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Modeling host–microbiome
interactions to improve
mechanistic understanding of
aphid vectored plant pathogens

Laramy Enders1* and Trevor Hefley2

1Department of Entomology, Purdue University, West Lafayette, IN, United States, 2Department of
Statistics, Kansas State University, Manhattan, KS, United States
Insect transmission of plant pathogens involves multi-layered interactions

between vectors, viruses, host plants and environmental factors. Adding to the

complexity of vector–virus relationships are diverse microbial communities,

which are hypothesized to influence pathogen transmission. Although vector–

virus interaction research has flourished, the role played by microbes in vector

competence and disease epidemiology remains unclear in many pathosystems.

We therefore aimed to develop a novel ecological modeling approach to identify

environmental drivers of complex vector–virus–microbiome interactions,

particularly differences in the abundance of microbial symbionts within vector

microbiomes and relationships between symbionts and the probability of virus

acquisition. Our approach combines established molecular tools for profiling

microbial communities with underutilized Bayesian hierarchical modeling and

data integration techniques. We used a globally relevant aphid–virus

pathosystem to develop custom vector–microbiome models that incorporate

environmental covariates (e.g., temperature, landcover) and applied them to

individual vector symbionts to identify the extent to which environmental factors

drive changes in microbial communities that then influence virus acquisition by

the host aphid. Specifically, we focus on the aphid obligate symbiont (Buchnera)

and a wide-spread facultative symbiont (Serratia) as proof of concept to develop

models for two major vector species that include a single environmental

covariate (i.e., temperature). Overall, we demonstrate how community-level

modeling and microbiome profiling can identify candidate microbes and

environmental variables associated with vector competence. Our modeling

framework can accommodate a range of microbial symbionts with different

abundances, overcome spatial misalignment of data streams, and is robust to

varying levels of disease incidence. Results show Buchnera relative abundance is

strongly negatively associated with virus acquisition by the vector S.avenae, but

not R. padi. Although Serratia was not associated with R. padi vector

competence, relative abundance was influenced by differences in spring

temperatures. This work lays the foundation for developing a broader

modeling framework for predicting disease dynamics in agroecosystems and

deploying microbiome-targeted pest management tactics.
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1 Introduction

Interactions among plants, insects, and their associated

microbial communities are complex. Plants and insects engage in

relationships with both beneficial and pathogenic microbes that

inhabit diverse communities associated with host tissues and the

external environment (Casteel and Hansen, 2014; Cordovez et al.,

2019; Coolen et al., 2022). Added to this complexity is the potential

for insects to vector plant pathogens that cause disease outbreaks,

which can be further affected by microbial symbionts (Weiss and

Aksoy, 2011; Crotti et al., 2012; Angelella et al., 2018). Mounting

evidence suggests a microbial hand in transmission of insect

vectored plant pathogens (reviewed by Wu et al., 2022). Some of

the best studied examples exist in sap-feeding insects such as aphids

and whiteflies, where both obligate and facultative symbionts are

predicted to be involved in various aspects of pathogen

transmission (e.g., Gottlieb et al., 2010; Cilia et al., 2011; Bello

et al., 2019). Disentangling these multi-trophic interactions within

agroecosystems is therefore key to developing effective disease

management strategies (Jones et al., 2010; Chuche et al., 2017;

Mendiola et al., 2020).

Currently, it is unclear how environmental factors, such as

temperature and landscape, impact vector microbiome dynamics

and whether there are cascading effects on the spread of plant

pathogens (Jones et al., 2010; Vayssier-Taussat et al., 2014;

Eigenbrode et al., 2018). Factors that are beneficial for insect host

survival and reproduction could also induce changes in the

microbiome that facilitate virus transmission to new host plants.

Changing environmental conditions are also predicted to influence

viral populations by influencing competition between viral species

or impacting which strains are vectored efficiently (Parry et al.,

2012). However, traditional research approaches have focused on

direct symbiont–virus interactions under controlled laboratory

conditions. Controlled laboratory or greenhouse studies are

limited to manipulation of relatively few environmental variables

and may produce results that are not transferable to field settings

due to well established effects of lab rearing on insect microbial

diversity (e.g., Bansal et al., 2014). Alternatively, combining field-

based studies with statistical modeling is a natural complement to

well-designed laboratory experiments, that together better capture

the complexity of microbe–virus–environment interactions and

thus have the potential to contribute to a mechanistic

understanding of disease dynamics (Eigenbrode et al., 2018).

Despite advances in community-level modeling that

incorporate environmental predictors with changes in abundance

of multiple taxa (Warton et al., 2015), ecological models that can be

applied to insect symbiont–plant pathogen dynamics are

underdeveloped (Vayssier-Taussat et al., 2014; Eigenbrode et al.,

2018). In nature, a consortium of microbes may be responsible for

variability in virus transmission and vector competence.

Community-level approaches, such as those employed using

spatial–temporal modeling, incorporate the complexity of host–

microbe–environment interactions and can be used to identify

guilds of microbes that together influence host traits (Johnson

and Sinclair, 2017). Modeling approaches aimed at identifying the

ecological mechanisms shaping insect microbial communities are
Frontiers in Ecology and Evolution 02
therefore needed to develop microbiome based control strategies for

combating disease epidemics in crops.

Advancing available ecological modeling tools will ultimately

enable researchers to disentangle the mechanistic basis of complex

vector–microbiome–plant pathogen interactions. As a foundational

step forward, we propose development of a broadly applicable

framework for modeling the distribution of individual microbes

(i.e., symbionts) to identify environmental covariates (e.g., weather,

landcover) that predict differences in abundance within vector

microbiomes, that are then linked back to vector competence.

Several approaches can be used for these joint vector–microbiome

models, including selection of 1) known symbionts (e.g., obligate or

facultative symbionts) and 2) candidate taxa linked to pathogen

acquisition or transmission (e.g., positively or negatively associated

with vector competence). In addition, establishing a framework

that is compatible with a range of data types used for estimating

abundances of insect microbial symbionts, including quantitative

PCR (qPCR) and whole microbiome amplicon sequencing

(i.e., metabarcoding), will facilitate broader exploration

across pathosystems.

The overarching goal of this work is to build ecological

modeling tools that enable researchers working in diverse systems

to disentangle the mechanistic basis of insect vector–microbiome–

plant pathogen interactions. To do so, we apply Bayesian

hierarchical models to investigate Luteovirus–aphid–microbe

interactions, first using the aphid–Buchnera symbiosis as proof of

concept and then expanding to additional facultative symbionts.

