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While disaster events are consequential, they are rare. Ecological risk assessment

processes tend to estimate risk through an “expected value” lens that focuses on

the most probable events, which can drastically underappreciate the importance

of rare events. Here, we show that expected value and average risk-based

calculations underappreciate disaster events through questionable

assumptions about equally weighing high probability low impact events with

low probability high impact events, and in modeling probability as a chance

among an ensemble of possible futures when many contexts of ecological risk

assessment are focused on a single entity over time. We propose an update to

ecological risk assessment that is specifically inclusive of disaster risk potential by

adopting analytical processes that estimate the maximum hazard or impact that

might be experienced in the future, borrowing from the practice of modeling

“Value at Risk” in financial risk contexts. We show how this approach can be

adopted in a variety of data contexts, including situations where no quantitative

data is available and risk assessment is based on expert judgement, which is

common for ecological risk assessment. Increased exposure to environmental

variation requires assessment tools to better prepare for, mitigate, and respond

to disasters.

KEYWORDS

ecological risk assessment, disasters, compound events, extreme values, repeat
exposure, hazard
1 Introduction

Many environmental and development disasters such as floods, oil spills, droughts,

heatwaves, landslides, and dam breaches have caused tremendous financial losses,

displacements of millions of people, and devastated natural ecosystems and species

(Frölicher and Laufkötter, 2018; IPCC, 2022a), but were often predicted to be low-risk

events (Bull-Kamanga et al., 2003; Garcia et al., 2017; Ide et al., 2020; IPCC, 2021; IPCC,

2022a; IPCC, 2022b). There has been increased attention placed on rare events across
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disciplines including finance (Beamish and Hasse, 2022), conflict

studies (Ide et al., 2020), public health (Mishra, 2020), and

environmental management (Garcia et al., 2017). Intellectually,

this turn to thinking specifically towards extreme events can be

traced in part to ideas of “Black Swans” – unexpected and highly

consequential events that disproportionately characterize systems

and are very hard to predict – proposed and popularized by

Taleb (2007).

Environmental and development disasters are the product of

environmental hazards capable of catastrophic impact (whether

from the biophysical environment or human activities) and a

human or valued natural system that is exposed and vulnerable to

the hazard (Aven, 2010; Sajid et al., 2020; IPCC, 2022a). Disaster

hazards have highly consequential effects across a range of topics

relevant to environmental management and sustainable

development including wildlife disease (Beauvais et al., 2019),

dam breaches (Jakob et al., 2016), glacial calving and coastal

erosion (Overland, 2021), flooding (also due to climate change)

and coastal development (Tsoukala et al., 2016), wildfire (Taylor

et al., 2013), oil and gas spills (Afenyo et al., 2020; Sajid et al., 2020)

and mining (Yang et al., 2021). Indeed, rare events and natural

disasters have been recognized as contributing to species declines

and extinctions (Penn and Deutsch, 2022), and development

disasters (such as oil spills and mine tailings releases) have

contributed to environmental devastation and severe social

disruption in many contexts (Garcia et al., 2017). Currently,

interest in “compound events” (where a combination of processes

leads to a significant impact event, like a heatwave combined with a

drought event) in climate change studies also recognizes the

importance of understanding rare events for risk management

(Zscheischler et al., 2018; Gruber et al., 2021). Disasters pose

disproportionate risks to ecosystem services, and some studies

trying to track impacts on ecosystem services have attempted to

pay special attention to disasters as they impact ecosystem services

(Singh et al., 2017a; Singh et al., 2020). Conversely, the ability of

natural systems to protect against disasters is an ecosystem service,

and managing ecosystems as nature-based solutions promises to

protect against some disasters (such as floods), but evaluating the

efficacy of nature-based solutions often depends on adequately

estimating the magnitude of impacts (Kumar et al., 2021). Despite

increased attention to disasters and rare events, many formal risk

assessment processes neglect these rare, consequential events.

Risk is often defined as the product of the probability of an

event and its associated consequences (Aven, 2010). By multiplying

consequences by their probability, risk is often calculated as the

“expected value” of something unfavorable or harmful occurring.

