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Recent theoretical work has provided major new insights into the ways that

species interactions in food webs are organized in ways that permit the

coexistence of significant numbers of species. But, we seem to have forgotten

about trees! Not the phylogenetic ones that are increasingly important for

dissecting the evolutionary structure of food webs, but the trees, shrubs and

grasses that are the basal species in all terrestrial ecosystems. Many of the food

webs available for analysis over the last 30 years were based on freshwater or

marine systems where algae were the main plants. Trees are very different from

algae; they can live for centuries, while annually producing leaves, fruits and

seeds that provide nutrients for a diversity of species on higher trophic levels. In

sharp contrast to algae, they are only partly consumed by herbivores and usually

compensate or recover from herbivory. Most of the biomass in terrestrial systems

is in the plants, this again contrasts with aquatic systems, where most of the

biomass is in primary and secondary consumers. Moreover, each individual tree

supports its own food web of species that are only partially coupled to those of

surrounding trees. If we are going to apply our theoretical understanding of

food-web structure to species-rich terrestrial ecosystems in ways that are

insightful for conservation, then we need a deeper examination of the role that

higher plants play in food webs. While community ecology has developed an

increasingly detailed understanding of the ways plant communities are

organized, this seems to have evolved almost independently of the food-web

literature. In this article, we make a plea to more sharply consider higher plants in

food webs and to do this by combining recent theoretical work on food webs,

with recent empirical and theoretical work on plant communities. Ultimately, we

argue for a deeper integration of plant community ecology into studies of

food webs.

KEYWORDS

food webs, trees, stability, plant communities, pollination, mutualism
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fevo.2023.1253084/full
https://www.frontiersin.org/articles/10.3389/fevo.2023.1253084/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2023.1253084&domain=pdf&date_stamp=2023-10-30
mailto:dobson@princeton.edu
mailto:mhutchinson6@ucmerced.edu
mailto:sabatterman@googlemail.com
https://doi.org/10.3389/fevo.2023.1253084
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2023.1253084
https://www.frontiersin.org/journals/ecology-and-evolution


Dobson et al. 10.3389/fevo.2023.1253084
Neutral, omniscient and basal

If you walk around Windsor Great Park in the south of

England, you are surrounded by some of Britain’s oldest

inhabitants. Not the British Royal Family, who live on the Estate,

but the oak trees that have lived in the park since Henry VIII wooed

his multiple wives here, trees that were already established when

William the Conqueror and the Normans arrived in England in

1066 (Figure 1 - Green, pers comm). Trees are some of the oldest

organisms on the planet, if we go to the western United States, we

can find Bristlecone pines that are almost 5,000 years old (Brown,

1996); not far away in Sierra are Giant Sequoia’s that are several

thousand years old and the largest organisms on the planet. In the

Namibian desert, Welwitschia plants can be thousands of years old

with same two leaves they first sprouted (Herre, 1961); Figure 1); in

Sri Lanka, Jaya Sri Maha Bodhi—a sacred fig (Ficus religiosa) and

the oldest planted tree—has stood since 288 BC (Ram, 2016).

Simply seeing trees as perches, dens, or nest sites for the

mammals and birds that live on, and in the tree, massively

underestimates the foundational role that individual trees play for

the multiple generations of species that they support. All ancient

trees, and indeed, all higher plants are host to a community of fungi,

bacteria, insects and nematodes that form a network of organisms
Frontiers in Ecology and Evolution 02
that feeds on, or exchanges nutrients with the tree (Hardoim et al.,

2015) (Parihar et al., 2020; Hawkins et al., 2023). Most trees sustain

their own food web of diverse organisms that feed on, or in, them

(Price, 2002). Ultimately, the food webs of forests are meta-webs,

where each individual tree is a node that hosts its own sub-web of

multi-species interactions. The long life of trees and the relatively

short life of species that use them as resources, and the even shorter

lives of the fungi and bacteria that form their microbiome, makes it

unlikely that two trees in the same forest support identical food

webs. Furthermore, the mature stages of most individual trees live

longer than the careers of the researchers who study them! Indeed,

some of the trees mentioned above are older than most religions

and the evolutionary origin of conifers predates most terrestrial

vertebrates! (Farjon, 2008). Does this longevity provide an

underappreciated level of stability to terrestrial ecosystems? And

does this ineluctably constrain the persistence of terrestrial animal

and microbial communities to the survival of the trees and grasses

that contain most of the biomass in terrestrial ecosystems?

