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Synergistic allocation of urban stormwater infrastructure is critical to flood risk

prevention and control under extreme rainfall events. This study focuses on the

interaction regularity of green, gray, and blue infrastructure in the process of

runoff retention and discharge under extreme rainfall scenarios. Three strategies,

namely, gray infrastructure, green-gray infrastructure, and green-gray-blue

infrastructure, are proposed to analyze the effectiveness of different scenarios

on flood risk control capabilities of urban drainage systems and to determine the

key influencing factors of the three strategies. The results show that green-gray-

blue infrastructure demonstrates synergy in improving the efficiency of urban

drainage systems. Under gravity drainage conditions, the backwater jacking

caused by high river water levels has a certain impact on the smooth discharge

of stormwater runoff in urban drainage systems. This case study identified a

sensitive range in the influence of water level on runoff control and drainage

function and an adaptive range in which the flood increases slightly with the

water level increase. These present notable rules in improving the synergistic

effect of blue infrastructure in the integrated urban green-gray-blue

infrastructure system.

KEYWORDS

urban flood, stormwater management, green-gray-blue infrastructure, extreme
rainfall, synergy
1 Introduction

Since the Industrial Revolution, human activities have significantly altered the urban

environment and its functions, which has led to many environmental problems in urban

areas (Arjenaki et al., 2020; Jiang et al., 2022), such as the rapid expansion of impervious

surfaces, increased surface stormwater runoff, changes in soil conditions, and declining
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water and air quality (Walsh et al., 2016; Huo et al., 2019). Since the

1970s, many developed countries, such as the United States,

Canada, Japan, and Turkey, have developed sustainable

stormwater management concepts. (Bradford and Randall, 2013;

Olszewski and Davis, 2013; Guo et al., 2018; Alikhani et al., 2020;

Zhang et al., 2020; Rentachintala et al., 2022). Green infrastructure

is considered a common sustainable stormwater management

measure, which is now recognized as an efficient method to

improve the effectiveness of stormwater management by playing a

positive role in urban stormwater management (Rahman et al.,

2014; Walsh et al., 2014; Deyvid et al., 2020). In 2012, China

proposed the Sponge City strategy, using green infrastructure as

the main strategy aiming to mitigate urban water issues and

improve the adaptability of cities to water (Marsalek et al., 2013;

Wang et al., 2017; Zhang et al., 2019). Current research has focused

on the functional effects of green infrastructure, scenario analysis, or

case studies of green infrastructure in terms of total stormwater

runoff reduction, peak flow reduction, and flood risk reduction

(Debusk and Wynn, 2011; Bradford and Randall, 2013; Olszewski

and Davis, 2013; Rahman et al., 2014; Dhakal and Chevalier, 2015;

Shafique and Kim, 2017b; Earles et al., 2018; Guo et al., 2018;

Alikhani et al., 2020; Zhang et al., 2020). A series of green

infrastructure measures such as rain gardens, green roofs,

infiltration trenches, and permeable pavements have been used to

address the impacts of urbanization and climate change on urban

areas, effectively reducing the impact of urban development on the

environment, rationalizing the use of landscape space, and

controlling stormwater runoff (Rowe, 2011; Liu et al., 2021; Jiang

et al., 2022).

The planning and construction of green infrastructure are

constrained by urban land use and cannot completely replace

gray infrastructure. In addition, source-based, decentralized green

infrastructure has disadvantages such as the inability to cope with

short-time heavy rainfall (Lee et al., 2012; Eckart et al., 2017; Taji

and Regulwar, 2019). In recent years, comprehensive facilities that

combine green infrastructure with gray infrastructure have been

recommended as an alternative to traditional drainage design

(Shafique and Kim, 2017a). Green-gray infrastructure is a cost-

effect ive long-term measure compared to tradit ional

gray infrastructure and can effectively mitigate the effects of

the changes in hydrological conditions in local areas due to the

proliferation of gray infrastructure on a global scale (Konijnendijk,

2008; Llausàs and Roe, 2012; Bradford and Randall, 2013).

