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Lithological mapping in highly vegetated areas using remote sensing techniques

poses a significant challenge. Inspired by the concept of “geobotany”, we

attempted to distinguish lithologies indirectly using machine learning

algorithms (MLAs) based on Sentinel-2 and SRTM DEM in Zhangzhou City,

Fujian Province. The study area has high vegetation cover, with lithologies that

are largely obscured. After preprocessing such as cloud masking, resampling,

and median image synthesis, 17 spectral bands and features from Sentinel-2 and

9 terrain features from DEM were extracted. Five widely used MLAs, MD, CART,

SVM, RF, and GBDT, were trained and validated for lithological mapping. The

results indicate that advancedMLAs, such as GBDT and RF, are highly effective for

nonlinear modeling and learning with relative increases reaching 8.18%∼11.82%
for GBDT and 6.36%∼10% for RF. Compared with optical imagery or terrain data

alone, combining Sentinel-2 and DEM significantly improves the accuracy of

lithological mapping, as it provides more comprehensive and precise spectral

characteristics and spatial information. GBDT_Sen+DEM utilizing integrated data

achieved the highest classification accuracy, with an overall accuracy of 63.18%.

This study provides a case study for lithological mapping of areas with high

vegetation cover at the local level. This also reinforces the idea that merging

remote sensing and terrain data significantly enhances the precision and

reliability of the lithological mapping methods.
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1 Introduction

Lithological mapping of highly vegetated areas is an essential

part of geological surveys and mineral resource exploration

(Lu et al., 2021). On the one hand, challenges related to low

comprehensive utilization of mineral resources, uneven regional

development, ecological degradation, and environmental pollution

in mineral resource exploitation underscore the importance of

addressing these issues to achieve sustainable development in the

mining industry (Wang and Li, 2020; Xie, 2020). On the other hand,

the spatial distribution of rocks contributes to the extraction of

mineral alteration information, selection of target areas within

mining regions, and acquisition of multiscale structural control

information (Shuai, 2022). Therefore, it provides theoretical

support for delineating prospective mineralization zones and

holds significant importance for geological prospecting and

evaluation (Wang and Liu, 2020). However, traditional geological

mapping encounters significant challenges in areas with high

vegetation cover, including fieldwork difficulties, high costs,

lengthy time requirements, and limited accessibility to certain areas.

Remote sensing technology enables efficient and large-scale

identification of rock types due to its fast speed, low cost, and

efficiency in terms of time and labor (Carli and Sgavetti, 2011; Pour

and Hashim, 2014). However, rocks are largely obscured by soil in

densely vegetated areas, with studies indicating that vegetation cover

of only 10% or more can effectively conceal surface information

(Siegal and Goetz, 1977; Ager and Milton, 2012). Extracting weak

rock-type information using remote sensing is a major challenge in

geological applications (Chen et al., 2012). “Geobotany” offers an

important approach to address this challenge, enabling indirect

rock-type identification by considering the relationship between

vegetation and underlying substrates (Grebby et al., 2011). Rock

types influence the composition of aboveground plant communities

in two ways: nutrient provision to plants (Landeweert et al., 2001;

Hahm et al., 2014), and the weathering depth, degree, and increased

porosity of rocks, which impact water storage potential (Schwinning,

2010; Klos et al., 2018). Hahm’s research showed that plant

communities in different regions are correlated with hydrology

and rock types, even under similar climatic conditions (Hahm

et al., 2019). Do Amaral mapped three geological phases using

indicator species (do Amaral et al., 2018). Qiao’s research showed

a significant impact of rock types on the spatiotemporal pattern

changes in vegetation (Qiao et al., 2020).

High-resolution optical and radar remote sensing data, along

with terrain information, are valuable for extracting rock-type

information from densely vegetated areas. In the past decade,

medium-resolution remote sensing imagery such as Landsat series

and ASTER, has been extensively employed for rock type mapping

in vegetated areas (Knepper, 1989; Langford, 2015; Han et al., 2021;