Trees are some of the most ubiquitous organisms on Earth; a

recent study estimates there are around 3.04 trillion trees on the

planet (Crowther et al., 2015), just under half of these (1.39 Trillion)

are in tropical and subtropical forests, the rest are split almost

equally between boreal (0.74T) and temperate regions (0.61T); each
A B
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FIGURE 1

Three long-lived trees. (A) Oak tree in Windsor Great Park (Photo by Andy Dobson). (B) Welwitschia in the Namibian desert (Photo by Jennifer
Guyton). (C) Giant Sequoia in the Mariposa Grove of Giant Sequoias, California (Photo Allegra Dobson). (D) Elephants and Zebra in Serengeti National
Park surrounded by grasses that annually regrow from deep roots to support a large diversity and biomass of ungulates (Photo Andy Dobson).
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tree contains a food web of interacting fungal, bacterial, insect and

nematode species, and acts as a discrete patch in the habitats and

territories of many bird and mammal species. Most individual

plants have a web of mycorrhizal fungi associated with them and

this may contain a significant proportion of the carbon dioxide

scrubbed from the atmosphere by the tree A recent review estimates

that as much as 30% of the carbon captured by trees from the

atmosphere is stored in these fungal mutualists (Hawkins et al.,

2023). Although individual trees can be incredibly long-lived, recent

studies of data from long-term tropical forest plots show significant

turnover in the populations of individual trees on multi-decadal

timescales (Chisholm et al., 2014). A beguiling pattern underlies

these data: variation in the population size of abundant trees tends

to be driven by environmental variation (most likely climate and

natural enemies), while variation in the abundance of rarer trees is

dominated by demographic stochasticity. Presumably the food web

associated with more abundant trees can persist as meta-

communities whose species continuously recruit into the adult

populations from the population of younger trees waiting to

develop in the understory, or as seeds in the soil seed bank. These

age-structured effects could also operate in rarer trees where higher

levels of variability in abundance may compensate for the reduced

probability of specific fungal, insect, and nematode species locating

their host.

At a macro-ecological scale, it is also intriguing to ask how these

patterns change from species-rich rainforests to species-poor boreal

forests where the biomes associated with each tree are likely less

dissimilar, than those associated with individual tropical trees.

Likewise, the food webs associated with individuals trees in closed

canopy forests may be more similar than the food webs associated

to widely spaced savanna trees. What are the dynamic and

structural consequences for food webs of switching our botanical

perspective from algae in ponds, to oaks, yews, figs, Bristlecone

pines in forests, and grasses in savannas? Recent work on forces that

determine the stability of food webs has emphasized the role of

long-lived species that create slow dynamics where changes in

abundance occur on timescales that are orders of magnitude

slower than for consumer species in the web (McCann et al.,

2005; Rooney et al., 2006; McCann, 2011). Trees canonically fill

this role in the food web dynamics of tropical, temperate and boreal

forests; perennial grasses play an analogous role in savannas. While

there is a rapid turnover and variance in the abundance of early life

stages—fruits, seeds and seedlings are produced on a regular annual

basis, or occasionally at longer time intervals in masting species.—
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The longevity of adult mature trees consistently and predictably

generates, on a time scale of decades to centuries, spatially local

resources for species on higher tropic levels that feed on fruits,

seeds, and leaves, as well as for the decomposer community that

feeds on fallen leaves and branches (Table 1). Variation in annual

levels of productivity is partially offset by interactions between

plants competing for space, nutrients, water, and sunlight

(Tilman, 1982; Tilman, 1988). While this initially creates

problems for stability from a theoretical food web perspective, as

explicit competition is destabilizing (Loreau and De Mazancourt,

2013), these problems could be surmounted if light, water and

nutrients were included as additional ‘limiting factors’ in the web,

competition between plants would then be explicitly resource based

(Allesina and Tang, 2012; Tang et al., 2014; Allesina and

Tang, 2015).
Food web models

Are there more explicit ways of dealing with the longevity of

mature plants in food web models? Could this be captured by age-

or stage-structured models that allow long-lived mature trees to

compete slowly for light, water and nutrients, while supplying a

variable annual supply of leaves, sap, fruits, pollen and seed stages to

the consumers that form the rest of the web? Ultimately, this

suggests we should use models of plant communities to provide a

basal layer to models of terrestrial food webs. We could then add on

top of these the faster and more ephemeral interactions between

plant reproduction and animal, bacterial and fungal consumer

species? Although some site-specific computer food-web models

take this approach, it is missing from the more analytical models

based on random networks (Box 1). Ultimately what happens at the

base of the web determines the dynamics of what happens in higher

trophic levels; so one major route that food web studies need to

develop is to integrate the consumer-resource parts of food-web

models with models for dynamics of plant communities (Tilman,

1982; Tilman, 1988; Hubbell, 2001).