However, the effect of green-gray infrastructure also varies

considerably under the effect of different climatic and

hydrological characteristics, land use economics, and other

regional features (Dong et al., 2017). Moreover, green

infrastructure is mostly small-scale and decentralized, which

makes green-gray infrastructure inadequate to cope with

torrential rain and future extreme weather conditions (Demuzere

et al., 2014). To solve these problems, integrated green-gray-blue

infrastructure has been advocated in recent years. The IPCC Sixth

Assessment Group II Report states that green-blue infrastructure

investments and natural area conservation in cities can provide
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nature-based solutions (NBSs) across scales to reduce temperature

shocks and provide natural flood defenses among other adaptation

and resilience benefits (Alves et al., 2020). Several studies have

proposed the combination of blue infrastructure with green-gray

infrastructure as the best solution for cities to cope with climate

change (Alves et al., 2020). It is advocated that urban internal rivers,

water bodies, wetlands, and other components of blue

infrastructure be incorporated into urban stormwater

management systems to form green-gray-blue infrastructure.

Urban rivers are important blue infrastructure for discharging

and managing stormwater runoff that exceeds green-gray

infrastructure standards and mitigating urban flooding risks.

Previous studies focused on the storage space and volume

provided by blue infrastructure such as ponds, wetlands, and

open space. Versini et al. (2018) analyzed the influence of

distributed structure and total storage capacity of blue

infrastructure on runoff volume and peak discharge. Gunnell

et al. (2019) used water storage capacity as a metric to analyze the

ability of blue infrastructure to buffer flood risk. Wang et al. (2022),

taking the storage volume of blue infrastructure as one of the

decision variables, carried out studies on green-gray-blue

infrastructure automatic optimization. In the case of extreme

rainfall scenarios, backwater jacking may occur when the river

water level (RWL) rises. Under gravity drainage conditions,

backwater jacking of urban rivers has a direct impact on the

function of green-gray-blue infrastructure, as the backwater can

lead to the runoff control and drainage function of green and gray

infrastructure to be difficult to operate properly, aggravating the

water inundation inside the city. It is critical to enhance the

synergistic effect and avoid the negative impact through

collaborative design between green, gray, and blue infrastructures.

At present, there are few studies focused on quantifying the effect of

water level change on synergy and the negative impact of river

backwater jacking on runoff and flood control function, which is

an obstacle to the comprehensive effect of green-gray-blue

infrastructure. More practical data are needed to support the

important role of combined green-gray-blue infrastructure in

urban stormwater management, as well as to summarize the laws

and provide a reference basis for how to integrate green-gray-

blue infrastructure.
2 Methods

2.1 Study area

The study area is located in the old city of Lin-gang Special

Area, Shanghai, China, with a total area of approximately 0.53 km2,

shown in Figure 1. The study area has a tropical oceanic monsoon

climate with an average precipitation of 1229.4 mm per year,

unevenly distributed. Because of its special geographical location,

it is vulnerable to typhoons from July to September. The study area

has a complete drainage system, with stormwater being discharged

to the surrounding urban river through the drainage system. The
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local government of the study area has renovated the urban

drainage system in recent years based on the sponge city concept.
2.2 Method

Three strategies (gray infrastructure strategy, green-gray

infrastructure strategy, and green-gray-blue infrastructure strategy)

were set to construct an urban stormwater management model, as

shown in Figure 2. The gray infrastructure strategy consists of a

stormwater pipe network, where precipitation is discharged directly

through the stormwater drainage network after the confluence with

sub-catchments. The green-gray infrastructure strategy combines a

stormwater pipe network and green infrastructure, including a series

of green infrastructures such as rain gardens, green roofs, infiltration

trenches, and permeable pavements in sub-catchment areas. The

green-gray-blue infrastructure strategy consists of green

infrastructure, gray infrastructure, and urban rivers. Multiple

groups of RWLs were set to analyze the phenomenon of river

backwater jacking at the outlet of the drainage network and their

operation effect on the urban drainage system.
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The technology roadmap is shown in Figure 3, and the specific

research process is as follows:
1. Data collection. Basic information, such as regional

overview, land use, DEM, geophysical exploration data of

stormwater drainage network, sponge city construction

distribution, and river data of the study area, was first

collected from the local administration department.