Zeng et al., 2023). It establishes a strong foundation for rock-type

identification by offering cost-effective, wide coverage, high spatial

resolution (Chen et al., 2022; Zou et al., 2022), valuable indications

of vegetation and rock-soil information, rich surface information

and a small mixed pixel effect (Meroni et al., 2021). Sentinel-2

imagery is a new and freely accessible dataset that offers a

high spatial resolution. It has been widely used in fields like
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geology, agriculture, and urban studies. Equipped with a

multispectral sensor, it can capture visible and near-infrared

spectral data making it an invaluable resource for lithological

identification research. Radar is highly sensitive to surface

physical characteristics, particularly the C-band response related

to vegetation biomass, structure, and soil conditions. Digital Terrain

Models (DTMs) can qualitatively and quantitatively reveal terrain

variations reflecting subtle changes in rock types. The erosion and

weathering resistance of rocks fundamentally shapes the terrain,

and rocks with higher resistance to erosion form steeper terrain

sections under similar conditions (Snyder et al., 2000; Montgomery,

2001). In stable landscapes, terrain slope indices can represent the

erodibility of different rock types (Mills, 2003; Gallen, 2018). Radar

and terrain data partially overcome the limitations of optical remote

sensing in identifying and classifying rock types in vegetation- and

shallow-covered areas (Gloaguen et al., 2019). In addition,

compared to traditional remote sensing data, hyperspectral data

can provide richer spectral information, thus reflecting the spectral

response characteristics of different lithologies more accurately.

This can provide effective technical support for geological

exploration and mineral resource development (Chen L.

et al., 2023).

An appropriate algorithm is one of the key factors contributing

to achieving satisfactory classification results. Machine learning

algorithms such as maximum likelihood (ML) (Grebby et al.,

2011), partial least squares discriminant analysis (PLSDA) (Lu

et al., 2021), support vector machine (SVM) (Othman and

Gloaguen, 2014; Bachri et al., 2019), and random forest (RF)

(Han et al., 2021) have been extensively used for rock

classification in vegetation-covered areas because of the rapid

advancement of machine learning. In Grebby’s study, airborne

multispectral imagery and laser scanning data were used to map

rock types in the Troodos ophiolite. The self-organizing map

algorithm achieved the highest accuracy (72.7%) among the

algorithms utilized (Grebby et al., 2011). Othman and Gloaguen

improved the lithologic map of the Mawat ophiolite complex in

northeastern Iraq using an SVM classifier based on ASTER

multispectral data, landform features, and texture data with

overall accuracy (OA) of 79.28% (Othman and Gloaguen, 2014).

Lu used multiple algorithms, including PLSDA, SVM, k-nearest

neighbors and Bayesian, combined with Sentinel-1 and SRTM data,

to map rock distribution of Huludao City in Liaoning Province,

China. The highest accuracy of 0.444 was achieved using the PLSDA

(Lu et al., 2021). Otele updated lithological mapping in the southern

region of Cameroon using Landsat 7 imagery and a multilayer

perceptron neural network and achieved an accuracy of 53.01%

(Otele et al., 2021). Zeng compared the accuracy of KNN, MLC, and

SVM algorithms in classifying basalt using Landsat 5 and ASTER

imagery. The SVM model with Landsat 5 achieved the highest

accuracy of 70.92% (Zeng et al., 2023). These methods establish a

solid basis for the rapid classification of rocks using “geobotany”

principles in remote sensing. Furthermore, HAN utilized the RF

method to map Quaternary rock (including Pleistocene

gravel, Holocene sand, Holocene clay, and Holocene gravel)

in vegetation-covered areas of Vietnam based on multiple

remote sensing data sources, achieving OA of 80.99% (Han et al.,
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2021). This highlights the potential of the RF algorithm in

geological mapping.

This study aims to achieve lithological mapping in areas with

dense vegetation using Sentinel-2 and SRTM DEM data combined

with MLAs. The study focuses on Zhangzhou City in Fujian

Province as an example. We tested the performance of five

popular MLAs to determine which one works best for this task.

We carefully compared and analyzed the accuracy of the

classification results achieved by each algorithm, gaining valuable

insights into their effectiveness. Furthermore, we systematically

evaluated the accuracy of classification results obtained from

Sentinel-2 alone, DEM alone, and the combination of Sentinel-2

and DEM to better understand their impact on lithological

mapping. This research contributes to the advancing field of

geospatial science and remote sensing.
2 Study area and data

2.1 Study area

The study area is located around Daxi Town, Pinghe County,

Zhangzhou City, Fujian Province. The specific administrative

division map, true-color composite image, and DEM are shown

in Figure 1. It is situated in a complex region with intersecting

Nanshan Mountain Range and the Second Complex Uplift Belt of

the Xinhua-Xia series. It has undergone multiple crustal movements

and has exhibited complex tectonic faults. The primary geological

formations consist of Lower Cretaceous, Jurassic strata, and
Frontiers in Ecology and Evolution 03
Yanshanian intrusion rocks. The main rock types in this area

include Rhyolite tuff (RhyT), Yingan tuff (YinT), Rhyolite (Rhy),

sandstone (San), and granite (Gra). Sedimentary deposits consist

mainly of conglomerate, gravel, and sandy soil layers (CGS).