Barley yellow dwarf (BYD) is a globally destructive disease of cereal

crops caused by a group of aphid-vectored viruses belonging to the

Luteoviridae family, including Barely yellow dwarf virus (BYDV).

Previous work by Enders et al. (2018) demonstrated the statistical

framework for developing spatial–temporal models linking

environmental factors, vector microbial communities and BYDV

incidence. These spatio-temporal models were developed to capture

dynamics in abundance and probability of BYDV infection in two

dominant aphid vector species (Rhopalosiphum padi and Sitobion

avenae) and included environmental factors such as weather

(e.g., temperature, precipitation) or land cover (e.g., grassland vs.

cropland) as covariates. Here we further develop this modeling

framework by incorporating vector symbionts and two common

types of microbiome data used for estimating microbial relative

abundance – qPCR and metabarcoding. Specifically, we used

Bayesian hierarchical techniques to develop joint vector–

microbiome models for two data sets collected in different North

American wheat growing regions that illustrate the applicability of

our approach to a range of data types, microbial symbionts and

disease levels. First, we developed a modular Bayesian model to

predict changes in abundance of the aphid vector (S. avenae) and its

obligate endosymbiont (Buchnera aphidicola) associated with

temperature using qPCR data from individuals collected in

Kansas. Second, we applied our modeling framework to both the

obligate symbiont (Buchnera) and a known facultative aphid

symbiont (Serratia sp.) of a second vector species (R. padi) using

metabarcoding data from individuals collected across Indiana.

These models identify relationships between vector and symbiont

abundances, virus acquisition and spring temperatures.
frontiersin.org

https://doi.org/10.3389/fevo.2023.1251165
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Enders and Hefley 10.3389/fevo.2023.1251165
2 Methods and materials

2.1 Background on BYD pathosystem

The epidemiology of BYDV is complex, involving both

cultivated and non-cultivated grasses and multiple aphid vector

species. In North American cereal agroecosystems, the cycle of

disease begins when aphids colonize newly emerged winter wheat

seedlings in the fall. Both viruses and vectors overwinter in wheat

fields, but disease symptoms do not manifest until spring. Vector

populations generally increase throughout the spring and then

migrate to alternate grass hosts following wheat harvest. Summer

cereals (e.g., corn and sorghum) and native perennial grass species

are therefore an important “green bridge” maintaining the stability

of the BYDV–wheat pathosystem (Brown, 1984; Clement et al.,

1986; Ingwell and Bosque-Pérez, 2015). A suite of at least 25 aphid

species transmit BYD Luteoviruses (Miller and Rasochová, 1997),

with the predominant North American vectors being R. padi,

S. avenae, and Schizaphis graminum (Gray et al., 1998; Hesler

et al., 2005; Power et al., 2011). Transmission efficiency among

vector species varies between BYDV strains and can be highly

vector specific (Lucio-Zavaleta et al., 2001; Papura et al., 2002;

Power et al., 2011). In general, transmission of Luteoviruses by

aphids from plant to plant occurs via a persistent circulative

process, whereby virus particles ingested during phloem feeding

circulate through the aphid body prior to inoculation of a new host

plant (Gray and Gildow, 2003; Ali et al., 2014).
2.2 Aphid collection and sample processing

We used a subset of English grain aphid (S. avenae) samples

originally collected by Enders et al. (2018) across Kansas from winter

wheat fields in 2015. All samples were originally stored at −80C

directly after field collection and species identification. We selected

samples collected from 6 wheat fields where BYDV had previously

been detected and there were at least 10 individual aphids remaining

in storage. Groups of 5 adult S. avenae were tested by Enders et al.

(2018), thus we did not have an initial estimate of virus incidence

(i.e., % viruliferous aphids) in these vector populations to aide in

sample selection, only whether BYDV was detected. We extracted

DNA and RNA from individual aphids using the AllPrep DNA/RNA

Mini Kit (Qiagen) following manufacturer protocols, except that final

elution volumes were 20 ml for DNA and 10ul for RNA. This dual

DNA/RNA extraction allows for downstream DNA-based

microbiome profiling (e.g., qPCR or metabarcoding) and screening

for BYDV (RNA virus).

A second data set of Bird cherry-oat aphids (R. padi) was

collected from winter wheat fields from 5 locations at Purdue

Agricultural Centers across Indiana in 2018 and 2019. Weekly

collections of aphids were performed using a standardized

number of sweeps per field (100 sweeps/field) and timed with

aphid population peaks (May–June), similar to methods used in

Enders et al. (2018). Aphid samples were sorted, separated and

identified to species, and then stored at −80C until further
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processing. We selected samples from collection dates that had at

least 10 individual wingless adult R.padi for further testing. Similar

to the samples from Kansas, DNA and RNA were extracted from

individual aphids (10 individuals/field site/year) using the AllPrep

DNA/RNA Mini Kit and stored at −80°C until further processing.
2.3 Screening aphids for BYDV and
measuring bacterial symbiont abundance

We generated two unique data sets for developing our applied

ecological modeling framework. Both data sets use field caught

aphid vectors (S. avenae and R. padi) and combine virus

screening with commonly used approaches for characterizing

relative abundances of microbial taxa/symbionts from insect

hosts. The two microbiome data types used are DNA sequenced

based but estimate symbiont abundances differently, either focusing

on 1) individual taxa (qPCR data set) or 2) selected taxa identified

from within a broader microbial community (metabarcoding

data set).
2.3.1 qPCR data set from Kansas
In total, sixty individual aphids (10/field site) were 1) screened

for BYDV and 2) profiled for abundance of the obligate symbiont

(Buchnera). We used the quantitative reverse transcription PCR

(qRT-PCR) method developed by Enders et al. (2018) to screen for

BYDV-PAV, which is the most widespread strain found infecting

wheat fields worldwide (Parry et al., 2012; Jarosǒvá et al., 2013)

including the U.S. Great Plains (Rotenberg et al., 2016). This

method detects presence or absence of BYDV but does not

quantify viral titer levels or absolute abundances.