Risk analysis, sometimes referred to as risk assessment, aims to

estimate the probabilities of adverse impact events occurrences and

the quantification of associated damages. Because risk is inherently

future-oriented, risk assessment is an anticipatory tool for planning

and is often employed in environmental impact assessment and

other tools for environmental protection and sustainability (Bull-

Kamanga et al., 2003; Aven, 2010; Mishra, 2020). The expected
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value risk model is pervasive in environmental management and

science, from environmental impact assessments of individual

projects to the Intergovernmental Panel on Climate Change

(IPCC) (IPCC, 2022a).

Using expected value to model risk in rare events can be

misleading (Haimes, 2005; Verma and Verter, 2007; Shaw, 2016;

Baillon et al., 2018). This common formulation for risk can equate

the risks of two events: one having a large likelihood and low

consequence and another with low likelihood and high

consequence. Both types of situations are calculated as being

equivalently “risky” according to an expected value model, but

here we argue that there are important cases where the latter cases

require special consideration and tools of analysis.

Existing environmental risk assessment (ERA) techniques and

subsequent environmental policies are often based on the

hypothesis that “rare events are rare,” dismissing events with low

chances as posing little threat. Technically speaking, this

assumption indicates that the “tail” of the probability distribution

rapidly approaches zero and relatively little weight is given to

extreme risks (Farber, 2010). While the expectation of risk based

on its probability is low, the consequences can be very influential if

the event materializes. For example, the risk of the sudden release of

mine tailings waste into the deep sea has a very small chance of

occurrence in any single event, but its harmful impacts could last

years to centuries, and may be irreversible (Hughes et al., 2015;

Miller et al., 2018) – causing significant damage to the environment

and ecosystem. Mine tailings release is a repeat exposure problem –

which means it is not something that might occur at one point in

time during the lifespan of a mine operation (and therefore low

probability when spread over time), but rather there is the same

probability throughout the lifespan of the mine operation (or

greater, if stability decays over time) and thus total probability is

higher due to repeated risk of occurrence. While the occurrence

probability for tail events is low in any given time, their repeated

exposure over a long timescale increases the chances of

catastrophic outcomes.

An additional problem with expected value models is that they can

provide the appearance that many small risk events are equivalent to a

single large one. This idea is promoted in publications to rank and

evaluate risk events together, including the IPCC (IPCC, 2012; Roux

et al., 2022). However, a single catastrophic event can overwhelm an

ecosystem’s ability to recover, while a series of small impacts may be

recoverable between events (Garcia et al., 2017; Mishra, 2020). Events

with low occurrence probability (fewer chances to occur) but high

consequences (catastrophic outcomes) may be of primary interest to

environmental management once they occur, but may be classified as

“low risk” in anticipatory decision-making (Farber, 2010). While the

occurrence probability for tail events is low at any given time, their

repeated exposure over a long timescale increases the chances of

catastrophic outcomes. Here, we show how expected value models

can underappreciate the risk of rare events and propose a framework

for ERA that can better account for rare but highly

consequential events.
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2 Rethinking consequence and
probability for repeat exposure events
in risk assessment

The expected value risk model suffers two issues as they relate to

disasters in ERA. The first issue is the fact that the model is symmetric

with its treatment of the factors that contribute to a risk “value”. In

other words, these models can treat proportionally low consequence

yet high probability risks equivalently with proportionally high

consequence yet low probability risks. However, as has been noted

in the project management literature, high impact events intuitively

and analytically should be given greater concern than low impact

events (Haimes, 2005). Suppose that a particular risk value “r” has a

probability “P” of occurrence and can incur a consequence “C” if it

does occur. Using calculations of risk based on the Bernoulli

distribution of event probability combined with a consequence,

greater risk consequence carries greater variance of risk and

therefore a requires a greater contingency to manage it (Williams,

1996). Mathematically this is represented as,

mr = P � C

s 2
r = P(1 − P)C2 = mr(C − mr)

Where “mr” is the mean risk and “s2r” is the variance of risk.

This equation shows that for a constant value of “mr”, larger values
of “C” equate to larger variance in risk.

Relatedly, the expected value of risk model neglects the presence

of non-linear and “tipping-point” threshold impacts. The literature

on climate change and ecosystem management highlights a diverse

array of tipping-point examples, whereby, for example, ecosystems

can change from one state to another due to some environmental

threshold being crossed as a result of an impact, and our certainty

about such events tends to be low (Dakos et al., 2019; Martin et al.,

2020; Armstrong McKay et al., 2022). Moreover, as a non-linear

change results in a qualitatively different ecosystem, the assumption

of multiple, small quantitative changes being equivalent to a single

large qualitative change is unlikely to hold.