Rainfall events and corresponding pipeline flow data are

derived from real-time monitoring.

2. Model construction. The rainfall-runoff process of the

study area was constructed using US EPA Storm Water

Management Model (SWMM), and the initial conditions

were set according to the basic conditions of the study area,

and the model parameters were determined by using the

measured rainfall and the corresponding measured

pipe flow.

3. Result analysis. The performance of the three infrastructure

strategies was simulated, and evaluation indexes of the

urban drainage system under different infrastructure

scenarios were comparatively analyzed.
FIGURE 2

Three strategies of urban stormwater infrastructure.
FIGURE 1

Study area.
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2.3 Model establishment, calibration,
and validation

2.3.1 Modeling
The study area was divided into 31 sub-catchments. The total

length of the stormwater drainage network in the study area is 4,128

m, with 78 nodes, 86 conduits, and 7 gravity outfalls discharging

into the urban river. The local government has carried out green

infrastructure construction in the study area in recent years. The

sub-catchment and the green infrastructure construction are shown

in Figure 4A, and the elevation map of the drainage network is

shown in Figure 4B.

For scenario analysis, 1-hour rainfall with a 50-year return

period (50 a, 1 h), 1-hour rainfall with a 100-year return period (100

a, 1 h), 24-hour rainfall with a 50-year return period (50 a, 24 h),

and 24-hour rainfall with a 100-year return period (100 a, 24 h)

were chosen, with precipitation of 88.81 mm, 98.09 mm, 245.61

mm, and 279.1 mm, respectively. The rainfall patterns are shown

in Figure 5.
Frontiers in Ecology and Evolution 04
2.3.2 Model calibration and validation
The model parameters were set regarding the SWMM model

user’s manual (Rossman, 2015), and the surface slope and drainage

system parameters were taken according to the actual topography.

The basic parameters of the study area and the parameters setting of

green infrastructure are shown in Table 1.

The parameters were calibrated using the precipitation data of 9

August 2019 (Super Typhoon Lekima with 24h precipitation of

151.2 mm), and the real-time monitoring data of pipe flow in the

sub-catchment area. The precipitation data and monitored pipe

flow data on 29 June 2019 (24h precipitation of 104.2 mm) were

selected to validate the parameter rate determination results. The

Nash–Sutcliffe efficiency coefficient (NSE) was used to evaluate the

reliability of the model, calculated by Eq.(1) (Escobar-Ruiz et al.,

2019).

NSE = 1 − o(Si − Oi)
2

o(Oi − �O)2

" #( )
  i = 1, 2,…,mf g (1)
BA

FIGURE 4

SWMM model basic data of study area. [(A) The sub-catchment and the green infrastructure construction; (B) The elevation map of the drainage
network].
FIGURE 3

Technology roadmap.
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Where Si is the simulation at the time i; Oi is the observed

measurement at time i; and O is the mean of the observed

measurements. Please confirm whether the edits made to the

sentence are accurate.
2.4 Scenario setting and analysis

2.4.1 Green infrastructure scenario setting
The scenarios of green infrastructure were set according to the

volume capture ratio of annual rainfall (VCRAR). VCRAR is a

design standard of green infrastructure proposed by the Chinese

sponge city strategy, which usually corresponds to water quality

volume (WQV). The effect of different scales of green infrastructure

on the runoff regulation function of the traditional gray

infrastructure-based urban drainage system was analyzed.

VCRAR was calculated by Eq.(2) (MHURDPRC, 2014).