The species composition and spatial distribution of the

underlying plant community is the primary determinant of the

foraging/grouping structure of the herbivore community, whose

feeding activities interact with local soil and climate conditions to

shape the local plant community. Most insects, birds and mammals

display strong preferences for the plants that they feed upon (Fine

et al., 2004; Hutchinson et al., 2022). In savanna ecosystems,
TABLE 1 Table comparing the biomass of plants in different ecosystems and relative timescales at which plant demography and ecosystem
succession operate.

Ecosystem
type

Biomass of
primary
consumers

Lifespan of
primary
consumers

Biomass of primary
producers (kg)

Lifespan of primary
producers (years)

Turnover time of
ecosystem (years)

Lake/Aquatic
Small to
intermediate

Days to years ~1 x 10-10 0.1 - 1 0.1 - 1

Grassland
Intermediate to
large

Days to years 0.1 - 1 kg 0.1 - 10 1 - 10

Tropical forest Small to large Days to years 100 - 100,000 kg 10 - 1,000 1,000’s
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vertebrate herbivores can quickly be divided into browsers and

grazers, these will in turn divide the habitat into open areas of

grassland and bush with tree density increasing in the occasional

riparian areas. For example, the Serengeti grasslands are divided

into different plant communities of short and long grasslands,

woodlands and kopjes that have their own fairly well-delineated

groups of herbivores that feed on them (Baskerville et al., 2011).

These compete seasonally with the larger migratory herbivores

(wildebeest, zebra, and elephants) that only use each of these

communities for a few months each year (Figure 2). In turn, the

herbivore communities in any location have both specialized local

and generalized more widely spread carnivores that feed on them.

Spatial patterns in tropical forests will be more complex, individual

trees will have sharply defined insect webs closely associated with

them that are coupled to the webs of other trees by the generalist

birds, insects, and mammals that feed on fruit and leaves of different

tree species and by the predators that then feed upon these primary

consumers. This contrasts with aquatic systems where algae that are

the dominant plant species, in general, these are more

homogeneously distributed and do not generate the distinct

patterns in the distribution of vegetation that characterize forests

and savannas. Although vertical and horizontal stratification in the

abundance of different algae do create subtle groupings in the web
Frontiers in Ecology and Evolution 04
that only emerges when the full details of the feeding relationships

are delineated (Hutchinson, 1961; D’Alelio et al., 2016).

Nevertheless, algal-plankton driven, aquatic food webs will tend

to be relatively spatially homogenous and generate an inverse

biomass pyramid: most of the rapidly generated primary

productivity in algal communities is consumed and turned into

relatively short-lived fish and invertebrate species at higher trophic

levels. This may make them intrinsically more unstable than

spatially complex terrestrial systems where most of the biomass is

in the long-lived plants at the base of the food web (Allesina

et al., 2015).

An overenthusiastic emphasis on algae as ‘canonical plants’ is

not restricted to studies of food webs, in a survey and meta-analysis

of experimental consumer and fertilization manipulation

experiments researchers found that only 7% and 14% of the

studies were of terrestrial systems (Hillebrand et al., 2007; Gruner

et al., 2008). The international NutNet system has begun to address

this balance, a review of the first decade of data from grassland

communities at the core of NutNet (Borer et al., 2017) suggests that

the stability of these grassland webs reflects a balance between

competition among plants for nutrients and light, that is constantly

redressed by the grazing of herbivores. Artificial fertilization or

reduction in herbivores always leads to reductions in plant diversity
BOX 1 field guide to random matrix food web models.

The original ‘random-graph’ food web models developed from “spin-glass theory” by Gardner and Ashby (1970) were refined by Robert May (1973) to produce a result
that has had ecologists scratching their heads for forty years. The result showed that if a food web was characterized by a matrix of random positive and negative
interactions between species (of magnitude 0<->1) then stability would always decrease with increasing species diversity. So how could complex ecological communities

persist? May’s result showed that stability requires all the eigenvalues of the community interaction matrix to be negative, this requires i2
ffiffiffiffiffiffiffi

s : c
p

< 1, where s is number of
species, c is connectance, or number of links in the web and i is average interaction strength. May suggested that ‘modularity’, organizing species into sub-webs of species
that interacted more with each other than with other species might help enhance stability, although stability would still always decline with increased species diversity.