The second issue with the expected value approach in ERA is in

the treatment of probability. Probability has different relevance

when thinking about the likelihood of an ensemble of cases where a

proportion of cases will experience an event at a point in time,

versus whether a single system will be exposed to an event over

time. In the first case, a rare event is rare, no matter how extreme the

consequence of an event is and will affect a small proportion of cases

at a given point in time. In the second case, exposure to a rare event

is repeated over time, and the probability of facing it over the

duration of the lifespan of the system is often different (and far

greater) than the probability of an ensemble of cases facing an event.

The path dependency of risk (where experiencing an impact can

have drastically different consequences if faced at the beginning of a

time series versus at the end, or if facing multiple impacts at shorter

intervals versus longer) means that evaluating risk by its expected

consequence is misleading. Moreover, the impact of disasters is not

mediated once they manifest; put another way, in path dependent
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systems once a consequence is experienced the probability that the

consequence may have occurred no longer matters (Hopkins,

2016). The expected value model of risk equates many small but

frequent impacts with a single large but infrequent impact, but the

two do not express the same concern, especially where the large

impact is irreversible. For example, a tailings dam at the Córrego do

Feijão iron ore mine near Brumadinho, Brazil burst in 2019, causing

a mudslide that killed 232 people. The dam likely failed because of

time-dependent decay processes affecting its stability. Prior to

collapse, the dam was rated as a small structure with a low risk of

high damage, based on short-term monitoring and laboratory

experiments which failed to account for long-term decay

(Santamarina et al., 2019; Primo et al., 2021). That is, the

probability of dam burst increased as time passed, meaning the

likelihood of disaster was unappreciated. Perhaps more

importantly, once the impact was realized, the “low risk”

assessment of disaster and risk management led to distrust in

institutions responsible for risk management (Primo et al., 2021).

Research on ecological communities has shown that changes in

the variation in some hazards may pose a greater threat than

changes in mean hazard effects (such as warming effects) because

of exposure to extremes (Vasseur et al., 2014). Many ecological

communities also respond non-linearly to hazards and

disturbances, so that ecological processes at average conditions

are rarely equal to the average ecological processes across a range

of conditions (a phenomenon known as Jensen’s inequality, Denny,

2017). Therefore, where ecological systems are more vulnerable to

more severe hazards (such as toxicological thresholds and thermal

effects), considering the consequence of the average or most likely

hazard may underestimate the impact (Denny, 2017; Bernhardt

et al., 2018). Social-ecological systems are subject to path-

dependence (such as whether a 1 in 200-year rain event occurs

before or after the accumulation of toxins in a mine tailings pond

designed with retaining walls to withstand a 1 in 100-year rain

event), face nonstationary processes contributing to extreme events

(where processes change in space and/or time, such as through

climate change), and subject to non-linear changes where

environments can change qualitatively (not just quantitatively)

into new states (Leonard et al., 2014; Dakos et al., 2019). Single

events can have radical consequences and one cannot understand

the system by assessing just the weighted average of possibilities.

Therefore, there is a need to develop a risk assessment framework

that could reflect these dynamics.
3 Lessons from other fields of study to
address low-probability high-
consequence events

In economics, expected utility theory has been recently

criticized for its treatment of probability. Ole Peters has coined

the term “ergodicity economics” to differentiate the use of

probability in dynamic contexts, where economic models are

interested in understanding consequences for a single person
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making a series of choices over time, from static contexts where

probability is formulated for understanding consequences among

an ensemble of people in a given point of time (Peters, 2019). Peters’

critique is inspired by the idea of “ergodicity” from equilibrium

statistical mechanics, which is a condition where the state of a

particle over time is equivalent to the state of a particle across all

possible spaces (Palmer, 1982). This assumption accurately

describes the thermodynamic behavior of gases. In economics,

Peters calls economic systems ergodic where an object’s time-

averaged utility equals the expected value of utility. However,

because economic systems rarely have economic agents exposed

to all possible states (because path dependencies affect their

economic prospects, and the number of possibilities that an

economic agent can experience over their life rarely if ever meets

the total number of possibilities that could come about), the ergodic

condition is rarely if ever met. In situations where the ergodic

condition is not met, an expected value model is inadequate because

its treatment of probability assumes that an agent will experience all

possible states. The lessons from economics can inform ERA

because for environmental assessment, individual ecosystem

components rarely experience all possible states over time – that

is, ecosystem components are often not exposed to all possibilities,

partly because a disaster event can permanently change ecosystems

before it has experienced all possible events. An expected value

model of risk assumes ecosystem components will experience all

conditions, and so the expected value of risk is inadequate.