Buchnera abundance was quantified using quantitative PCR

(qPCR) methods developed by Enders and Miller (2016). Relative

abundances were measured using qPCR with single copy genes

from the symbiont (Buchnera chaperonin – GroEL) and aphid host

(elongation factor 1a – Ef1a). The following primer pairs were used

for 1) GroEL: For-ACTATTATTGGTGGCATCGGAG; Rev-

CTTCTGTCGCAGCTCCTACT and 2) Ef1a: For-TGGAC

TCAACTGAACCACCA; ATGGGAACGAAAGCAACAGC. All

qPCR reactions were performed in 10 ml volumes on the BIO-

RAD (Hercules, CA) CFX Connect™ Real-Time System using

iTaq™ Universal SYBR® Green Supermix, with 300 nmol/L of

each primer and 2–15 ng input DNA. The following PCR cycling

conditions were used for all primer pairs: 95°C for 3 min; 40 cycles

of 95°C for 20 sec; 56°C for 30 sec; and 72°C for 30 sec; followed by a

0.5°C increment melt curve from 65 to 95°C. All primers produced

a single melt peak. Individual samples were run in duplicate and a

negative control with no DNA template was included on each plate.

The negative controls did not show amplification for any of the

genes tested from symbionts or aphid host. Buchnera relative

symbiont abundance (RA) was estimated as 2−DCq; where DCq =

Cq (GroEL) − Cq (Ef1a). Similar to Enders and Miller (2016),

Buchnera abundances were calibrated to reflect differences in

individual extraction efficiency by multiplying each sample RA by

a correction factor (CF = maximum Ef1a Cq/sample Ef1a Cq).
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2.3.2 Metabarcoding data set from Indiana
In total, 70 individual aphids (10/field site/year) were

1) screened for BYDV and 2) profiled for bacterial microbiomes

using metabarcoding. We use a similar qRT-PCR based method for

BYDV screening, but with general primers that amplify multiple

virus strains. This assay involved cDNA synthesis of RNA extracted

from aphids and reverse transcriptase PCR (RT-PCR) performed

with generic primers developed by Ingwell et al. (2017) (For:5′-
CGGACARTGGTTRTGG-3′ & Rev:5′-TGGTAGGACTTR

AGTAYTCC-3′). These primers amplify a 224–227 bp region of

the viral coat protein and detect the following strains: BYDV-SGV,

-RMV, -PAV, -MAV and CYDV-RPV (Ingwell et al., 2017). This

method detects presence or absence of BYDV but does not quantify

viral titer levels within individual aphids.

A standard metabarcoding approach using targeted amplicon

sequencing of a 300 bp section of the V3–V4 region of the

prokaryotic 16s rRNA (515F GTGCCAGCMGCCGCGGTAA and

806R GGACTACHVGGGTWTCTAAT, Caporaso et al., 2011) was

used to characterize bacterial communities of viruliferous (+BYDV)

and nonviruliferous (-BYDV) R. padi. Metabarcode sequencing was

performed at the University of Minnesota Genomics Facility on an

Illumina MiSeq instrument using V3 chemistry. Sequences were

processed using a customized bioinformatics pipeline, which

includes sequence quality filtering, identification of amplified

sequence variants (ASVs) and phylogenetic assignment. From this

data set two ASVs identified as Buchnera and Serratia were used for

further modeling.
2.4 Modeling methods

2.4.1 Overview of modeling framework
The Bayesian hierarchical modeling framework is a commonly

used approach in ecology that enables the use of customizable
Frontiers in Ecology and Evolution 04
bespoke statistical models (e.g., Royle and Dorazio, 2008; Kéry and

Royle, 2015; Hooten and Hefley, 2019). Briefly, the Bayesian

hierarchical modeling framework uses a conditional multi-level

(hierarchical) constructive approach to connect data to an

underlying ecological process and ultimately to model parameters

(e.g., slope parameters). In addition to enabling the construction of

bespoke statistical models that are tailored to answer scientific

questions, the Bayesian hierarchical modeling framework also

enables the use of multiple data sets, which is more commonly

known as data fusion or integrated data models (see Ch. 25 in

Hooten and Hefley, 2019; Schaub and Kéry, 2021).

In what follows we use the bracket notation commonly used for

Bayesian models (Hobbs and Hooten, 2015). Using standard

notation from Bayesian statistics, the square bracket represents a

probability distribution (e.g., [a] where a is the random variable).

The presence of a vertical bar inside of the bracket, means that the

probability distribution is conditional (e.g., [a|b]) where a is the

random variable conditional on b).

The first component of our Bayesian hierarchical model are the

probability distributions that describe the collected data. In our

specific case, we include three components (i) aphid count data

(vector relative abundance), (ii) virus presence–absence data (virus

prevalence), and (iii) microbial symbiont relative abundance data

measured using qPCR RA or raw sequence counts (see Figure 1 for

graphical depiction).

More specifically our model is specified using:

½yij ❘wij,yy ,a, �   (1)

where yij is a scalar (single number) that is the recorded abundance

of the vector species (Figure 1). The subscript i indicates the

observation number and j indicates the data set (i.e., j enables the

use of multiple data sets). In Equation 1, the wij is a vector of the

symbiont relative abundances, which may be recorded, missing

(latent), or partially recorded (i.e., some missing and some
FIGURE 1

Overview of ecological modeling framework linking vector, microbiome (virus & symbiont), and environmental predictor variables. Dashed arrows
represent predicted relationships between environmental factors (e.g., landcover, temperature, precipitation), vector abundance, symbiont
abundance and virus acquisition (i.e., prevalence in vector population). Highlighted with blue arrows are relationships with vector symbionts, a novel
component of this modeling approach. The ± symbol represents estimated model parameters (i.e., intercept and slopes), where magnitude and
direction can vary. This modeling framework is highly flexible (i.e., modular) and enables disentangling of major and minor environmental drivers of
response variables. Several data types can be used for both vector and virus (e.g., presence–absence, relative abundance, gene copy numbers).
Created with BioRender.com.
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recorded). The parameter yy is the dispersion parameter (similar to

the variance). Finally, in Equation 1, the a is a vector that contains

parameters (e.g., intercept and slopes) specific to the model for

recorded abundance. The estimated parameters a can be visualized

in Figure 1 as the “±” symbol that connects the environmental

variables and symbiont abundance to the relative abundance of

the vector.

Next, we add a probability distribution to model virus data:

½zij ❘wij, b�   (2)

where zij is the presence or absence of the virus and b is a vector that

contains parameters (e.g., intercept and slopes) specific to the model

for virus presence–absence. Similar to a, the estimated parameters b
can be visualized in Figure 1 as the ± that connects the environmental

variables and symbiont abundance to virus prevalence.