Allesina et al. (2008) helped formalize this conjecture when they showed that that subdividing webs into groups of highly interactive species could enhance stability.
They then made a major breakthrough (Allesina and Pascual, 2009) when they realized May’s original formulation allocated each interaction strength a random number
between -1 and 1. This meant that 1/4 of web interactions would be mutualisms (+/+), 1/4 would be competition (-/-) and half would be consumer-resource or predator-
prey (+/-) relationships. This makes it very hard to have negative eigenvalues as the product of all the negative interactions will be balanced by the product of all the positive
interactions (remembering -/- is always positive)!. They showed that if competitive and mutualistic interactions are more accurately characterized by the consumer-
resource relationships that underlie them then it was much more likely that the community matrix would have negative eigenvalues and the community would be stable.
Allesina and Tang (2012) extended this result to show that stability was possible with much larger community matrices when the vast majority of links were consumer
resource (+/-) links, although May’s central conjecture still held, stability will still decline with increased species diversity, but the intercept of the relationship will be much
higher. Some of these results were partly discovered by a paper written in direct response to May’s (1973) paper by (Roberts, 1974). He suggested that if the subset of
random webs with feasible properties are considered (where feasible implies interaction strengths that permit all species to persist), then webs with more species are more
stable. However, Roberts set up his arrays in a way that generates very strong within species regulation, which would inherently increase the stability of the web as more
species are added.

Allesina and Levine (2011) then expanded the work to examine interactions between species coexisting on the same trophic level, essentially plant communities. This
work showed that framing this debate within the traditional and algebraically tractable framework of interactions between two species is misleading, particularly when the
traditional framework is expanded to include multiple species all of which are assumed to have similar demographic properties and interact by competing for the gaps that
appear when an individual of one species dies and is replaced by any other species (“neutral” models that make a large bow to Peter Grubb’s “regeneration niche” Grubb,
1977). They showed that if species have higher-order interactions with each other such that A outcompetes B, but the presence of C allows B to outcompete A, then it is
possible for many species to coexist on the same trophic level in ways that produce patterns that are closer to those observed empirically than occur in “neutral’
communities.

Grilli et al. (2017), expanded this framework to consider indirect interactions in whole food webs; this work showed that indirect interactions can considerably
enhance the stability of multi trophic webs. Several ecologists have long argued for the importance of indirect interactions and this work confirms these interactions are
important for web stability (Gibbs et al., 2022).

Allesina et al. (2015) also developed elegant methods for adding structure to webs that built uponWilliams andMartinez ‘niche model’which assumes that species can
be arranged by body size such that larger species tend to feed on species within a range of smaller body sizes. This means that empirical webs tend to be ‘interval’ and can
be arranged as sequence of species along an axis where species to the right can only feed on species to the left (an idea originally suggested by Joel Cohen in 1978). Webs of
this type are more similar to empirical webs than ‘random graph’ webs which are not interval. This work further suggested that incorporating modularity considerably
reduces the importance of interaction strength in determining stability. Modularity is the presence of substructure within the web such that species tend to form groups
that interact much more frequently with each other than with other species. This again significantly increased the stability of the model webs. However, results from these
analyses suggest modularity is only important under restrictive conditions and observed patterns of nestedness may simply be an epiphenomenon of intervality and is
more likely to observed when food webs are assembled using binary (presence-absence) diet data, than when using quantitative diets (Staniczenko et al., 2013).
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due to intensification of competition between plants ,

disconcertingly echoing the mass uncontrolled experiments that

humans are undertaking in many natural ecosystems. If we are ever

going to use food-web models to understand these trophic-cascade

effects, we will need to develop models that realistically capture the

dynamics of the plant community.

The last ten years have seen considerable advances in our

understanding of the forces that structure theoretical food webs;

the advances developed by Allesina and colleagues almost match the

increases of understanding gained in the previous four decades and

take us a long way towards resolving the initial ‘complexity versus

stability’ conundrum first described by May (see Box 1). The

‘devious strategies which make for stability in enduring natural

systems’ that allow coexistence have now been considerably

untangled. A major next step will be to develop new hybrid

methods that combine insights from plant community ecology

into food web theory. This will then provide a new framework for

examining the structure of the temperate woodlands, tropical

forests and savannas that contain most of the terrestrial

biodiversity on the planet.

A key result to emerge from recent work on food webs described

in Box 1 emphasizes the powerful stabilizing influence of indirect

interactions between species that are mediated by a third or fourth

species (Allesina et al., 2015; Grilli et al., 2017; Mayfield and

Stouffer, 2017). Such interactions are central to the recruitment

and survival of many tropical and temperate plant species;

particularly the presence of fungal pathogens and mutualists.