VCRAR = 1 −
Pd
P

� �
� 100% (2)

Where VCRAR is the volume capture ratio of annual rainfall, %;

Pd is the annual rainfall discharged from the study area, mm; and P

is the annual rainfall of the study area, mm.

The minimum and maximum limits of the VCRAR in the study

area are 75% and 85% based on the guidelines of the sponge city

strategy, which were selected in this study to set the green

infrastructure scenarios. The design rainfall corresponding to

VCRAR can be obtained based on the statistical method. The
Frontiers in Ecology and Evolution 05
design storage capacity volume of green infrastructure is generally

calculated using the volumetric method, as shown in Eq.(3).

V =
HjF
1000

(3)

Where, V is the design storage capacity volume, m3; H is the

design rainfall under different VCRAR, mm; j is the integrated

runoff coefficient; and F is the catchment area, m2.

The design storage capacity volume is allocated according to the

area of each sub-catchment, and the four green infrastructure

measures of permeable pavement, rain garden, bio-retention cell,

and rain barrel were arranged in the SWMM model. The scenario

setting of green infrastructure measures referred to the existing

sponge city layout in the study area. Green infrastructure scenarios

under 75% and 85% VCRAR are shown in Figure 6. The design

rainfall under VCRAR 75% is 22.44mm, and the design rainfall

under VCRAR 85% is 32.96mm.

2.4.2 Blue infrastructure scenario setting
The ordinary water level of the rivers around the old city of

Shanghai Lin-gang District is 2.6 m, and the water level fluctuates

between 2 m and 3.75 m. The water level of the rivers was set from

2.0 m to 3.4 m in this study. The outlet of the pipe network to the

river in the SWMMmodel is set to be a tidal outlet, which is used to

simulate the impact of different RWL boundary conditions on the

urban drainage system. The power wave method is used to simulate

the operation effect of the pipe network under different

RWL conditions.
FIGURE 5

Design rainfall data.
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TABLE 1 Parameters setting of the study area.

The basic parameters setting

Sub_property value unit

N-Imperv 0.011 s/m1/3

N-Perv 0.03 s/m1/3

Dstore-Imperv 1.5 in

Dstore-Perv 0.5 in

% Zero-Imperv 25 %

Max. Infil. Rate 5 in/hr

Min. Infil. Rate 3 in/hr

Decay Constant 3 1/hr

Parameters setting of green infrastructure

Layers Parameters
Bio-retention

cell
Rain garden

Permeable
pavement

rain barrel

Surface

Berm height (mm) 228 254 4.5 –

Vegetation volume fraction 0 0 0 –

Surface roughness (Manning’s n) 0.01 0.5 0.5 –

Surface slope (%) 0.01 0.01 0.01 –

Soil

Thickness (mm) 238 178 4 –

Porosity (volume fraction) 0.437 0.437 0.437 –

Field capacity (volume fraction) 0.062 0.062 0.062 –

Wilting point (volume fraction) 0.024 0.024 0.024 –

Conductivity (mm/hr) 2.5 2.5 0.1 –

Conductivity slope 0.01 0.01 0.01 –

Suction head (mm) 12.7 2.5 0.1 –

Pavement

Thickness (mm) 254 – – –

Void ratio (Voids/Solids) 0.153 – – –

Impervious surface fraction 0 – – –

Permeability (mm/hr) 3 – – –

Clogging factor 0 – – –

Storage

Thickness (mm) 457 0 4 –

Void ratio (Voids/Solids) 0.75 0.75 0.75 –

Seepage fate (mm/hr) 5 7.62 0.5 –

Clogging factor 0 0 0 –

Barrel height – – – 4

Drain

Flow coefficient 0 – 0 0

Flow exponent 0.5 – 0.5 0.5

Offset height 0 – 6 6

Drain delay – – – 6
F
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2.4.3 Evaluation indexes
The number and duration of node surcharges, the number and

duration of conduit surcharges, the number and volume of node

flooding, and the corresponding spatial distribution were selected as

the evaluation indexes to evaluate the performance under different

parameters of the three strategies. The number of node surcharges

and conduit surcharges was obtained directly from the simulation

results. The mean duration of node surcharge and conduit

surcharge was calculated using Eq. (4).