The third component is

½wij ❘yw, g �   (3)

where, as in Equation 1 and Equation 2, wij is the vector that

contains elements which correspond to symbiont relative

abundance (e.g., wij ≡ (wij1,wij2,…,wijk,)
0
where the additional

subscript 1, 2…,k indicate the symbiont type). The yw is the

dispersion parameter (similar to the variance), and g is a vector

that contains parameters (e.g., intercept and slopes). The estimated

parameters g can be visualized in Figure 1 as the ± that connects the

environmental variables to symbiont relative abundance.

Each model component in Equations 1–3 requires the

specification of a probability density or mass function. For

Equation 1 we assume a negative-binomial distribution because

our abundance data are counts (e.g., see Enders et al., 2018). For

Equation 2 we assume a Bernoulli distribution because the

presence–absence virus data results in a binary outcome. Finally,

for Equation 3 we assume a gamma distribution because the

symbiont relative abundance data is continuous real numbers that

are always positive (although sometimes contain zero as

described below).

In addition to the assumed probability distributions, each model

component in Equations 1–3 requires a regression-style linear model

for the expected value (mean) of each distribution. This enables the

inclusion of predictor variables that vary over space and time such as

temperature and landcover and to link the symbiont relative

abundance to the other sources of data (e.g., presence–absence of

virus; see Figure 1 for visual representation). More specifically, for

Equation 1 we specify the expected value as

E(yij) = ea0+a1xij+a2log(wij1) (4)

where E( · ) is the expected value, a0 is the intercept parameter, a1

is the slope parameter for the effect of temperature (xij), and a2 is

the slope parameter for the effect of the natural log of symbiont

relative abundance log(wij1). Note that log( · ) is the natural log,

however, any other reasonable transformation could be used. For all

examples in Equations 4 and 5, we use only a single symbiont type,

however, adding more symbiont types is straightforward by the

inclusion of an additional wijk and slope parameter. Similarly for

Equation 2, we specify the expected value as
Frontiers in Ecology and Evolution 05
E zij
� �

= ilogit b0 + b1xij + b2log wij1

� �� �
(5)

where ilogit( · ) is the inverse logit function commonly used in

binary regression. The b0 is the intercept parameter, b1 is the slope
parameter for the effect of temperature (xij), and b2 is the slope

parameter for the effect of the natural log of symbiont relative

abundance log(wij). Lastly, for Equation 3, we specify the expected

value as

E wij1

� �
= eg0+g1xij (6)

where g0 is the intercept parameter and g1 is the slope parameter for

the effect of temperature (xij).

Similar to Equations 4–5, the modeling of addition symbiont

types can be facilitated by modifying Equation 6. The regression-

style model in Equations 4–6 are flexible in the sense that additional

environmental variables could be added by simply including an

additional slope and variable. Finally, all Bayesian models required

the specification of models for the parameters known as priors. We

address the priors in the section specific to each data example.

We fit our Bayesian hierarchical model using a standard

Bayesian model fitting algorithm known Markov chain Monte

Carlo (Hooten and Hefley, 2019) with a user-friendly software

JAGS which can be accessed and implemented from the statistical

programing language R (Plummer, 2003). This model fitting

algorithm requires some user input and supervision. All statistical

analyses related to the Bayesian model were preformed using the

statistical programing language R (R Core Team, 2023). In

Supplemental Files 1–4 we provide the R code and data needed to

reproduce our analyses including reproduction of results in

Figures 2, 3.

Our results will be presented by summarizing the posterior

distribution obtained from our Bayesian models. To summarize the

posterior, we will show expected values (e.g., represented by black

lines in Figures 2, 3) and 95% credible intervals (represented by gray

shading in Figures 2, 3). Our interpretation of results requires an

understanding of Bayesian statistics, at the level introductory level

of, for example, Hobbs and Hooten (2015). For readers unfamiliar

with Bayesian statistics, heuristically, the black lines show the

impact of the slope estimates whereas the gray areas show how

certain we are of these effects.

2.4.2 Selection of environmental variables
One of the biggest challenges for developing ecological models

is selection of predictor variables and establishing model

assumptions. There are multiple approaches for identifying major

and minor environmental drivers of response variables of interest

(e.g., vector and symbiont abundances, virus incidence), which

ultimately depends on existing biological knowledge of the system

(i.e., informative priors). Environmental covariates (i.e., predictor

variables) can be selected based on previous experimental or

modeling work, or are those predicted to be biologically relevant

(i.e., directly impact vector and/or symbiont). For modeling virus–

microbe–vector interactions it is particularly important to consider

key components of the pathosystem, such as mode of transmission

and seasonal dynamics. In our case, two seasonal periods (fall and

spring) are influential for BYD dynamics in cereal agroecosystems.
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Fall conditions are considered important drivers of BYD

(Harrington et al., 1999; Fabre et al., 2003), particularly because

the incidence of viruliferous vectors (+BYDV) is predictive of

disease severity and yield loss (Kendall and Chinn, 1990; Quillec

et al., 1995; Fabre et al., 2003). Spring conditions have received less

attention, but are critical for determining vector populations sizes

and influencing migration to alternative grass hosts that serve as

virus reservoirs and maintain the disease cycle (Enders et al., 2018;

Rashidi et al., 2021).

Here we focus on environmental conditions in spring when

aphids were sampled from field populations on winter wheat. We

selected a single environmental covariate as proof of concept that is

predicted to directly affect aphid vectors and their associated

symbiont communities – temperature. However, multiple

additional predictor variables or covariates (e.g., precipitation,

landcover, management approaches) can easily be incorporated

within the Bayesian framework. Temperature is likely a dominant

factor because it can directly influence insect vector biology,

microbial symbiont populations and multi-trophic interactions.
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For aphid vectors, temperature is a well-established driver of

population growth, migration, and virus transmission (Dixon,

1977; Lowles et al., 1996; Power et al., 2011; Crossley et al., 2022)

and is widely recognized as influencing the colonization and

overwintering success of populations in cultivated and

uncultivated grasses (Fabre et al., 2006; Thackray et al., 2009).

Recent work also shows enhanced heat tolerance of BYDV-infected

aphids (Porras et al., 2020). For insect microbiomes, temperature

has important impacts on symbionts and interactions with their

host (e.g., thermal protection) (Corbin et al., 2017). For example,

the prevalence of S. symbiotica in aphid populations has been

shown to influenced by seasonal temperatures (Pons et al., 2022).

However, temperature stress can also reduce the abundance of key

aphid symbionts within the host (e.g., Buchnera, Wolbachia)

(Enders and Miller, 2016).