The area is characterized by dense vegetation growth, with a

forest coverage rate of 73.2% as of 2021. It exhibits a variety of plant

community types and a complex hierarchical structure, resembling

the vibrant landscapes of the South Asian tropical rainforests. The

main vegetation types include coniferous forests, broad-leaved

forests, mixed forests of conifers and broad-leaved trees, bamboo

forests, shrubs, and grass slopes. The bedrock is mostly covered by a

few outcrops (Shi and Wang, 2014). Additionally, in highly

vegetated areas, the surface layer is heavily weathered, and the

soil layer is thick, posing challenges for rock-type identification

using remote sensing techniques.
2.2 Data and preprocessing

The Sentinel satellite carries the Multispectral Instrument

(MSI), capturing imagery data in visible, near-infrared, and

shortwave infrared bands. It provides a spatial resolution ranging

from 10 m to 60 m (band details in Table 1). With a 5-day revisit

period at the equator, it covers a swath width of 290 km (Chen et al.,

2021). The S2 MSI Level-2A products offer preprocessed bottom-

of-atmosphere reflectance images, including geometric correction,

orthorectification, image registration, radiometric calibration, and

atmospheric correction. A total of 78 images for the year 2021 with

cloud coverage of less than 10% in the study area were obtained, and
FIGURE 1

The study area for (A) a specific location in the administrative map of China, (B) Sentinel-2 tru color composite image and (C) Digital Elevation Model (DEM).
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cloud masking using the QA60 band was performed to eliminate

cloud effects. Bands B5, B6, B7, B8A, B11, and B12 were resampled

to 10-meter spatial resolution using bilinear interpolation, and then

the median composite was applied to the images.

The Shuttle Radar Topography Mission Digital Elevation Model

(SRTM DEM) is a digital representation of terrain elevation

obtained using radar equipment carried by space shuttles,

covering over 80% of the Earth’s land surface. SRTM DEM data

is acquired by emitting radar beams from a space shuttle towards

the Earth’s surface and measuring the returning signals. This

technique bypasses cloud cover and vegetation obstruction to

acquire surface elevation data. The SRTM DEM 30 m dataset was

resampled to 10 m using bilinear interpolation to match the spatial

resolution of the optical imagery.
2.3 Ground reference data

The reference data includes the regional geological map from the

First Survey Team of Fujian Provincial Geological Survey Bureau in

1982 and lithology distribution maps obtained through a combination

of vegetation suppression methods and manual visual interpretation by

professional experts. We adopted the approach used in the lithological

distributionmap to classify land surface cover types and collected pixel-

level sample data for 7 land cover classes based on the regional

geological map: CGS (118), San (106), Rhy (112), RhyT (121), YinT

(121), Gra (110), and water (39).
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3 Methods

3.1 Method system construction

The main idea for pixel-wise rock classification is based on

“geobotany”. It uses differences in surface reflectance between

vegetation communities to indirectly identify underlying rock

types by considering terrain and landform characteristics. To

achieve this, we construct five classical machine learning

algorithms: minimum distance algorithm (MD), classification and

regression trees (CART), support vector machine (SVM), random

forest (RF), and gradient boosting decision tree (GBDT) (refer

to Figure 2).

The following research plan aims to reduce computational

burden and accelerate the production of optimal lithological

spatial distribution maps. The available geological data is divided

into training and validation sets at a 7:3 ratio to assess the model’s

generalization ability, which evaluates its performance on new data.