There are criticisms of ergodicity economics, notably that

economists have already been able to address utility dynamically

(Doctor et al., 2020), though these alternative approaches also

highlight the limitations of static expected value models. In

addition, other authors have proposed the “dismal theorem” of

economics modifying expected value formulations (Weitzman,

2009). Using the dismal theorem, the declining probability of

disaster (which declines polynomially) is outstripped by the

increasing impact of disaster (which increases exponentially)

(Weitzman, 2009). While the technical aspects of the dismal

theorem have been challenged for its critiques of standard

economic analysis, even the critiques acknowledge the legitimacy

of the caution that the dismal theorem raises about the underlying

distribution and treatment of extreme risks over time (Nordhaus,

2009). Again, the lessons from economics for ERA is to pay special

attention to rare but consequential events.

In science and technology studies, a rich literature is developing

on “manufactured risk”, whereby efforts to deepen and extend

natural resource development into new frontier zones

significantly raise the risk of disasters, especially in variable

environments (Knowles, 2012; Fortun et al., 2017). The empirical

material for this work involves careful analysis of well-known and

documented disasters including the Deepwater Horizon blowout

(Watts, 2016), Hurricane Katrina (Frickel and Vincent, 2007;

Hilgartner, 2007), the Fukushima nuclear power disaster

(Pritchard, 2012) and the Bhopal chemical disaster (Lerner,

2017), amongst many other socio-ecological disasters. These

analyses across cases reveal a number of key insights leading to

the disaster including the problem of weaker state regulatory

systems, the financialization of resource development and intense
Frontiers in Ecology and Evolution 04
corporate competition (Watts, 2016; Lerner, 2017). The

manufactured risk literature is valuable to ERA in arguing that

disasters should not be seen as unexpected or exceptional, but are

instead built into new and existing technological systems for

resource extraction and development, and are partly a

consequence of human decis ions and infras tructure

(Knowles, 2014).

Climate research is documenting that climate change is creating

more variable or extreme environments in many places, which can

increase disaster potential (Hallegatte, 2016). For example, extreme

ocean events such as marine heatwaves have strongly increased in

frequency over the last few decades and are projected to strongly

increase under further global warming (Frölicher et al., 2018; Oliver

et al., 2018). Critical thresholds for some ecosystems (e.g. kelp

forests or coral reefs) will be reached at relatively low levels of future

global warming (Collins et al., 2019). In addition, the IPCC AR6

WGII report concluded that widespread, pervasive impacts to

people, ecosystems, settlements and infrastructure have resulted

from observed increases in the frequency and intensity of climate

and weather extremes, including hot extremes, heavy precipitation

events and drought and fire weather events (IPCC, 2022a). As a

result, millions of people have been exposed to food insecurity and

reduced water security, and extreme heat events on land have

resulted in human mortality and morbidity.

Climate studies are also increasingly concerned with

understanding compound disaster events, and have proposed

methods to investigate them. The use of influence diagrams has

been proposed to understand the conditional dependencies of risk

when they are consequences of compound events (e.g. a heat-

drought event: Ridder et al., 2022; or a marine heatwaves-high

acidity event in the ocean: Burger et al., 2022), and usually studied

in climate disaster contexts (Leonard et al., 2014). In a similar way,

influence diagrams can be usefully employed to model the causal (or

even statistically associated) processes that lead to extreme events

for ERA. Influence diagrams are a generalization of Bayesian

networks, and can graphically be used to explore the relationship

between variables in a system (Leonard et al., 2014). While climate

studies have mostly proposed the study of compound events when

considering climate disasters, we propose that the methods can also

be used to understand how climate and other stressors contribute to

natural and industrial disasters.

In statistics, extreme value theory (EVT) has been widely used

to model rare events, especially in natural sciences and engineering

(Coles et al., 2001; Ahmad et al., 2019; Owusu-Ansah et al., 2019).

