markers evolve at different rates

and can provide insights into different evolutionary events over time.

Specifically, the evolutionary rates of mtDNA and microsatellites

have been observed to be 5–10 and 100–1,000 times faster,

respectively, than those of single-copy nuclear DNA (Wan et al.,

2004). In other words, microsatellites evolve 10–200 times faster than

mtDNA. The rapid mutation rate of microsatellites can lead to issues

of saturation and homoplasy, where genetic information about past

events may be effectively lost. As a result, microsatellites are more

informative for studying recent and/or contemporary genetic

mutations and are suitable for investigating patterns of genetic

diversity and gene flow over shorter timescales. Comparatively,

mtDNA retains more information about historical changes in

genetic variation, making it the optimal option for resolving spatial

patterns of gene flow and colonization over long timescales. These

differences in evolutionary rates and the information captured by

each marker may be the reason underlying the incongruent findings

commonly reported among studies utilizing different markers, and

can also explain the comparative results found between this study and

our previous investigation based on microsatellites. The present

distribution and connectivity of E. onukii populations across the

landscape are the combined result of historical and contemporary

forces. Long-standing natural barriers, such as mountains, represent

historical mechanisms that have naturally and geographically isolated

E. onukii populations, which has led to evolutionary processes such as

changes in genetic diversity, population differentiation, and

potentially even speciation. In addition to these long-term

landscape features that have hindered population dispersal and

exhibited their DNA signatures, contemporary factors, such as

recent climate changes, can also impact the movement and gene

connectivity of individuals among populations, leaving their marks

on genetic structure. Thus, our mtDNA analyses successfully

identified the prominent role of mountains as barriers to E. onukii

population divergence, while the previous microsatellite study (Li

et al., 2023) based on the same sampling system revealed that the

spatial population structure of E. onukii has been primarily shaped by

climatic differences. In light of these findings, it is evident that

unrelated phenomena can leave their marks on genetic structure,

and these different genetic signatures can be captured by diverse types

of molecular markers. Hence, there is a demand of the combination
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of multiple markers to obtain a comprehensive understanding of

intraspecific diversification and to facilitate the management of a

species’ evolutionary history and contemporary interconnectedness.

Undoubtedly, both microsatellites and mtDNA genes are

commonly utilized to investigate neutral processes and may not fully

capture the genomic-wide variations associated with environmental

adaptation (Álvarez et al., 2021). However, the identification of

candidate adaptive loci is widely recognized as a valuable approach

for gaining insights into potential adaptive divergence among

populations and the capacity for local adaptation (Zimmerman et al.,

2020). Although both marker types can generally inform us about

population-level genetic differentiation and diversity, addressing

questions related to local adaptation and evolutionary independence

necessitates the inclusion of non-neutral loci. Notably, genomic-wide

evidence can benefit the exploration of the candidate genes responsible

for adapting to ecological gradients in natural populations, which

consisting of not only responses to heat, but also precipitation, cold,

and other environmental factors under strong selection pressures

(Waldvogel et al., 2018). Considering E. onukii, conducting further

studies through the application of the genomic-wide approaches would

be valuable for elucidating the underlyingmechanisms driving adaptive

evolution in this species.
5 Conclusion

Our analyses, which integrated multiple landscape genetics

models, have revealed the prominent role of topographic

complexity in shaping the spatial distribution of mitochondrial

genetic variation in a significant agricultural pest. This suggested

that restricted gene flow, owing to limited population connectivity

among mountainous regions, tended to cause the observed

mitochondrial genetic structure in our study system. These

findings represented a departure from those of our previous study

employing microsatellite markers on similar populations (Li et al.,

2023), and highlighted the importance of considering species-

specific traits when investigating landscape-driven genetic

patterns. This study emphasized the significance of employing

multiple molecular markers concurrently to comprehensively

understand the contribution of the landscape to spatial patterns

of genetic differentiation across diverse species. In the future,

investigations employing high-throughput sequencing at a

genomic scale in conjunction with landscape genomic models,

will offer further insights into the potential relationship between

patterns of genetic variation and environmental features. A

systematic exploration of the association between population

genetic variation and various ecological factors holds the potential

to provide valuable insights for biodiversity conservation, pest

control, and other management decisions.
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