Then, five classification algorithms are trained and optimized using

the preprocessed Sentinel-2 remote sensing image and a sample

dataset. The optimized models are validated and evaluated for

accuracy using validation samples. Subsequently, the optimal

model is used to classify rock types and generate a lithological

map based on Sentinel-2 data. In the subsequent studies based on

SRTM DEM (alone) and combination of Sentinel-2 with SRTM

DEM, at least two classifiers that performed well in the previous

step are used for validation and accuracy evaluation. Similarly, the

optimal model is used to generate lithological maps based on SRTM

DEM (alone) and combined with Sentinel-2 and SRTM data.
3.2 Feature extraction

B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12, were selected

from Sentinel-2. It should be noted that B1 represents the aerosol

band and B9 represents the water vapor band, therefore, they were

not used in this study. Additionally, five spectral features were

computed, which are crucial for rock or water body identification:

enhanced vegetation index (EVI), green chlorophyll vegetation

index (GCVI), normalized difference building index (NDBI),

normalized difference water index (NDWI), and Land Surface

Water Index (LSWI). This study employed EVI to indicate

vegetation growth status, as it is well known that normalized

difference vegetation index (NDVI) can saturate areas with high

vegetation cover (Huete et al., 1997). GCVI is sensitive to

chlorophyll and can be used to identify agricultural areas (Huete

et al., 2002). NDBI is useful for identifying built-up areas

(Benbahria et al., 2018). NDWI and LSWI are vegetation indices

that are highly sensitive to surface water (Jeong et al., 2012).

For SRTM DEM, six terrain features, including elevation (E),

slope, aspect, vertical curvature, horizontal curvature, and Gaussian

curvature, were obtained using terrain analysis algorithms proposed

by Florinsky (2016) and Safanelli (Safanelli et al., 2020).

Additionally, surface roughness (SR), high integral (HI), and

surface index (SI) were calculated within a 3 × 3 window,
TABLE 1 Sentinel-2 band and spectral characteristics.

Band or
index

Central wavelength/
formula

Resolution
(meter)

B1 443.9nm (S2A)/442.3nm (S2B) 60m

B2 496.6nm (S2A)/492.1nm (S2B) 10m

B3 560nm (S2A)/559nm (S2B) 10m

B4 664.5nm (S2A)/665nm (S2B) 10m

B5 703.9nm (S2A)/703.8nm (S2B) 20m

B6 740.2nm (S2A)/739.1nm (S2B) 20m

B7 782.5nm (S2A)/779.7nm (S2B) 20m

B8 835.1nm (S2A)/833nm (S2B) 10m

B8A 864.8nm (S2A)/864nm (S2B) 20m

B9 945nm (S2A)/943.2nm (S2B) 60m

B11 1613.7nm (S2A)/1610.4nm (S2B) 20m

B12 2202.4nm (S2A)/2185.7nm (S2B) 20m

EVI
2.5 × (B8 − B4)/(B8 + 6 × B4 − 7.5
× B2 + 1)

NDBI (B12 − B4)/(B12 + B4)

NDWI (B3 − B4)/(B3 + B4)

LSWI (B4 − B11)/(B4 + B11)

GCVI (B8/B3) − 1
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providing indications of terrain features associated with rock type

information.

SR = 1=cos(slopÞ

HI = (Emean − Emin)=(Emax − Emin)

SI =
HI −HImin

HImax

� �
� H −Hmin

Hmax

� �
− (

SR − (1 + SRmin)
SRmax

)

Where E is extracted directly from the DEM. E_mean, E_max,

and E_min represent the mean, maximum, and minimum values

within the moving window, respectively. SR is the ratio of grid

surface area to projected area, which is used to quantify tectonic

landform changes. A higher SR value indicates a more severe degree

of regional deformation (Han et al., 2021). SI is a new efficient index

that simultaneously depicts the preserved and eroded portions of

the landscape (Andreani et al., 2014).
3.3 Classification algorithms for
lithological mapping

The Minimum Distance (MD) algorithm is widely used for

classification and pattern recognition (Wacker and Landgrebe,

1972). It assigns input data to the closest category based on

computed distances between categories, using methods such as

Euclidean, Manhattan, and Minkowski distances. In the context of

lithological mapping, this algorithm can be used to infer the

lithology of specific locations based on their proximity to known

geological features or data points (Pal et al., 2020). MD is simple,

easy to implement, and well-suited for problems with distinct

category boundaries.
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Classification and regression trees (CART) is a tree-based

algorithm for classification and regression (Friedl and Brodley,

1997; Pal and Mather, 2003). It recursively splits and evaluates

input data to build a tree-like model, where nodes represent

features, branches represent feature values, and leaf nodes

represent final results. Applying CART to lithological mapping

involves systematic interpretation of geological features for accurate

lithological classification. Visualizing the decision tree offers

insights into hierarchical feature divisions that lead to lithological

categorization, enhancing our understanding of how different

features influence prediction accuracy (Serbouti et al., 2022).