Ecologists have increasingly realized that Janzen-Connell effects
Frontiers in Ecology and Evolution 05
that minimize recruitment of seedlings in sites adjacent to their

parent tree are driven by fungal pathogens (Augspurger, 1983;

Gilbert and Hubbell, 1996; Packer and Clay, 2000; Bagchi et al.,

2010; Mangan et al., 2010). This in turn ensures that competition

for light and soil resources between plants in tropical forests is

mediated at the recruitment stage by indirect inter-specific

interactions largely driven by fungal pathogens. The impact of

fungal, nematode, insect, and bacterial pathogens that attack

seedlings and older plants is considerably modified and

ameliorated by the presence of a diversity of symbiotic fungi that

organize themselves into a “symbiotic immune system” that helps

protect older plants against further attacks (Jones and Dang, 2006;

Lo Presti et al., 2015). The key thing about these fungal associations

from a food-web perspective is that they generate a diversity of

indirect effects that modulate more direct impacts on the plant’s

fitness. They also create blocks of interactions that are specific to

each tree species, and often to individual trees, thus creating patchy

block motifs within the overall matrix of food web interactions

(Gri l l i et al . , 2016) . These effects , and the modular

compartmentalized structure they promote, could have a

stabilizing influence on the overall structure of the web, a result

that would not have been apparent using the earlier models for food

web structure. Fungal interactions are considerably less diverse in

marine and freshwater systems, perhaps because algae produce

classes of toxins that are particularly detrimental to fungi and

bacteria (Kini et al., 2020).

The community of host-specific fungal pathogens and insects

combines with those generated by less specific seed-dispersers and
FIGURE 2

The Serengeti food web. The network is shown organized and colored by group according to the consensus partition method and arranged by
trophic level from left (plants) to right (carnivores). Plants are identified by the first letter of identified habitat type, if available: (G)rassland, (W)
oodland, (R)iparian, (K)opje, (S)hrubland, (T)hicket, and (D)isturbed. Plant groups are labeled by significantly overrepresented habitat types, and
species assigned to the overrepresented type are labeled with black borders. An interactive version of this figure is available at http://edbaskerville.
com/research/serengeti-food-web/. (Baskerville et al., 2011).
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pollinators to create considerable modularity the overall matrix of

interactions between species in the food web for the ecosystem.

Each modular group reflects the large number of interactions that

occur between fungi, bacteria, nematodes and insects that are

specialists on each plant species, or perhaps even each individual

trees. In contrast, the overall matrix of species interactions will be

shadowed by the more diffuse connections of generalist pollinators,

seed-dispersers and herbivores species that utilize multiple species

of trees. Theoretical studies show that the heterogeneities generated

by specialists are likely to be more stabilizing than when generalists

dominate these components of food web structure (Grilli et al.,

2016). Similar patterns occur in the communities of parasites and

pathogens that feed in and upon all the species that feed in the

herbivorous and carnivorous trophic levels of the web (Lafferty

et al., 2008).
Seasonal fluctuations and
microbiomes

Deciduous forests are characterized by a huge annual

fluctuation in basal resources when the leaves and fruit produced

in the spring and consumed throughout the summer;

concomitantly their leaves convert atmospheric CO2 into

carbohydrates and add new structure to the canopy and roots as

well as nutrients for consumers. Recent studies illustrate that in

many temperate, tropical and boreal forests, a high proportion of

carbon uptake is stored in fungi associated with the roots systems

(Hawkins et al., 2023). In the autumn, leaf fall moves a huge volume

of nutrients back to the ground and into the soil, sequentially (but

asymmetrically) connecting the canopy food webs with those of the

understory and the soil. These nutrients are consumed by a large

community of fungi, worms and bacteria, many of which have

symbiotic relationships with the roots of the parent tree (Cornwell

et al., 2009; Hardoim et al., 2015). Other fungi are less altruistic and

drive the ‘Janzen-Connell’ effect described above that provide an

important driver of tropical forest diversity by preventing offspring

of the parent tree establishing in their near vicinity (Bagchi et al.,

2010; Mangan et al., 2010). These mechanisms most likely underlie

the strong conspecific negative density-dependence, recently

quantified in the 50 hectare forest plot on Barro Colorado Island

in Panama (Kalyuzhny et al., 2023).

Similar plant-microbial couplings also operate in savannas and

grassland (Petermann et al., 2008): the rainy season converts an

almost barren and inedible landscape into high quality pasture that

can feed a huge abundance of herbivores. In the Serengeti, when the

rains end, and the long dry season begins, larger herbivores such as

wildebeest and zebra migrate away from nutrient rich soils where

they’ve fed during lactation. Their dung, urine, and the death of

young calves and adults slowly disperse these nutrients to the soil in

nutrient poor regions of the ecosystem. Recent studies of the

Serengeti food web illustrate how the long-lived perennial grasses

create an annual pulse of nutrients that drives the fast dynamics of

the wildebeest and their predators, while the woodlands and the

kopjes (rocky outcrops or inselbergs) support sub-communities of

less abundant vertebrates that operate on a much slower timescale
Frontiers in Ecology and Evolution 06
(Dobson, 2009). We are only just beginning to glimpse how the

above ground heterogeneity created by different plant communities

is matched by the mycorrhizal and invertebrate communities

feeding on the roots beneath the soil surface (Wardle et al., 2004;

Crowther et al., 2013). We suspect that it is similar, but soil

organisms and other microbes are all too rarely considered in

savanna food web studies.