tnode surcharge =
omnode surcharge

0 ti,node surcharge
nnode

tconduit surcharge =
omconduit surcharge

0 ti,conduit surcharge
nconduit

i = 0, 1, 2,…mf g

8>><
>>:

(4)

Where t is the mean duration, h; ti is the duration of each

element, h; m is the number of the surcharge or flooding elements;

and n is the total number of nodes or conduits.

The total node flooding volume was calculated using Eq. (5).

vtotal   =omnode   flooding

0 vi i = 0, 1, 2,……,mf g (5)

Where v is the total node flooding volume, m3 and vi is the

flooding volume of each node, m3.
3 Results and discussion

3.1 Model calibration and validation result

The calibration and validation results of sub-catchments No.3

and No.24 are shown in Figure 7. The Nash coefficients of

calibration results for sub-catchments No.3 and No.24 are 0.72

and 0.78, respectively. The Nash coefficients of the validation results

for sub-catchments No.3 and No.24 achieved 0.94 and 0.79,

respectively, which met the simulation requirements.
3.2 Gray infrastructure strategy

The ordinary water level was used as the river level boundary

condition; the calculation results of the gray infrastructure strategy
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are shown in Figure 8. Taking extreme rainfall (100a, 24h) as an

example, there were 49 nodes surcharged and 67 conduits

surcharged, and 15 nodes and 15 conduits overloaded for

more than 10 h. The surcharge situation was mainly distributed

in the southeast direction of the drainage, near the outlet and the

intersection of the drainage. The mean duration of nodes surcharge

and conduit surcharge was 12.84 h and 7.78 h, respectively.

Five nodes experienced flooding, with a total node flooding

volume of 154.57 m3.
3.3 Green-gray infrastructure strategy

The ordinary water level was used as the river level boundary

condition; the calculation results of the green-gray infrastructure

strategy are shown in Figure 8. Taking extreme rainfall (100a, 24h)

as an example, under the conditions of 75% and 85% VCRAR, there

were 48 and 47 nodes surcharged and 67 and 66 conduits

surcharged, respectively. The number of nodes and conduits with

surcharge duration longer than 10 h decreased to 14 and 11,

respectively. There was still a certain amount of surcharged nodes

and conduits. The distribution of surcharged nodes was more

dispersed. Under the condition of 75% VCRAR, the mean

duration of nodes surcharge and conduits surcharge was 8.63 h

and 7.78 h, respectively. Under the condition of 85% VCRAR, the

mean duration of nodes surcharge and conduits surcharge was 7.03

h and 6.99 h, respectively. Under the conditions of 75% and 85%

VCRAR, the total node flooding volume decreased to 131.83 m3 and

127.29 m3, respectively. There were still five and four node floodings

occurring in the study area under the conditions of 75% and

85% VCRAR.
3.4 Green-gray-blue infrastructure strategy

The simulation results of the green-gray-blue strategy are

shown in Figure 9. When the water level gradually decreased

from the ordinary water level to 2.0 m, the number of node

surcharges, conduit surcharges, and node flooding decreased

significantly. When the water level dropped to 2.0 m, the number

of node surcharges, conduit surcharges, and node flooding were 30,
FIGURE 6

Green infrastructure spatial distribution under different VCRAR.
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FIGURE 8