CART has a simple structure, making it easy to understand,

interpret, and generate decision-making rules. It’s worth noting

that the effectiveness of the CART decision tree method relies on the

quality and relevance of selected features, as well as the

representation of distinct lithological classes in the dataset

(Lewis, 2000).

Support vector machine (SVM) is a non-parametric classifier

widely used for binary and multi-class classification tasks (Pal and

Mather, 2005; Mountrakis et al., 2011). It aims to minimize

structural risk by identifying an optimal hyperplane in the feature

space that maximizes the margin between samples of different

classes. SVM can be used for lithologic classification by selecting

training and testing pixels, training the SVM classifier using a kernel

function, and mapping the input data (such as spectra, textures,

topography, gamma-ray and land temperature) (Othman and

Gloaguen, 2014; Harris and Grunsky, 2015; Yang et al., 2018;

Chen C. et al., 2023) into a higher-dimensional space to find a

hyperplane that separates the different classes. SVM has the

advantage of handling high-dimensional data, nonlinear

classification problems, and small sample sizes (Shebl and

Csamer, 2021; Shebl et al., 2021). However, it also has limitations
FIGURE 2

The flowchart. “DEM” for digital elevation model, “EVI” for enhanced vegetation index, “GCVi” for green chlorophyll vegetation index, “NDBI” for
normalized difference building index, “NDWI” for normalized difference water index, and “LSWI” for land surface water index.
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in terms of selecting appropriate kernel functions, computational

intensity, and sensitivity to noise and outliers (Othman and

Gloaguen, 2017).

Random forest (RF) works by creating multiple decision trees

on randomly selected subsets of the data and then combining the

results to make a final prediction (Pal, 2005; Belgiu and Drăgut,̧

2016). It has significant advantages with the ability to combine

multiple remote sensing and data sources in lithology mapping as it

improves its generalization ability by randomly selecting input or

input combinations at each node (Breiman, 2001). It is especially

effective for processing high-dimensional and noisy input data and

can overcome the interference of vegetation coverage, thereby

improving the accuracy of lithological mapping (Harris and

Grunsky, 2015; Bachri et al., 2019). However, caution should be

exercised when fine-tuning parameters for optimal outcomes and

effectively managing computational expenses, particularly when

dealing with substantial datasets. The risk of overfitting due to an

abundance of trees or noisy data should be considered, along with

its limited efficacy with imbalanced datasets (Guo et al., 2022).

The Gradient Boosting Decision Tree (GBDT) is an iterative

ensemble learning algorithm that constructs a strong prediction

model (Yang et al., 2018; Xu et al., 2020). It builds multiple decision

trees iteratively, using the residual between the current predicted

value and the true label to train each tree. Each iteration adjusts the

predicted value to approximate the true label. The final prediction is

obtained by combining the predictions of all the trees. Although the

algorithm is rarely used in lithology mapping in high vegetation

cover areas, studies have shown that it is effective in handling large

datasets and high-dimensional feature spaces, and it is robust to

noise, outliers, and missing data (Lemercier et al., 2012; Zhou et al.,

2020; Cai et al., 2022).
3.4 Accuracy assessment

Accuracy assessment objectively evaluates the performance of

remote sensing algorithms and models, providing a reliable

foundation for remote sensing applications and decision-making

(Hay, 1988). It validates the accuracy of tasks like image

classification and object detection, helping to determine the

reliability and feasibility of the results. The Confusion Matrix is a

tabular representation used to evaluate the performance of a

classification model (Comber et al., 2012; Salmon et al., 2015).

Therefore, we calculate four evaluation metrics using the Confusion

Matrix to assess the classification results and optimize the model:

overal l accuracy (OA), recall (R), precision (P), and

Kappa coefficient.
4 Results

4.1 Model tuning

Model tuning optimizes the performance and generalizability of

the machine learning model by adjusting its parameters or
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hyperparameters, improving its effectiveness in addressing real-

world problems. By systematically adjusting parameters, the model

can better adapt to data patterns and characteristics. Proper

parameter settings also reduce computational resources required

for training and prediction. Through tuning, structure of the model

and parameter selection are optimized, resulting in reduced

computational costs and time consumption.