2.4.3 Selection of microbial symbionts
Several approaches can be used to select focal symbionts that are

predicted to influence vector competence. For example, previous
A

B

D E

C

FIGURE 2

Results of joint vector–microbiome model integrating the obligate symbiont Buchnera (A), virus acquisition (B, C) and S. avenae vector (D, E) with a
single environmental covariate (average spring temperature). Each panel shows the predicted relationship with credible intervals (CIs) indicated in
grey. Buchnera relative abundance was measured using qPCR, virus incidence is measured as the probability an individual aphid is viruliferous
(+BYDV) and vector abundance is measured as the expected number of individuals per 100 sweeps of a winter wheat field.
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studies can be used to identify vector symbionts predicted to be

involved in transmission of plant pathogens (e.g., aphids –

Buchnera, whiteflies – Hamiltonella). Additional obligate and

facultative symbionts known to mediate vector biology and

ecology (e.g., nutritional or defensive symbionts) are also

potential candidates. However, careful consideration should be

taken to select candidate microbial taxa with an established

biological or hypothesized basis for involvement in pathogen

transmission. Using additional statistical approaches to pre-select

focal symbionts, like those for identifying differentially abundant

taxa from metabarcoding data sets (e.g., ANCOM, DESeq), is not

recommended because this inflates type I error.

Aphids have relatively well described microbial partners, most

notably the obligate nutritional symbiont Buchnera, which has been

implicated in BYDV transmission (Cilia et al., 2011). In addition,

there are a range of facultative bacterial symbionts with well-

established roles in aphid physiology and ecology (Hansen and

Moran, 2014; Zytynska and Weisser, 2016). For example, Serratia

symbiotica is one of the most common symbionts of aphids, exhibits

a range of effects on aphid physiology, and can be transferred

between aphids and their host plants (Pons et al., 2022). We

therefore chose to focus our models on the obligate symbiont

Buchnera and the facultative symbiont Serratia. Both symbionts
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are excellent candidates based on the wealth of research

showing effects on aphid biology and potential to mediate

vector competence.
2.4.4 Model 1: qPCR data set from Kansas
In Section 2.4.1, we described a Bayesian hierarchical model

that may be broadly applicable, however, each collection of data sets

will have unique quirks and features that require modification to the

Bayesian hierarchical model in Equations 1–6. More specifically, for

the Kansas data set, we have one data set on the vector abundance,

two data sets for the virus presence–absence, and one data set for

the symbiont relative abundance. It is one of the two data sets for

virus presence–absence that requires modification of our Bayesian

hierarchical model. As described in Enders et al. (2018), the virus

presence–absence data was collected by pooling multiple aphids

and obtaining a single test result. Following Vansteelandt et al.

(2000) and as described in the supporting material of Enders et al.

(2018; see Appendix S1), Equations 2 and 5 can be modified by

assuming a Bernoulli distribution with

E zij
� �

= 1 − 1 − ilogit b0 + b1xij + b2wij

� �� �mij (7)

where mij is the number of individual aphids in each pool.
A B

D EC

FIGURE 3

Results of joint vector–microbiome model integrating the obligate symbiont Buchnera (A), facultative symbiont Serratia (B), and virus acquisition (C–E)
with a single environmental covariate (average spring temperature) for the vector R. padi. Each panel shows the predicted relationship with credible
intervals (CIs) indicated in grey. Buchnera and Serratia relative abundance was measured as raw sequence counts and virus incidence is measured as the
probability an individual aphid is viruliferous (+BYDV).
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In addition, the data set for vector abundance and one data set

for virus presence–absence is missing the collocated data set on

relative symbiont abundance. The result is that wij (relative

symbiont abundance) in Equations 4 and 5 is latent (missing)

and as a result is imputed (predicted) using standard Bayesian

techniques. This requires no modification to our model described in

Section 2.4.1 but is a strength and perhaps unknown feature of

Bayesian hierarchical models for some readers.

Finally, our Bayesian hierarchical model in Equations 1–6 requires

the specification priors. We use a0 ∽N(0, 100), a1 ∽ uniform(0, 106),

b0 ∽N(0, 2:25), b1 ∽N(0, 2:25), b2 ∽N(0, 2:25), g0 ∽N(0, 100), g1 ∽
uniform(0, 106), g2 ∽ uniform(0, 106), yy ∽ uniform(0, 3� 106), and

yw ∽ uniform(1, 3� 106). These priors, with the exception or the

prior for a1, g1 and g2are not particularly noteworthy in the sense that

they should have minimal influence on the estimated parameters or, in

the case of b0, b1 and b2 they may result in a regularizing (shrinkage)

effect. The prior for a1, g1 and g2are informative in the sense that it

requires the slope for the effect of spring temperature to be positive (but

with an unknown magnitude). Within the field of Bayesian statistics,

this type of prior is known as an informative prior (Hobbs and Hooten,

2015). In formative priors can be incredibly useful in situations that

some expert information about the system is available.

2.4.5 Model 2: metabarcoding data set
from Indiana

Similar to Section 2.4.4, we make modifications to the Bayesian

hierarchical model to tailor it to the Indiana data set. In the Indiana

data set we expand Equations 4–5 to include two symbiont types.

This requires an additional slope parameter to be added to

Equation 5. Similarly, Equation 6 is a regression-style model for a

single symbiont. Effectively, adding another Equation 6 with a unique

intercept and slope enables us to model the second symbiont. Our

Indiana data set does not contain data on the vector abundance. As a

result, we remove Equation 1 and Equation 4 from our mode. Lastly,

we use the priors b0 ∽N(0, 2:25), b1 ∽N(0, 2:25), b2 ∽N(0, 2:25)

and b3 ∽N(0, 2:25), which are the same as the Kansas data

example. For the model for symbiont relative abundance, we

use the priors go ∽N(0, 100) g1 ∽N(0, 100) for each type of

symbiont. These priors, unlike the priors used in the Kansas

data example, do not pre-determine the slope of the relationship.
3 Results

3.1 Model 1 results: English grain aphid
(S. avenae) qPCR data set

Using a hierarchical Bayesian framework we developed a

model linking virus acquisition, aphid vector and microbial

symbiont abundances, and average spring temperatures.

Figure 2 shows results from each focal component of our model

(i.e., symbiont, virus, vector), but also refer to Figure 1 for

graphical overview of our approach. Specifically, our response

variables include vector abundance, virus acquisition and

Buchnera relative abundance and predictor variables include
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spring temperature and Buchnera relative abundance. A unique

feature of our models is that each microbial symbiont can be

either included as a response variable (Figure 2A) or predictor

variable (Figures 2C, E). Each horizontal set of panels thus

demonstrates the modularity of this approach and usefulness

for teasing apart complex multi-tropic relationships and the role

of environmental covariates. Main outputs from these models are

the coefficient estimates (e.g., slopes), which provide information

on magnitude and direction of effect sizes for relationships

between response and predictor variables, and 95% credible

intervals (CIs) that indicate level of certainty of these effects.