Drainage performance under gray and green-gray infrastructure strategy.
B

A

FIGURE 7

Parameter calibration and verification results. [(A) Parameter calibration results; (B) Parameter validation results].
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45, and 1, respectively. There were no more nodes and conduits

surcharged with a surcharge duration longer than 10 h. When the

water level gradually increased from the ordinary water level to 3.7

m, the number of node surcharges, conduit surcharges, and node

flooding increased significantly. When the water level was 3.7 m, the

number of nodes surcharged and conduits surcharged was 77 and

86, respectively, for both the 75% and 85% VCRAR. When the

water level was 3.7 m, the number of node flooding was 39 for both

the 75% and 85% VCRAR. In terms of spatial distribution, the area

where overload occurred was located in the southeast corner of the

study area, and the range gradually increased with the rise of the

RWL. Besides, the mean duration of node surcharge and conduit

surcharge at the 2.0 m water level was 0.04 h, for both the 75% and

85% VCRAR. The mean duration of node surcharge and conduits

surcharge at the 3.7 m water level was 45.52 h and 45.75 h,

respectively, for both the 75% and 85% VCRAR. The total node

flooding volume at the 2.0 m water level was 4.55 m3 for both the

75% and 85% VCRAR. The total node flooding volume at the 3.7 m

water level was 390.96 m3 and 381.87 m3 for the 75% and 85%

VCRAR, respectively. The rise of water level causes the river

backwater jacking effect, which seriously affects the drainage

capacity of urban drainage systems. Avoiding backwater jacking
Frontiers in Ecology and Evolution 09
plays an important role in improving the drainage capacity of

green-gray-blue infrastructure.
4 Discussion

4.1 Facility parameters and corresponding
sensitivity analysis

The number and duration of node surcharge, the number and

duration of conduit surcharge, and the number and volume of node

flooding were used as evaluation indexes to analyze the sensitivity of

different facility parameters to the drainage performance of urban

drainage systems. Facility parameters included the VCRAR of green

infrastructure and the RWL of blue infrastructure. The sensitivity

analysis result is shown in Figure 10. Under extreme rainfall

conditions, the effect of different facility parameters on drainage

performance was different, and the effect of RWL on drainage

performance was greater than that of VCRAR. As shown in

Figures 10A–D, the scenario simulation results at different VCRAR

levels in the study area show that green infrastructure had a limited effect

on drainage performance under extreme rainfall conditions. The number
FIGURE 9

Performance of the drainage under green-gray-blue infrastructure strategy.
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and mean duration of node and conduit surcharge, and flooding volume

decreased with the increase of VCRAR, but not significantly. This is

basically consistent with the results of previous studies (Qin et al., 2013).

As shown in Figures 10E–H, the scenario simulation results at different

RWL levels in the study area show that high water levels will lead to river

backwater jacking effect, and seriously affect the drainage performance

under extreme rainfall conditions.
4.2 Sensitive range in the influence of river
water level on urban drainage capacity

The influence mechanism of water depth on urban drainage

capacity was further analyzed, based on the number and duration of

node and conduit surcharge. Figures 10E–H show that high water

levels will lead to river backwater jacking effects and seriously affect

the runoff control and drainage function of an urban drainage system.

The number and mean duration of node and conduit surcharge

decreased with the decrease of the RWL. When the water level was

between 3.7 m and 3.1 m, the value of the evaluation index changed

slightly. When the water level declined less than 3.1 m, the value of
Frontiers in Ecology and Evolution 10
the evaluation index declined significantly. The decline tended to be

gentle when the water level declined less than 2.3 m. The results

indicate that the influence of water level on runoff control and

drainage function has a sensitive range. It is crucial to identify the

sensitive range and the sensitivity of water level parameters to play

the synergistic role of blue infrastructure in the integrated urban

green-gray-blue infrastructure system.
4.3 Adaptive range for urban flood with the
change of river water level

The influence mechanism of RWL on urban drainage capacity

was further analyzed, based on the node flooding volume. Figure 11

shows the node flooding statuses under the two extreme rainfall

conditions of 100a, 24h and 100a, 1h. As shown in Figure 11A,

under extreme rainfall conditions (100a, 24h), the RWL reduction

of 0.3 m from ordinary water level can significantly reduce the total

flooding volume by 82.8% and 89.3%, respectively, when VCRAR

rises to 75% and 85%. The results indicate that the flood control

performance of green-gray-blue infrastructure can be effectively
B C D
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FIGURE 10

