AUTHOR=Liu Yaosheng , Li Ang , Zhang Hao , Wang Jianglu , Li Fangyi , Chen Rui , Wang Shuaishuai , Yao Jun TITLE=Minimization of overbreak in different tunnel sections through predictive modeling and optimization of blasting parameters JOURNAL=Frontiers in Ecology and Evolution VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2023.1255384 DOI=10.3389/fevo.2023.1255384 ISSN=2296-701X ABSTRACT=
Engineering projects are confronted with many problems resulting from overbreak in tunnel blasting, necessitating the optimization of design parameters to minimize overbreak. In this study, an AI-based model for overbreak prediction and optimization is proposed, aiming to mitigate the hazards associated with overbreak. Firstly, the Extreme Gradient Boosting (XGBoost) model is integrated with three distinct metaheuristic algorithms, namely Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), and Sparrow Search Algorithm (SSA), respectively. Consequently, the hyperparameters are optimized, and the performance of predictions is enhanced. Meanwhile, to overcome the limitations of a small dataset and enhance the generalization ability of the three developed models, a 5-fold cross-validation is employed. Then, the performance of the different models with five distinct swarm sizes is evaluated