The sample dataset was randomly divided into training and

validation sets at a 7:3 ratio for model training and tuning based on

Sentinel-2 imagery. To determine the best settings for our models,

we test them by using different parameters in the validation set. We

begin by defining a range of parameter values and then try different

values within that range. Finally, we select the parameter values that

make our models perform the best on the validation set. We can

show this process on a chart, where the horizontal line represents

different parameter choices, and the vertical line shows the

performance of the model (typically, model performance metrics

such as OA). The tuning results for each model are shown in

Figure 3. The MD algorithm achieved optimal performance using

the Mahalanobis distance metric. The CART was tuned with a

maximum of 50 nodes and a minimum of 5 nodes. The gamma

coefficient of SVM model was set to 20, and the Cost parameter was

set to 10. The RF utilized 210 trees and a minimum of 3 leaf nodes.

The GBDT employed 80 trees and a maximum of 70 leaf nodes.

In machine learning and data modeling, the optimal parameters

of a model typically change with different datasets and feature

combinations. Once we have identified at least two promising

classifiers based on Sentinel-2, we apply the same tuning

methodology to both the DEM data and the combination of

Sentinel-2 and DEM data to ensure optimal model performance.
4.2 Lithology classification using
Sentinel-2 image

The model accuracy and validation accuracy of five typical

machine learning algorithms were summarized (as shown in

Figure 4). The SVM algorithm had higher model accuracy but

lower validation accuracy, possibly indicating overfitting due to

linear inseparability of rock categories and limited sample size. MD

and CART performed poorly, with model accuracy below 70% and

validation accuracies below 0.4, suggesting limitations in handling

complex structural information. RF and GBDT showed better

performance as ensemble algorithms with strong learning

capabilities with OA 46.82% and 45%, and Kappa 0.371 and

0.349 respectively.

Figure 5 illustrates rock-type accuracy achieved by the five

machine learning algorithms. The “water” class consistently

exhibits high accuracy (close to 100%) across all models,

indicating the effectiveness of the algorithms. In terms of class

accuracy, the RF model demonstrates notable improvements in

precision for “RhyT”, “San”, and “YinT” classes, as well as increased

recall for “RhyT” and “YinT” classes. For instance, precision of San

improved by 13.1% to 20%, and recall of “RhyT” increased by 10%

to 36.6%. The GBDT achieved overall high accuracy through
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BA

FIGURE 4

(A) Overall accuracy (OA) and (B) Kappa of five classifiers in lithological mapping. The black dots represent model accuracy, whereas the red dots
represent model validation accuracy.
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FIGURE 3

Adjust the parameters for (A) the distance measure method of MD, (B) the maximum and (C) minimum nodes of Cart, (D) gamma and (E) cost of
SVM, (F) the number of trees and (G) minimum nodes of RF, (H) the number of trees and (I) maximum nodes of GBDT using validation samples. Each
subscription below the figure is labeled as "Algorithms Parameter" to indicate the specific parameters used for each classifier.
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significant improvements in precision and recall for “CGS” and

“San”. Specifically, precision and recall of “CGS” increased by 1.3%

to 11.8% and 2.7% to 29%, respectively.
4.3 Lithology classification using
SRTM DEM

Using RF and GBDT algorithms for lithology classification

achieves higher accuracy based on the accuracy assessment results

(see Figures 6, 7). The overall classification accuracy is

approximately 49% with a kappa coefficient of approximately 0.4.

When comparing individual rock types, both algorithms show

higher accuracy for “CGS” and “Rhy”. “CGS” plays a significant

role in terrain morphology and exhibits a certain relationship with

terrain features. “Rhy” is commonly found in uplift zones associated

with tectonic landforms.

The lithology classification map generated using SRTM DEM

(Digital Elevation Model) data shows higher accuracy than

Sentinel-2 imagery. The overall improvement in lithology

classification accuracy is mainly attributed to better classification

of “Rhy” and “San”, despite a slight decrease in the accuracy of

classifying “RhyT” and “Gra”. This can be explained by the strong
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correlation between spatial distribution and landform morphology.