Drainage performance under different design parameters. [(A) The number of node surcharge under different VCRAR; (B) The duration of node
surcharge under different VCRAR; (C) The number of conduit surcharge under different VCRAR; (D) The duration of conduit surcharge under
different VCRAR; (E) The number of node surcharge under different river water level; (F) The duration of node surcharge under different river water
level; (G) The number of conduit surcharge under different river water level; (H) The duration of conduit surcharge under different river water level;
(I) The node flooding volume under different VCRAR; (J) The node flooding volume under different river water level].
frontiersin.org

https://doi.org/10.3389/fevo.2023.1242492
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Zhang et al. 10.3389/fevo.2023.1242492
improved with the decrease of RWL. The decline tends to be gentle

when the RWL drops to a certain value, as the water level rises from

the normal level to 3.1 m. After the water level exceeded 3.1 m, there

was a significant increase in the total volume of node flooding with

the RWL increase. As shown in Figure 11B, under extreme rainfall

conditions (100a, 1h), the decline tended to be gentle when the

RWL dropped to 2.6 m. After the water level exceedED 2.6 m, there

was a significant increase in the total volume of node flooding with

the RWL increase. The results indicate that there is an adaptive

range in which the flood increases slightly with the increase in water

level, as green-gray-blue infrastructure can achieve synergy through

self-regulation under a certain range of external pressures. It is

crucial to identify the adaptive range so that blue infrastructure can

have a synergistic role in an integrated urban green-gray-blue

infrastructure system.
4.4 Limitations and future
research directions

This study focuses on how the water level boundary of blue

infrastructure affects the ability of urban drainage systems, taking

into account gravity drainage but not pump drainage conditions. If the

RWL is too high to ensure smooth drainage, technical solutions such as

pumps can be used in appropriate areas. Future studies will consider

adding pump drainage to conduct a more comprehensive assessment.

In addition, this study was conducted under the conditions of current

land use and single rainfall, without considering urban development

and climate change. For green-gray-blue infrastructure, how to

improve resilience to urban development and climate change is also

a very important research direction. Moreover, this study did not

measure the cost of different scenarios, thus a more systematic and

comprehensive assessment of green-gray-blue infrastructure is needed.
5 Conclusions

In this study, three strategies of gray infrastructure, green-gray

infrastructure, and green-gray-blue infrastructure were simulated
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based on a case study to evaluate the performance of urban drainage

systems and the key influencing factors of the three types of

infrastructure under extreme rainfall scenarios. The following

conclusions can be drawn based on the quantitative results:
1. Supplementing traditional gray infrastructure with green

infrastructure could improve the efficiency of urban

drainage systems. The efficiency increases with the

increase of the volume capture ratio of annual rainfall.

However, the effectiveness of small-scale decentralized

green infrastructure is limited under extreme rainfall

events.

2. Green-gray-blue infrastructure is more effective in

improving the efficiency of urban drainage systems.

Under gravity drainage conditions, the backwater jacking

caused by the high water level of a river would have a

certain impact on the smooth discharge of stormwater

runoff in urban drainage systems. When the flood risk

assessment of urban catchment is carried out under gravity

drainage conditions, not considering the RWL boundary

conditions may lead to inaccurate results.

3. There is a sensitive range in the influence of water level on

runoff control and drainage function, and there is an

adaptive range in which the flood increases slightly with

the water level rises, which are notable rules in improving

the synergistic effect of blue infrastructure in the integrated

urban green-gray-blue infrastructure system.
This study provides quantitative data to support the integrated

urban green-gray-blue infrastructure in solving the urban flooding

problem of drainage under extreme rainfall events.
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FIGURE 11
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