For relationships depicted in Figures 2A, D, E we used

informative priors (i.e., assumed a positive slope) based on

well established relationships between temperature, Buchnera

abundance and insect development.

First, Buchnera relative abundance, measured using qPCR,

shows a positive association with increased average spring

temperatures (Figure 2A) across our Kansas field locations. There

is an overall medium positive effect size, but the large credible

intervals (CIs) suggest a moderate level of uncertainty. This positive

relationship is not unexpected given the assumptions of the model

and small range of average temperatures during the sampling

period. Next, we evaluated relationships between virus acquisition

(i.e., probability of a vector being viruliferous, tested positive for

BYDV), spring temperatures (Figure 2B) and Buchnera relative

abundances (Figure 2C). Here we find large effects of both predictor

variables with high levels of certainty based on CIs. Interestingly,

mean spring temperature had a positive coefficient estimate, while

Buchnera relative abundance had a coefficient estimate that was

negative. These results predict that increases in temperature during

the sampling period increase the likelihood S. avenae is viruliferous,

while vectors with higher Buchnera titers may be less likely to have

acquired the virus. Finally, results indicate that vector abundance

during the sampling spring period increases with temperature

(Figure 2D) and Buchnera relative abundance (Figure 2E).

Coefficient estimates are both positive, but in the case of

Buchnera relative abundance there is less certainty given the large

CIs. However, there was a medium to large effect of temperature,

which suggests that even slight increases in early spring

temperatures may increase the number of S.avenae (i.e., ~40–50%

higher vector abundance with 3°C increase).
3.2 Model 2 results: bird-cherry oat aphid
(R. padi) metabarcoding data set

We adapted our Bayesian modeling framework (see Sections

2.4.1 and 2.4.5) for a second data set where symbiont relative

abundances were estimated using standard community-level

metabarcoding techniques (i.e., raw sequence counts per ASV).

We expanded our approach to include two bacterial symbionts

(Buchnera and Serratia) using a second aphid vector species

(R. padi). Relative abundances of these symbionts varied

considerably, with Buchnera being ~1000-fold higher than

Serratia based on read counts. This data set differs from the one
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collected in KS in that there is no misalignment of data (i.e.,

measures of symbiont abundance and virus incidence are

collocated), thus we did not utilize data fusion techniques.

However, in this case we do not have information on vector

abundances. Figure 3 shows results from each focal component of

our model (i.e., symbiont, virus), which links virus acquisition,

microbial symbiont abundances, and average spring temperatures.

Interestingly, the two vector-associated symbionts show

opposite relationships with temperature during the sampling

period (Figures 3A, B). Buchnera relative abundance shows a

strong negative association with increased average spring

temperatures (Figure 3A) across our IN field locations. In

contrast, Serratia abundances are strongly positively associated

with increasing temperature (Figure 3B). In both cases these are

large effects sizes with moderate to high levels of certainty based on

CIs. However, neither symbiont (Figures 3C, D) nor temperature

(Figure 3E) was found to drive differences in the probability that R.

padi was viruliferous.
4 Discussion

Increased accessibility of techniques for studying microbes

associated with plants and insects has generated need for

community-level approaches that can uncover the underlying

processes shaping microbiome structure and holobiont properties.

As a result, interest in microbiome modeling approaches is steadily

on the rise, particularly with regard to functional predictions and

understanding microbe–microbe and host–microbe interactions

(Gibson and Gerber, 2018; Lugo-Martinez et al., 2019; Coyte

et al., 2021). However, current modeling approaches are heavily

focused on omics data sets and community assembly dynamics,

particularly in humans (Baldini et al., 2019; Kumar et al., 2019;

Coyte et al., 2021), while broader ecological approaches that

disentangle complex relationships between diverse hosts,

microbes and key environmental factors are lacking.

We utilized established Bayesian hierarchical modeling

techniques to develop an approach that can be widely applied to

understanding environmental drivers of plant–insect–microbe

interactions. Specifically, we created a customized modeling

framework that teases apart the role of temperature in

relationships between aphid symbionts, virus acquisition and

vector abundance within the BYD pathosystem. We demonstrate

the strengths of our modeling approach, including applicability to a

range of microbiome data types and microbial taxa (e.g., virus,

fungi, bacteria), levels of disease prevalence and symbiotic

relationships. A further advantage of our modeling framework is

application of underutilized data integration techniques, which

enables researchers to overcome information deficient data sets

by combining data streams to address broader ecological questions

(Schaub and Kéry, 2021; Frost et al., 2023). Overall, our results

using two example data sets establish the foundation for building

custom ecological models for a range of pathosystems that will

reveal linkages between vector symbionts, environmental variables

and disease dynamics.
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4.1 Guidelines for using microbiome
modeling to improve mechanistic
understanding of insect vectored
plant pathogens

How can researchers apply our modeling approach to

understand microbiome mediated spread of insect-borne plant

pathogens? One strength of our approach is the ability to use

existing data sets that may be spatially and/or temporally

disconnected. Specifically, data integration or fusion techniques

allow data sets collected at different times, locations and sources

(i.e., plant, insect and microbe metrics) to be combined into a single

model and thus avoids the need for additional, potentially cost-

prohibitive, data collection (Schaub and Kéry, 2021; Cook et al.,

2023; Frost et al., 2023). Researchers can therefore take advantage of

previously collected data sets that are not spatially or temporally

aligned, or may be partially incomplete, to generate a system-level

understanding by sharing information across data sets. In addition

to using existing data, our modeling approach is informative for

experimental design and directing additional data collection. This

opens exiting new avenues for incorporating multiple types of

microbiome data, such as gene copy numbers or absolute

abundances, rapid sensor based identification (i.e., presence/

absence) and even microbial metabolite or other omics data

sources. The modeling tools we develop here also easily facilitate

interdisciplinary research approaches by melding organisms across

kingdoms with a wealth of environmental variables of interest

within agroecosystems. For example, models could also begin to

tease apart interactions between different insects (e.g., presence of

natural enemies or competitor species) associated with the same

host plant, which could in turn influence vector–microbe–plant

interactions and disease dynamics.