“San” is commonly found in low-lying areas, while “Rhy” is

associated with volcanic activity and its distribution relates to

volcanic topography. However, it should be noted that the

accuracy of “water” based on SRTM DEM is significantly lower

than that of Sentinel-2 imagery due to the limited information

about water bodies in DEM, which primarily focuses on surface

terrain elevation. As a result, there may be errors or omissions in the

parts of the lithology classification that involve water bodies, as it

does not capture the characteristics of water flow from higher to

lower elevations. Overall, the utilization of DEM improves the

accuracy of lithological classification by capturing the relationship

between lithological variations and landform morphology.
4.4 Lithology classification using combined
Sentinel-2 and SRTEM DEM

The RF and GBDT are also utilized in a lithology mapping study

that combines Sentinel-2 imagery and SRTM DEM data. The

extraction of lithological information can be greatly improved by

integrating optical remote sensing data with terrain morphology

features, resulting in more comprehensive and accurate spatial

information. Both algorithms (RF and GBDT) show a significant

improvement in accuracy compared to Sentinel-2 (alone) or SRTM

DEM (alone), achieving OA of approximately 60% (see Figure 6).

The GBDT demonstrates a more precise lithology classification,

achieving OA of 63.18% and a Kappa of 0.565. Compared with RF,

GBDT improved OA and Kappa by 4.54% and 0.053, respectively.

The joint utilization of Sentinel-2 imagery and SRTM DEM,

along with advanced machine learning algorithms like GBDT,

significantly improves the classification accuracy of various

lithological categories, as depicted in Figure 7. The performance

in classifying “CGS”, “San” and “Rhy” is notably enhanced.

Moreover, the classification of “water” achieves optimal results.

Based on the above study, lithological mapping was performed

using RF for Sentinel-2 (alone), GBDT for DEM (alone) and the

combination of Sentinel-2 and DEM (Figure 8). In the lithological

map based on Sentinel-2, the limited distinguishability of rock types

other than “CGS” and the presence of significant “speckle”

phenomenon may be attributed to the optical sensor limitations

of Sentinel-2, which are affected by cloud cover, atmospheric

interference, and vegetation obstruction. In contrast, DEM data
FIGURE 6

Overall accuracy (OA) and Kappa of the RF and GBDT in lithological
classification based on Sentinel-2 (alone), DEM (alone), and
combined Sentinel-2 and DEM data. "Sen" is the abbreviation for
Sentinel-2.
FIGURE 5

(A) Precision (P) and (B) recall (R) of rock types using five classifiers (MD, CART, SVM, RF and GBDT) based on Sentinel-2.
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offers continuous surface elevation and terrain information,

resulting in a clearer representation of lithological distribution.

The combination of Sentinel-2 imagery and DEM allows for

leveraging their respective strengths, leading to more

comprehensive and accurate rock-type classification results.
5 Discussion

Using SRTM DEM data for lithological classification provides

more accurate results than Sentinel-2 imagery, particularly for

“Rhy” and “San”. However, “water” requires additional data

sources or methods to enhance accuracy. Sentinel-2 imagery

offers rich spectral information for analyzing rock characteristics

such as color and reflectance. On the other hand, SRTM DEM

provides elevation data for terrain morphology revealing surface

undulations and morphological features complementing

lithological classification. The accuracy and reliability of

lithological classification are substantially improved through the

integration of these data sources, meticulous consideration of
Frontiers in Ecology and Evolution 09
spectral and terrain features, and the utilization of state-of-the-art

machine learning algorithms.

Choosing the correct classification algorithm is crucial for

achieving satisfactory results in land cover classification using

remote sensing data. In this study, we evaluated the performance

of five classical machine learning algorithms for rock identification

in densely vegetated areas. Our findings indicate that complex

algorithms like RF and GBDT outperformed the others,

consistent with previous research (He et al., 2015; Othman and

Gloaguen, 2017). RF exhibited robustness, stability, and the ability

to handle feature selection and outliers. GBDT demonstrated strong

fitting and generalization capabilities, making it suitable for

capturing complex nonlinear relationships.