Our hopes that food web studies will help us understand how

ecosystems will respond to climate change and other anthropogenic

insults founder on the paucity of food web-studies that include trees

and their mycorrhizal associations. Acid rain is devastating for

fungi, so many temperate plant communities have only been

observed in the absence of the mycorrhizae they co-evolved with;

similarly fires destroy mycorrhizae. If you visit Yellowstone

National Park there are still bare areas of ground with essentially

no tree recruitment since the fires of 1988 (Turner et al., 1997;

Turner et al., 2003). These are areas where the hottest fires

destroyed the mycorrhizal community and pine seedlings are

denied the symbiotic mechanism that allows them access to vital

soil nutrients (Franke, 2000). The really bad news here is that the

last two years have seen extensive fires across the boreal forests and

tundra of northern Canada; this has destroyed huge areas of habitat,

if the mycorrhizae are lost, these areas may take even longer

to recover.

Fire is an important component of many savanna and forest

ecosystems; plants are the species that supply fuel for fires and fires

return nutrients to the soil; but few food-web models consider fire

as a component of the web (although see (Bowman et al., 2016).

Some authors have suggested fire appears as a super-herbivore that

profoundly effects the dynamics of tree-grass interaction in

savannas (McNaughton, 1985; Bond and van Wilgren, 1996;

Bond and Keeley, 2005). We tend to see it as more closely

resembling an “uber-virus”; it has essentially zero mass and

requires a threshold level of host abundance to establish. Like

true viruses, the impact of fire on ecosystem structure can be

subtle and profound (Holdo et al., 2009; Staver et al., 2011; Beale

et al., 2018), to date no food-web models include fire in any form,

yet it is essential to the structure and diversity of vegetation in

savannas, fynbos, and drier forests (Bond and van Wilgren, 1996;

Higgins et al., 2000). Our major concern here is that when fire

removes trees and burns at sufficient heat to destroy the soil

mycorrhizal community, then the most important stabilizing

component of the food web may have been lost and may take the

time of many generations of shorter-lived, tree-dependent taxa

to recover.
Reproduction and the other webs

While mycorrhizal associations are the most well-known

examples of plant-microbe interactions, there are a suite of

additional ways in which plants are foundational to microbial

ecosystems. Among these, floral nectaries play host to suites of

microbial organisms that disperse and establish through flower-

visiting animal vectors (Herrera et al., 2009; Belisle et al., 2012).

Similarly, carnivorous pitcher plants support a diverse microbial
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FIGURE 3

A comparison of two food webs. The first, (A), is a three-trophic-level food web of East African primary producers and consumers. Herbivory, as represented
by the browsing impala, is the only form of primary consumption. This linear food web represents the classic mental model of feeding relationships and
energetic pathways in an ecosystem. (B) Increasing the resolution of primary consumer guilds in the this food-web changes its complexity, the potential for
indirect (blue and red) and higher-order (purple) interactions among primary consumer guilds, and illustrates how including a wider range of interactions and
taxa into food webs can lead to a new mental model of feeding relationships, where plant population and community dynamics are central, primary
consumer guilds are arrayed around them, and secondary consumers attach at the outer edges. All photos courtesy of MCH.
FIGURE 4

The food-web of Norwood Farm (Somerset, UK) collected by and recreated from the data of Pocock, Evans and Memmott (Pocock et al., 2012). Green
circles represent plant species, gray-blue circles are antagonistic primary consumers (aphids and seed-feeders), dark purple circles are parasites and
parasitoids, and yellow circles potential pollinators (flower visitors and butterflies). Out of the more than 1200 interactions, 45% are between plants and
flower visitors. Likewise, 56% of taxa (252/451) are flower visitors. Their inclusion dramatically alters this food-web. Plant interactions with leaf-miner
parasitoids were excluded from the original dataset. All silhouettes are from phylopic.org and the bee image was contributed by Melissa Broussard.
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ecosystem within the aqueous solution that decomposes their prey

(Baiser et al., 2012). Among plants that do not ‘eat’ animals, diverse

microbial communities are found on the surface (Vorholt, 2012)

and inside of their leaves (Arnold, 2007). What is becoming clear is

that the trophic relationships within the microbial communities of

many individual plants may be as complex as even the most diverse

of currently resolved macroscopic food webs!

Integrating higher plants into food web theory requires a shift

from these species being the basal fodder of grazers and browsers to

the central assemblage in terrestrial ecosystems upon which the vast

majority of animal and microbial communities and their direct,

indirect, and higher-order interactions are assembled (Figure 3).