We created a broadly applicable framework for modeling the

distribution of individual microbes to identify environmental

covariates (e.g., weather, landcover) that predict differences in

abundance within vector microbiomes, that are then linked back

to aspects of vector competence (e.g., acquisition, transmission).

There are several key considerations we suggest are important for

researchers when building joint vector–microbiome models using

the Bayesian techniques and data integration illustrated in this

study. First, identifying relevant components of vector competence

specific to the focal pathosystem is necessary, particularly where

there is potential for involvement of microbial symbionts (e.g., host

plant preference, vector fitness). Importantly, model assumptions or

inclusion of informative priors and selection of environmental

covariates will depend on existing biological knowledge within

each system. Bayesian modeling approaches are also able to

include multiple environmental predictor variables (i.e., major

and minor drivers), but researchers should be aware of potential

issues with collinearity of covariates. Second, researchers should

consider the level of detail or type of information provided by

available data sets and when designing experiments. Our modeling

approach can accommodate a range of data types that provide

varying levels of detail or information about the system. For

example, finer scale measurement of viral titer levels or amplicon
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sequencing can provide additional information beyond what is

possible with dichotomous (i.e., presence/absence) viral data, such

as patterns in abundances of specific viral sequence variants and

titer levels within vectors. However, when addressing data deficient

scenarios there are several options available, including model based

solutions such as data fusion and use of informative priors based on

expert knowledge or the potential need for additional data

collection. For example, variation in disease incidence across

growing regions and abundance of symbionts are important

factors to consider for model building. In this study we

demonstrate the usefulness of Bayesian techniques for modeling

data sets that are relatively information rich (high disease – Great

Plains region) or information deficient (low disease – Midwest

region; some very low abundance symbionts, no vector data).

Here we use the aphid-BYD system as an example for

developing joint vector–microbiome modeling approaches that

can be customized to different pathosystems of interest. For

example, a wealth of information exists on the microbial

symbionts and plant pathogens vectored by whiteflies that could

be used for developing Bayesian hierarchical models to investigate

linkages between symbionts, environmental variables and disease

dynamics (Andreason et al., 2020; Wu et al., 2022). Researchers

could develop ecological models that incorporate candidate

symbionts (i.e., response variable = symbiont abundance)

pred ic ted to be involved in pathogen transmiss ion

(e.g., Hamiltonella, Rickettsia) or that influence vector biology

more generally (e.g., obligate symbiont Portiera). Models could be

developed to compare virus and symbiont abundances across

whitefly biotypes or populations with varying vector competence

and could include environmental predictor variables

(e.g., temperature, host plant species) that may impact virus

transmission and/or acquisition. Interestingly, Rickettsia has been

shown to influence whitefly thermal tolerance via increased

expression of stress responsive genes (Brumin et al., 2011),

making this facultative symbiont an interesting target for

modeling interactions with begomoviruses. Documented variation

in location of facultative symbionts within whiteflies also offers

opportunities to model microbe–microbe interactions, as some

symbionts are co-localized with the obligate symbiont inside

bacteriocytes whiles others infect multiple organs (e.g., gut,

salivary glands) and can circulate in the hemolymph (Andreason

et al., 2020).
4.2 Implications for disentangling BYDV–
symbiont–vector interactions

Despite extensive research on Luteovirus–aphid interactions, it

remains unknown to what extent symbiotic microbes impact BYDV

transmission. Early work in R. padi and S. avenae found a molecular

chaperone (GroEL) produced by the primary symbiont Buchnera

with high binding affinity for BYDV particles in vitro (Filichkin et al.,

1997). Thus, it was proposed GroEL protects BYDV from aphid

immune defenses during circulative transport through the

hemolymph. However, the role of GroEL in BYDV transmission

has been questioned. Bouvaine et al. (2011) demonstrated GroEL
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protein is restricted to specialized cells called bacteriocytes and not

present in aphid hemolymph, suggesting GroEL–BYDV interactions

are unlikely. More recently, studies have found Buchnera titers are

lower in viruliferous aphids involved in transmission of Potato leafroll

virus (Patton et al., 2021) and in aphids feeding on virus-infected

soybean tissues (Cassone et al., 2015). General disruption of aphid

symbiont communities using antibiotics is also linked to reduced

transmission efficiency of BYDV (Yu et al., 2022). However, the role

of symbionts in transmission of aphid-borne pathogens has primarily

focused on Buchnera, while additional facultative symbionts have

largely been ignored (Angelella et al., 2018).

Our modeling framework adds layers of mechanistic

understanding to BYDV pathosystem dynamics, specifically by

investigating environmental mediators of vector symbiont

abundances and links to virus acquisition (Figures 2, 3). Results

from our previous spatio-temporal modeling work indicated the

probability an S. avenae was viruliferous (+BYDV) was unaffected

by precipitation but was positively correlated with fall temperatures

and distance to forest or shrubland (Enders et al., 2018). Here we

further add a layer of mechanistic understanding by showing that

titer levels of the obligate symbiont Buchnera are strongly negatively

associated with virus acquisition (Figure 2C), and that spring

temperatures may also affect Buchnera within the S. avenae aphid

vector (Figure 2A) as well as probability of virus acquisition

(Figure 2B). Taken together these results suggest that temperature

could influence S. avenae vector competence via effects on the

obligate symbiont. In contrast, R. padi virus acquisition was not

linked to temperature or symbiont abundances (Figures 3C–E),

suggesting the role of microbes and environmental factors are likely

vector species specific. However, further in-depth laboratory studies

are needed to identify exact molecular or physiological mechanisms

underlying potential virus–symbiont interactions or that could

explain observed reductions in Buchnera titer with S. avenae virus

acquisition. Finer scale measurement of viral and symbiont titers

using qPCR and investigation of variation across viral strains using

amplicon sequencing could also generate additional insights from

ecological models.

Our results also highlight the complexity of interactions

between temperature and insect symbionts. Associations between

relative abundance and temperature varied across Buchnera and

Serratia (Figures 2A, 3A, B), suggesting increasing temperature may

be stressful for some symbionts but not for others. Alternatively, in

the case of free-living symbionts like Serratia, warmer temperatures

may increase overall abundances in the environment, which could

lead to higher exposure and acquisition by aphid hosts. In line with

our results, a recent survey across aphid species found Serratia

symbiotica prevalence was significantly greater when temperatures

were higher at time of sampling (Pons et al., 2022).