EVT has also been used in dealing with rare events problems in

ERA, such as air quality analysis (Sharma et al., 2012), flood analysis

(Morrison and Smith, 2002) and system reliability studies (Grigoriu

and Samorodnitsky, 2014). The focus of EVT is not to study the

central tendency (data around the central or mean value) of the

data; instead, the focus has been on the tail sides of the probability

distribution. EVT aims to approximate mathematical formulations

for tail probability using either two or three parameters. Classical

EVT represents the probability tail using scale and location

parameters, while generalized EVT uses a third exponent

parameter (Chryssolouris et al., 1994). Extreme value distribution

parameters are estimated assuming that the data’s original
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distribution is unknown, and that parameter estimation is not

performed on the whole population of data but rather the

population of the extrema (maximum or minimum) (Lazoglou

and Anagnostopoulou, 2017). Therefore EVT quantifies the

probabilistic tail behavior (McNeil and Frey, 2000; Fernández,

2003). EVT provides appropriate tools for ERA to quantify

extreme risk where expected value models do not.
4 An illustration of the role of extreme
events in environmental risk

To explore risk assessment and extreme events, we model a

wildlife population at carrying capacity (K=10,000 individuals),

under logistic growth dynamics and subject to varying impacts

from development. We simulate two scenarios using stochastic

model where both growth rate and annual impact on the

population are stochastic. In the first scenario, impact magnitude

follows a normal distribution, so extreme events have truly

negligible probabilities. In the second scenario, extreme events are

rare but still plausible (modeled using a fat-tailed Cauchy

distribution that includes the rare possibility for catastrophe

whereby the full population of 10,000 individuals may die at

once). Both scenarios show continuous exposure to impact, but

only the second has continuous exposure to potential disasters.

According to the expected value of risk, the risk of the development

is a mortality of 123 individuals in each scenario, which should

easily be offset by the mean implicit birth rate in the model of 0.2

and a starting population of 10,000.
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When modeling this expected value using the normal

distribution, we indeed show that risk is low (the population

maintains a healthy population over 100 years across all 1000

simulations (Figure 1A). However, over 1000 simulations of 100

years of the model, where the population is exposed to the potential

for disaster, we find that in approximately 30% of cases the

population experiences impacts that reduce it to under 75% of

carrying capacity at some time during the 100 years (often taking

decades to recover – if the population does fully recover). Of this

subset of cases where catastrophes are experienced, approximately

40% of simulations see the population collapse completely

(Figure 1B). Within a simulation where catastrophic impacts are

realized, the expected value of risk severely underestimates the

realized effects. Crucially, a single catastrophic event can counteract

years to a century of population growth. In other cases, sequential

catastrophic events can collapse a population (that is, multiple

sequential years of substantial impact can compound and fully

depress the population). The expected value model of risk would

neglect the importance of the rare catastrophic event or the

sequential, compound event.
5 A proposal for extreme event
ecological risk assessment

To better assess risk that is reflective of the importance of low-

probability high-consequence events, we propose a conceptual

framework for their inclusion in ERA (Figure 2). The first step in

the proposed conceptual framework is identifying and assessing the
BA

FIGURE 1

One thousand stochastic simulations of a wildlife population under logistic growth dynamics and facing repeat exposure of catastrophic impacts. An
expected value model of risk would estimate risk at 123 individuals per year, which represents approximately 1% of the starting population, which
should be offset by the intrinsic growth rate of 20%. Under dynamics where this “expected value” trulv,y represents impacts year to year, the risk of
development is indeed low (A). However, simulations allowing for repeat exposure and path dependence where there are low probabilities of
catastrophic effects in any given year show that in approximately 30% of cases, the population loses a quarter of its population during the time span,
and in 8% of cases, the population collapses (B). In these simulations, “healthy” runs never had the population dip below 75% of the carrying
capacity, “imperiled” runs had populations dip below 75% of their carrying capacity at some point during the time span, and “collapsed” runs had the
entire population collapse.
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hazards. This step systematically identifies and assesses the

potential sources and the type of harm to the environment. As a

core element to define environmental risk problems, this step

establishes the scope of the study and specifies what needs to be

protected. This step is similar to typical ERA; however, rather than

moving immediately to quantifying the expected value of risk from

the hazard or identifying what level of risk is most likely, assessment

should consider whether hazards include extreme impacts

or disasters.