The historical dominance of aquatic ecosystems in food-web

ecology has meant that the non-folivorous webs that higher

plants host are often not explicitly accounted for in food-web

theory. An increasingly large literature on the associations

between plants and their pollinators and seed-dispersers, who are

both mutualists and consumers of higher plants, coupled with their

importance for plant reproduction primes these interactions for

inclusion in broader food-web models. In short, to adequately

incorporate higher plants into food-web theory we must not

forget the birds and the bees!

Animal pollinators facilitate reproduction for around 88% of all

flowering plants (Ollerton et al., 2011), a proportion that can reach 98-

99% in tropical forests (Bawa, 1990). Similarly, up to 90% of woody

plants rely on vertebrates for seed-dispersal (Jordano, 2000), while a

substantial proportion of herbaceous seeds are dispersed by ants (Howe

and Smallwood, 1982). More specifically, endozoochorous seed-

dispersal (i.e., where the disperser receives a meal and the association

is often mutually beneficial) ranges from 30–40% of woody species in

temperate forests, to 70–94% in neotropical rainforests (Jordano, 2000).

Given the nature and ubiquity of these associations, this means that

many of the primary consumers in any real food web rely on

something other than a plant’s leaves (Figure 4).

While ‘consumers of fruits and nectar’ are occasionally included in

empirical food webs (Polis, 1991; de Visser et al., 2011), pollinators and

seed-dispersers are generally beneficial to plants, in contrast to folivores

that suppress plants (Pringle et al., 2023). When pollinators and seed-

dispersers are lost, plant recruitment can be significantly reduced

(Robertson et al., 1999; Cordeiro and Howe, 2001; Clark et al., 2007).

Similarly, the importance of these species is highlighted by the fact that

their loss can drive rapid directional evolutionary change in plant

reproductive morphology (Galetti et al., 2013; Gervasi and Schiestl,

2017), and the long-term dynamics of plant communities are

intimately bound to these mutualistic primary consumers (Jordano,

2000). The reproduction of higher plants also represents an under-

appreciated avenue through which plants drive food web dynamics.

While the annual loss and growth of foliage by deciduous trees is a

temporally consistent resource pulse in food webs, the phenology of

plant reproduction can be more variable and suggests how animal

populations may be stabilized by a trickle of resources as opposed to a

pulse. For example, the reproduction of Ficus species in the tropics is

often aseasonal both at the scale of individual trees (Bronstein and

Patel, 1992) and among species (Lambert and Marshall, 1991). The
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result of this asynchrony is a steady supply of fruit and floral resources

for mutualistic primary consumers. Crucially, figs are the major source

of calcium for many frugivorous birds and mammals (O'Brien et al.,

1998). Even in climatically harsh boreal and tundra biomes, some

plants retain fruits into the autumn and winter (Mulder et al., 2021),

representing a crucial resource of frugivores outside of the growing

season. Shifting availability of floral and fruit resources can also have

strong effects on the spatial and temporal distribution of pollinators

and frugivorous seed-disperser populations (Levey, 1988a; Levey,

1988b; Kinnaird et al., 1996; Olesen et al., 2011). Over the past 30

years, a rapidly growing literature on the structure and function of

bipartite plant-mutualist networks has developed (Jordano, 1987;

Bascompte and Jordano, 2013; Valdovinos, 2019; Valdovinos and III,

2021), yet it has remained largely distinct from classic food web studies.

The incorporation of reproductive mutualisms into food web theory

would represent the conceptual coupling of two dominant fields in

community ecology. Food-web models that consider higher-plant

population dynamics and the mutualists that drive those dynamics

will also benefit from the conceptual advances in mutualistic-network

ecology on the phenology of species interactions (CaraDonna et al.,

2014; Ponisio et al., 2017), species-species interactions that do not occur

(Olesen et al., 2011), and structure-stability relationships in different

ecological networks (Thébault and Fontaine, 2010; Sauve et al., 2014).

The integration of pollination and seed-dispersal associations

into food web theory has the potential to alter the image of

complexity and stability of currently resolved food webs while

also improving the biological realism of plant-population models

(Figure 4). May’s stability criterion (Box 1) relies on species

richness, interaction strength, and connectance (i.e. the

proportion of trophic links observed out of the total possible

links) (May, 1973; van Altena et al., 2016). Pollinators are a

mega-diverse guild; the addition of these species to food webs will

increase species richness and almost certainly alter connectance and

network macrostructures (Figure 4). Furthermore, the links

between pollinators, seed-dispersers, and their respective

predators may produce more accurate food web representations

by filling in some of the ‘missing links’ (Dobson et al., 2008; Lafferty

et al., 2008). For precedence, the incorporation of parasites into

food webs this has had startling implications for studies of food web

complexity (Lafferty et al., 2006). Incorporating the population and

community dynamics of higher plants to food web theory will not

only improve the resolution of the basal resource level but also

necessitate the inclusion of entire guilds of animal species not

typically represented in classic predator-prey food webs, such as

pollinators and frugivorous seed-dispersers.