Overlaying the classification result map with geological contour

maps allows for visual analysis of the spatial distribution of rock

types (Figure 8). In this study, we observed consistency between the

classification results and existing geological maps for “GCS”, and

“Rhy”, indicating a good match. Fine sand and siltstone were

primarily found in valley areas, corresponding to the gentle

topographic features of valleys. These areas are often impacted by
B

C D

A

FIGURE 8

Lithological mapping of the study area from (A) Sentinel-2 (alone), (B) DEM (alone), (C) combined Sentinel-2 and DEM, and (D) overlay of the rock
classification map and existing geological contour map.
FIGURE 7

(A) Precision (P) and (B) recall (R) of rock types using RF and GBDT based on Sentinel-2 (alone). DEM (alone), and combined Sentinel-2 and DEM.
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human activities for agricultural, residential, and industrial

purposes, leading to modified surface cover types. The mixing of

the other three rock types is prominent. However, further

observation shows that the classification performance of granite

and andesitic tuff in the northern region is consistently high. In the

southern region, although there is a mixing phenomenon in the

rhyolite area, rhyolite remains dominant. These findings are

valuable for studying the geological features, distribution of rock

types, and geological evolution in the study area.

In areas with dense vegetation, the presence of subsurface rock

types can potentially affect the distribution and characteristics of

vegetation (Ott, 2020). However, the growth and distribution of

vegetation are influenced by various factors such as soil type,

moisture levels, light intensity, and climate conditions (Yang

et al., 2021). The complex interactions among these factors make

the relationship between vegetation and subsurface rock types

complex. In our study, we used maps created from field surveys

as a reference for our sample data. Although we tried to avoid

including samples from border regions to reduce potential

errors due to geographic bias, there may still be some mistakes

in our pixel-based sample data, including issues with the

representativeness of the sample and measurement accuracy.

Additionally, we didn’t thoroughly analyze how rock types

correlate with vegetation and terrain features. This oversight

could reduce the certainty of our research results, especially if the

connections between these factors are weak or unclear. To address

this, in our future research, we will focus on a detailed correlation

analysis to better understand these relationships. This will improve

the accuracy of rock classification and provide more reliable tools

and data support for geological research, resource exploration, and

related fields. As well as,future research should consider

incorporating more extensive on-site validation efforts to confirm

the accuracy of our classification results.

Moreover, the high variability within rock classes and

similarities between different rock types (Otele et al., 2021)

contribute to the complexity of vegetation and terrain features,

making it challenging to directly infer subsurface rock information

solely based on vegetation indices. Recent advancements in deep

learning algorithms have significantly enhanced their application in

remote sensing for land cover classification (Sun et al., 2022).

Particularly, in areas with dense vegetation cover, deep learning

algorithms have demonstrated higher accuracy in identifying rock

types (Otele et al., 2023; Pan et al., 2023). These algorithms leverage

the ability to learn from extensive image data, enabling them to

explore and capture intricate relationships and feature

representations among different land cover classes (Dimitrovski

et al., 2023). They effectively address the challenges posed by
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vegetation interference and complex land cover backgrounds,

resulting in improved classification accuracy and stability.

Additionally, deep learning algorithms exhibit a certain level of

generalization capability, performing well across different regions

and datasets (Yasir et al., 2023). These findings provide valuable

insights and pave the way for future research in this field.
6 Conclusions

Through the integration of optical remote sensing imagery and

terrain data, coupled with the utilization of advanced algorithms,

the potential to discern various rock types becomes attainable. This

integration significantly enhances the precision and dependability

of lithological mapping within regions characterized by dense

vegetation cover. When juxtaposed with the individual use of

optical imagery or terrain data, the amalgamation of these two

datasets for rock classification purposes exhibits a synergistic effect,

enriching the informational representation of rock types.

Furthermore, the employment of sophisticated Machine

Learning Algorithms (MLAs) adeptly harnesses and delves into

the wealth of feature information stemming from these diverse data

sources. These algorithms, characterized by their resilient nonlinear

modeling and learning capabilities, enable the capture of intricate

relationships within land cover. This is achieved through the

extensive use of sample data, ultimately resulting in improved

accuracy and stability in lithology classification.

It’s worth noting that the GBDT and RF algorithms employed in

this study exhibit robustness and resilience, rendering them applicable

across various research regions and for the categorization of rock types

involving different combinations of data types. This holds significant

implications for geological surveys and mineral exploration.

Looking ahead to future research endeavors, our focus will

remain on deepening our understanding of the interplay between

rock types and vegetation as well as terrain features. This ongoing

exploration aims to further enhance the accuracy of rock

classification. Additionally, the application of deep learning

algorithms presents an intriguing avenue, particularly in

addressing the challenges posed by rock classification in areas

with dense vegetation cover.
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