In assessing hazards inclusive of extreme events, we suggest the

following criteria. First, there should be a deliberate search for

hazards that have catastrophic consequences. Second, if there are

hazards that present possibilities for low-probability yet high-

consequence impacts, it should be determined if these are events

that will only occur once or if environments and communities face

repeat or continuous exposure to them. Third, we argue that

hazards need to be considered in a larger social-ecological

context, including both human decisions that can introduce

disaster hazards (such as neglecting maintenance that can

increase the chances of oil spills) and environmental variability

(especially climatic conditions) that can introduce or increase the

probability for disasters.

Our proposal is to use influence diagrams to model a system

and explore the human decisions and environmental variables that

can introduce or increase the probability of disasters. Where these

situations are present, we propose that risk characterization include

an explicit quantification of extreme events.

Af ter hazard ident ifica t ion and assessment , r i sk

characterization is the next step. Where extreme events are

possible, we propose that risk characterization for that hazard

should focus on the extreme value of risk rather than an expected

value of risk. Such an approach mirrors the practice of Value at Risk

(VaR) used within financial risk to estimate the extent of financial

losses to an organization within a specific time period under a given

confidence level (Duffie and Pan, 1997). VaR approaches are often

used to assess the extent of risk exposure for banks and other

lenders toward ventures they fund. We think ERA often operates in

an analog case, where government regulators must determine if a

development project poses too much risk to the environment and
Frontiers in Ecology and Evolution 06
public interest. In both cases, there is an assessment of risk to

protect the interests of a benefactor (the lenders or public agency)

from potential harm while furthering the interest of a recipient (a

business or a developer).

Determining what counts as low-probability high-impact,

extreme risks, or disasters is an important consideration (Aven,

2012). While there are no hard rules, there are some substantive

criteria around the “consequence” of risk that should be considered,

and some analytical tools that can help. First, risk events should be

judged in accordance to the severity of their consequence in context,

absent of their probability. Risk events that could have catastrophic

impacts should be given this special treatment, especially if they are

events that communities and ecosystems will be exposed to

repeatedly or continuously. As discussed earlier, catastrophic risk

can be from natural catastrophic events and it could be a product of

manufactured conditions or human decisions.

When identifying high-consequence events, it is important to

identify them inclusive of the most likely events, the presence

of outliers, and rare events (extreme outliers). The importance of

evaluating extreme outliers (even potential ones) in the tail of

distributions should not be neglected because failing to include

them can lead to a substantial underappreciation of risk (Devore,

2008; Weisent et al., 2014).

While we outline a process to identify extreme risk, any risk

assessment should feed into environmental decisions. Identifying

the scale of extreme risks can help determine the potential scale of

loss that decision-makers will need to be ready for. In contexts

where the ERA is used to determine whether and what kinds of

development to pursue (such as in Environmental Impact

Assessment), extreme risk evaluations can help determine which

options pose less disaster risk. In contexts where decision-makers

are determining mitigation plans, we warn that repeat exposure

problems may mean that efforts to reduce exposure may do less to

limit risk than managers intend. In some cases, exposure to disaster

can be eliminated (such as if plans allow for vulnerable ecosystem

components to be separated from a potential hazard, or if processes

that contribute to disaster risk were eliminated), which the influence

diagram used in our approach can help determine. However, in

cases where exposure to disasters cannot be eliminated, our analysis

can instead indicate the scale of impact that managers should

prepare post-disaster response measures for.
6 Case study of the proposed
framework

In this case study, we used a past oil spill example of the Gulf of

Mexico (GOM) to showcase and validate the operationalization of

the proposed framework. We study the feasibility of using our

framework for extreme oil spills by comparing it against an

assessment using expected value models of risk. The GOM’s

Outer Continental Shelf (OCS) is a major source of oil

production in the United States. The Minerals Management

Service (MMS) of the United States Department of the Interior

was responsible for its operations. The past oil spill database
FIGURE 2

Theoretical framework for environmental risk assessment including
disaster potential.
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maintained by MMS has been extensively used for statistical

analysis to predict the volume of future oil spills in GOM (Us, 2006).