Natural next steps towards a systems-level approach are to

incorporate measures of plant health (e.g., disease severity, yield)

and management practices (e.g., insecticides, resistant crop cultivars)

into our models that are relevant for cereal agroecosystems. To

develop a more complete understanding of microbial-mediated

vector competence, models will also need to include BYDV

transmission to new host plants in addition to vector acquisition.

Fine tuning model assumptions and environmental variable selection
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will continue to advance our understanding of vector–BYDV–

symbiont interactions. The Bayesian modeling framework applied

here is flexible and can easily accommodate additional environmental

covariates. For example, precipitation levels and landcover estimates

(e.g., proximity to natural vs. cultivated landcover) can be easily added

to existing single covariate models. Precipitation is associated with

increased early season activities of some aphid vectors (Crossley et al.,

2022) and is predicted to indirectly benefit vector populations by

generally supporting host plant health, including growth of both cereal

crops and additional grass hosts that provide a “green bridge” for

vector survival between growing seasons (Thackray et al., 2009;

Rashidi et al., 2021). Relatedly, exposure to a greater diversity of

host plants in a given landscape could in turn contribute to increases

in symbiont diversity within vectors populations (Hansen and Moran,

2014; Blankenchip et al., 2018; Enders et al., 2022). Presence of

additional grass hosts are also problematic because they can

contribute to viral reservoirs in the landscape that then facilitate

transfer to cereal crops (Rashidi et al., 2021). Landcover

(e.g., % cropland vs. non-cropland) is therefore another important

candidate environmental covariate linked to the potential for aphids to

acquire symbionts from alternative grass hosts that could influence

vector competency and the spread of BYDV.
5 Conclusion

Joint vector–microbiome modeling is an underutilized tool

researchers can leverage to uncover multi-trophic relationships and

environmental drivers of agroecosystem disease dynamics. Bayesian

approaches are powerful for informing in-depth mechanistic

laboratory experiments and overall study design, as we all as

predicting and mediating future disease outbreaks. The ecological

modeling framework we present here includes several key aspects:

(i) data fusion – multiple data sets can be combined, including those

with spatio-temporal misalignment and (ii) customizability –

Bayesian hierarchical models are modular and thus widely

applicable across systems by layering specific components of interest

(e.g., environmental variables, microbes, vector and plant measures)

(Hooten and Hefley, 2019; Schaub and Kéry, 2021; Cook et al., 2023).

A final strength is the flexibility of our modeling approach to

accommodate a diversity of data sets, including a range of high to

low disease incidence and microbial symbionts with different

functional roles or abundances within the vector microbiome. This

work therefore lays the foundation for uncovering microbial targets

for improved pest control and algins with long-term development of

precision microbiome management approaches (French et al., 2021).

Ultimately we envision the modeling tools developed here to spur

further interdisciplinary and systems-level approaches for predicting

and controlling insect-borne plant pathogens.
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Jarosǒvá, J., Chrpová, J., Šıṕ, V., and Kundu, J. K. (2013). A comparative study of the
Barley yellow dwarf virus species PAV and PAS: distribution, accumulation and host
resistance. Plant Pathol. 62, 436–443. doi: 10.1111/j.1365-3059.2012.02644.x

Johnson, D. S., and Sinclair, E. H. (2017). Modeling joint abundance of multiple species
using Dirichlet process mixtures. Environmetrics 28, e2440. doi: 10.1002/env.2440

Jones, R. A., Salam, M. U., Maling, T. J., Diggle, A. J., and Thackray, D. J. (2010).
Principles of predicting plant virus disease epidemics. Annu. Rev. Phytopathol. 48, 179–
203. doi: 10.1146/annurev-phyto-073009-114444

Kendall, D. A., and Chinn, N. E. (1990). A comparison of vector population indices
for forecasting barley yellow dwarf virus in autumn sown cereal crops. Ann. Appl. Biol.
116, 87–102. doi: 10.1111/j.1744-7348.1990.tb06588.x
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Miller and, W. A., and Rasochová, L. (1997). Barley yellow dwarf viruses. Annu. Rev.
Phytopathol. 35, 167–190. doi: 10.1146/annurev.phyto.35.1.167

Papura, D., Jacquot, E., Dedryver, C. A., Luche, S., Riault, G., Bossis, M., et al. (2002).
Two-dimensional electrophoresis of proteins discriminates aphid clones of Sitobion
avenae differing in BYDV-PAV transmission. Arch. Virol. 147, 1881–1898. doi:
10.1007/s00705-002-0859-6

Parry, H. R., Macfadyen, S., and Kriticos, D. J. (2012). The geographical distribution
of Yellow dwarf viruses and their aphid vectors in Australian grasslands and wheat.
Australas. Plant Pathol. 41, 375–387. doi: 10.1007/s13313-012-0133-7

Patton, M. F., Hansen, A. K., and Casteel, C. L. (2021). Potato leafroll virus reduces
Buchnera aphidocola titer and alters vector transcriptome responses. Sci. Rep. 11,
23931. doi: 10.1038/s41598-021-02673-6

Plummer, M. (2003). JAGS: A Program for analysis of bayesian graphical models
using gibbs sampling. 124, 1–10.

Pons, I., Scieur, N., Dhondt, L., Renard, M.-E., Renoz, F., and Hance, T. (2022).
Pervasiveness of the symbiont Serratia symbiotica in the aphid natural environment:
distribution, diversity and evolution at a multitrophic level. FEMS Microbiol. Ecol. 98,
fiac012. doi: 10.1093/femsec/fiac012

Porras, M. F., Navas, C. A., Marden, J. H., Mescher, M. C., De Moraes, C. M.,
Pincebourde, S., et al. (2020). Enhanced heat tolerance of viral-infected aphids leads to
niche expansion and reduced interspecific competition. Nat. Commun. 11,1184.
doi: 10.1038/s41467-020-14953-2

Power, A. G., Borer, E. T., Hosseini, P., Mitchell, C. E., and Seabloom, E. W. (2011).
The community ecology of barley/cereal yellow dwarf viruses in Western US
grasslands. Virus Res. 159, 95–100. doi: 10.1016/j.virusres.2011.05.016
Frontiers in Ecology and Evolution 13
Quillec, F. L.-L., Tanguy, S., and Dedryver, C. A. (1995). Aerial flow of barley yellow
dwarf viruses and of their vectors in western France. Ann. Appl. Biol. 126, 75–90. doi:
10.1111/j.1744-7348.1995.tb05004.x

Rashidi, M., Cruzado, R. K., Hutchinson, P. J. S., Bosque-Pérez, N. A., Marshall, J. M., and
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