Incorporating reproductive mutualisms into food-web theory

involves more than tacking on a plant-pollinator or plant-frugivore

module to existing food-webs and assuming that all interactions in

these mutualistic modules are always mutually beneficial.

Mutualisms are prone to cheating behaviors, which can shift

these interactions, at least temporarily, towards parasitism (Jones

et al., 2015). For example, endozoochorus dispersal—by virtue of

fruits and seeds being ingested—tends to involve some kind of

nutritional reward to the consumer, but the effect on the plant can
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range from seeds requiring gut passage for germination to seed

predation. Epizoochorus dispersal, where seeds are dispersed

without ingestion, such as by hooking onto fur, offer no cost to

the disperser, but also no benefit. Furthermore, obligate frugivores

are few and far between (Jordano, 2000), seed-predators, such as

ants and small mammals, can still be important seed dispersers)

(Janzen, 1971), and seed-dispersal by large folivores may be negated

by their leaf and stem consumption. Browsing ungulates can be

important seed-dispersers (Rodrıǵuez-Pérez et al., 2011; Pringle

et al., 2014) despite their largely folivorous diets and negative effect

on plants (Pringle et al., 2023). Therefore, the devil of integrating

plant reproduction into food webs almost certainly lies in the details

of how reproductive mutualisms function and are quantified.
Seeing the web with the trees

In conclusion, we argue that a deeper consideration of the role

of higher plants in food webs is needed to create the “next

generation” of food web models. The simplest way to do this

would be to include trees and plants as basal species in food webs

where spatial competition for light, water, and nutrients creates a

community of species that live for a very long time and thus

generate significant underlying stability that trickles up to the

species that feed in and upon them. These primary consumers

can be divided into two broad classes of species: (1) those that feed

on the regular production of fruits, leaves, sap and bark of the plant;

and (2) the large community of fungi, bacteria and parasitic plants

that drive interactions with the plant and its surrounding

environment and through time modify the structure of the

individual tree, in ways that usually enhance the persistence of

both the tree and its ‘symbiotic’ community. The inclusion of this

huge diversity of parasitic and mutualistic species echoes recent

pleas to include parasites and pathogens into models for food webs

(Lafferty et al., 2006; Dobson et al., 2008; Lafferty et al., 2008). Each

of these groups of species generate fuzzy but modular blocks within

the matrix of interactions between species that form the overall

structure of any food web matrix.

The theoretical and technical advances required to bring higher

plants into food web studies is beginning to emerge. Multilayer and

multiplex ecological networks are an exciting development that

allow several webs (be they the webs associated to individual trees in

a forest or webs describing different types of ecological interactions)

to be described as single mathematical object (Pilosof et al., 2015;

Garcıá-Callejas et al., 2018; Guimaraes, 2020). An important recent

study has plotted a potential course for the integration of niche

theory with food web theory (Godoy et al., 2018). Yet others have

described how bioenergetic food-web models may be extended to

include terrestrial plant-herbivore interactions. (Valdovinos et al.,

2022). These approaches will generate the food-web descriptions

that will be used to explore the organization of terrestrial species

interactions at the broadest community level and can quickly

become the grist for the next generation of food-web models that

needed to help understand the consequences resource exploitation

and deforestation in all the world’s forests. Hopefully, they can also

provide important guides for pathways to forest restoration.
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We conclude on a final note of urgency. We are losing trees,

forest and grasslands at a rapid rate. If the stability and persistence

of terrestrial ecosystems is dependent upon long-lived plant species

we need to considerably upgrade attempts to protect them. There

are roughly 400 trees for every human on the planet, this number is

decreasing for two reasons: increasing human population and the

loss of 15 billion trees each year (Crowther et al., 2015); land-use

conversion since the dawn of agriculture has led to the loss of

around 46% of global tree abundance. Slowing this loss of trees,

forests, and perennial grasslands is arguably the most efficient way

to reduce the net rate of species extinction (Schleuning et al., 2016).

Restoring degraded forests, savannas, and grasslands is arguably the

most cost-effective and efficient way to reverse global climate

heating. As most of the freshwater used by humans is supplied by

rivers and streams that have their origins in forests and water sheds,

then human dependence on freshwater should form the basis of any

cogent argument about the importance of protecting forests

(Garrick et al., 2017). This should protect both the forests and the

trees that are arguably the key components of most terrestrial

food webs.
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