From 1990 to 2005, GOM experienced a series of oil spills (Figure 3

– see Table S1 and Eschenbach et al., 2010 for data). The causes of the

oil spills can be categorized as human-caused (which include

operational and mechanical failures) and natural disasters (such as

hurricanes). Existing models for ERA for oil spills in this duration are

often based on using “average”measurements of the oil spill. However,

two rare events triggered oil spill disasters within the span of seven

years, while the ERA employed predicted such events so rare as to be

low risk. As shown in Figure 3 these two rare events caused oil spills

much higher than spills due to standard operational and mechanical

failures. The first rare event occurred on September 29, 1998, due to

Hurricane Georges and caused an oil spill of 8,212 bbl. The second rare

event occurred on September 24, 2005, and it was due to Hurricane

Rita which caused an oil spill of 8,162 bbl. Both hurricanes caused
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exceptional damage to oil and gas structures and drove significant

ecological losses (Eschenbach et al., 2010). Hurricane Rita damaged 103

platforms and extensively damaged 33 drilling rigs and is known as the

4th most intense Atlantic hurricane in history.

To compare the efficacy of our proposed approach to quantify

the risk of extreme events compared to an approach fitting an

expected value model, we first note that our hazard identification

shows climate change as increasing the probability of oil spills,

triggering our risk characterization to quantify extreme events

(Figure 4). We performed our analysis on the oil spill data by

excluding the September 24, 2005, event (the extreme spill of 8,162

bbl) and then used it to validate our analysis. First, we quantified the

expected value of spills, as the weighted sum of the products of

probability and magnitudes of spills of given sizes. Mathematically,

Expected value of risk  =  E(x)  =  o xi �  P(xi)

where xi indicates the value of the random variable (spill size)

and P(xi) is the probability of the random variable occurrence. For

comparability across approaches, we fit the same distribution to the

data in each case. We fit a Weibull distribution to the data (a flexible

continuous probability distribution that can accommodate many

datasets, including non-negative skewed data, and which we

determined to fit the data better than other probability

distributions). focused on extreme events). We calculated the

expected value of a spill risk to be 2730 bbl of oil. In fact,

calculating the product of spill magnitude by probability (the

expected value), a spill of 2766 bbl contributes the most risk to

the expected value calculation, and is weighted 2.4 times the risk of

the extreme spill of 8162 bbl.

To compare these results with an analysis inclusive of

catastrophic risks, we estimate the extreme value of spills from

the oil spill data. Our results show that at a 99 percent confidence
FIGURE 3

Gulf of Mexico 15 years Pipeline Oil Spills from May 1990 to
September 2005.
FIGURE 4

Influence diagram of the risk factors contributing to oil spill risk. Climate change is understood to increase spill risk and spill magnitude (based on
Eschenbach et al., 2010).
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level, an oil spill can be 12803 bbl or more. In fact, even excluding

both historic extreme spills (1998, 2005), the 99 percent confidence

level of how big an oil spill could be 9398 bbl (Figure 5). These

results adequately capture the experienced extreme oil spills,

including the 2005 spill of 8,162 bbl. Hence, comparing the

results using the expected value of risk against our proposed

framework of including extreme events supports our argument

that tail risk assessment captures or comes closer to the size of a

near actual oil spill and the predictions of the disasters should not be

solely based on weighing the consequences and their probabilities.

Therefore, tail risk assessment is more reflective of the reality than

using the expected value for rare events. The inclusion of tail risk

assessment in assessing oil spill risk could have helped the company

to estimate potential oil spills due to rare events such as that of

September 24, 2005, event.

Risk communicators could take this analysis to decision-makers

as “worst-case” scenarios that should be prepared for. Given that

climate impacts (through storm events) could increase the chances

for large-scale spills, and these impacts may be hard or impossible

to fully mitigate, disaster response planning may be a more

responsible decision than a mitigation plan focused on reducing

the probability of disaster (especially where the disaster cannot be

fully avoided). This analysis could help inform decisions regarding

disaster response – it could allow the MMS to prepare to respond to

spills multiple times larger than what an expected value model

would predict. Importantly, well-resourced governance structures
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allowing for rapid response plans are critical for reducing the

severity of oil spills (Chang et al., 2014; Sajid et al., 2020), and

being ready for extreme spills can help contain their effects better

than being ready for “expected” spills.
7 Disaster risk assessment with
data paucity

In practice, there is often a severe paucity of data to conduct formal

probabilistic assessments of risk (Singh et al., 2017b). This is

particularly true for emerging industries where there is little or no

precedence (Singh et al., 2020). In such cases, risk assessment often

relies on risk matrices. These matrices are qualitative or semi-

quantitative tools to assess risk based on the likelihood and

consequence of events and guide analysts to an overall “risk score”

(Anthony Cox, 2008; Thomas et al., 2014). Risk matrices provide a

framework to rate risk based on scorings of likelihood and

consequence. In a typical qualitative risk assessment, a risk matrix

will contain tiers of high, medium, and low values to approximate both

the risk likelihood and impact, but some instances may have more tiers

of likelihood and consequence (Figure 6). These matrices are often

constructed with symmetry, so low-probability high-consequence

events and high-probability low-consequence events receive the same

scoring and follow similar logic to expected value models of risk, where

the likelihood of impact regulates the final risk score (Figure 6A).
BA

FIGURE 5

Histograms of the historic oil spills in the Gulf of Mexico. Red curves represent fitted Weibull distributions for a case where the 2005 extreme spill is
excluded from the model fit (A), and where both extreme spills from 1998 and 2005 are excluded from the model fit (B). Broken vertical lines show
the expected value of risk given the model fit in each case, and the solid vertical lines show the extreme spills of 1998 and 2005. The table below
shows the modeled rare events given different levels of confidence for each modeled distribution, showing that a focus on the tails of the
distribution rather than the most probable better predicts the extreme spills experienced.
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The applications of these matrices range from environmental

impact assessments of individual development projects to

government risk assessment guidelines (Anthony Cox, 2008;

Thomas et al., 2014). The IPCC AR5 and AR6 WGII reports also

employ the logic of risk matrices and model “tolerable vs.

intolerable risk” via a symmetric consideration of the intensity

and frequency of impacts (IPCC, 2014; IPCC, 2022a).

In situations where rare events with disaster consequences can

occur in repeat exposure settings, we recommend risk matrices

follow an asymmetric structure, so that all cases of high

consequence be labeled as “high risk”, regardless of the

probability (Figure 6B)
8 Conclusions and future directions

By modeling risk as an ensemble of outcomes at a point in

time, the conventional expected value model of environmental

risk inadequately captures threats posed to a single entity over

time. Disasters are not moderated by the low probability of

occurrence when exposure to them is continuous. By providing

a decision framework to consider disaster risk in parallel with

more common risks, we propose an update to how ERA could be

conducted. With greater emphasis placed on low-probability

high-impact events, we believe better practices can be

implemented to prepare for, mitigate, and respond to disaster

occurrence. The implications of this also affect how analysis

informs risk management strategies, including assessments of

risk equivalences, which are assessments aimed at informing

management in order to maintain comparable risk given

different management decisions (Roux et al., 2022). If there are

risks to the environment that include repeat exposure of potential

catastrophe, we argue that a risk equivalency approach based on

expected value models cannot meaningfully compare between

low-consequence and high-consequence risks.

Further, common risk management approaches to decrease the

probability of exposure to impacts may only be reliable in contexts

of repeat exposure catastrophe where these high consequence risks

are eliminated and not simply less likely at any given time.

Importantly, understanding the scope and magnitude of disasters

are important to not only evaluate how ecosystem services may be
Frontiers in Ecology and Evolution 09
impacted – so response planning can be adequately done – but also

to design and evaluate environmental management to withstand

and recover from disasters. Designing nature-based solutions to

climate impacts depends on adequately estimating and modeling

disasters, and our proposal attempts to better quantify disaster risk.

We suspect that our proposed approach can also aid in

evaluating compounding or cascading disaster events. By

incorporating influence diagrams to assess the association

between events, our approach should be able to connect the

possibility of cascading disaster events, including when natural

disaster events can cascade into industrial disaster events (such as

when an extreme weather event leads to an oil spill or tailings

release). However, because our approach relies on using extreme

value theory, which fits probability distributions around past events

to evaluate tails of the distribution, our approach may still be

inadequate to address the magnitude of impacts of unprecedented

events (which may be the case with some cascading disasters).

There may be more opportunities to combine our approach with

disaster simulation models, to first build a simulation database and

then conduct an analysis of extreme values.

Our suggested approach is intended to be simultaneously rigorous

but flexible to use, which can be employed and recommended in

individual environmental impact assessments to large regional and

global scale analysis of risk, from situations allowing for complex and

data-driven probabilistic assessments to data-poor contexts. We hope

that recent and renewed attention to disasters will generate efforts to

understand their risk with new tools that do not discount the threats

they pose.
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