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Climate factors drive plant
distributions at higher taxonomic
scales and larger spatial scales
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Introduction: Understanding the environmental effects shaping plant

distributions is crucial for predicting future ecosystems under climate change.

The effects of different environmental factors may vary in their importance in

determining plant distributions at different spatial and taxonomic scales, which

affects our understanding of plant–environment relationships. However, this has

not yet been systematically explored.

Methods: Here we combined global distribution data of 205 widely distributed

plant families and environmental data from multiple global databases. We then

used the random forest algorithm to quantify the relative importance of

environmental factors (including climate, soil, and topography) on the

distribution of plants at three taxonomic levels (family, genus, and species) and

multiple spatial scales (10 spatial extents from 1° × 1° to 10° × 10° randomly

located across the globe). Mixed-effect models were used to assess the

significance of spatial and taxonomic scales on relative environmental effects

across the globe.

Results: We found that climate factors had increasing importance on plant

distributions at higher taxonomic scales and larger spatial scales (yet stochastic

effects at spatial extents finer than 4° × 4°). Edaphic factors congruously

decreased their importance on plant distributions as spatial and taxonomic

scales increased. Topographic factors had a relatively larger influence at higher

taxonomic levels (i.e., family>genus>species), but with a relatively slow rise with

the increase in spatial scale.

Discussions: Our findings are generally aligned with current knowledge but have

also indicated the potential complexity underlying the scale-dependence of

relative environmental effects on plant distributions. Overall, we highlight a

multi-scale insight into ecological patterns and underlying mechanistic processes.
KEYWORDS

environmental factors, plant distributions, random forest, scale-dependence, spatial
extents, taxonomic scales
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Introduction

Disentangling how environmental factors drive plant

distribution across the globe is crucial for understanding how

plants may respond to climate change (Guisan & Thuiller, 2005;

Elith & Leathwick, 2009). Generally, abiotic environmental factors

are believed to restrict plant ranges since they define the basic

conditions for survival (e.g., fundamental niches; Hutchinson,

1957), while finer-scale habitat heterogeneities and biotic

interactions further constructure their real distribution patterns

(Smith & Read, 1997; Davies et al., 2005; Callaway, 2007; Lin et al.,

2013). Research scales may define the range of observations of

patterns and processes, thereby influencing our interpretation of

ecological questions (Wiens, 1989; Crawley & Harral, 2001; Siefert

et al., 2012; Chave & Bascompte, 2013; Viana & Chase, 2019).

However, many studies have been conducted at specific spatial or

taxonomic scales (Yackulic & Ginsberg, 2016). Our former research

on the environmental drivers of global plant distributions found

that different environmental factors shape plant distributions in

different extent at global and regional scales, varying their

importance across latitudes and among taxonomic groups (Huang

et al., 2021). Although there have been various studies on the effects

of different environmental factors on plant distributions at varying

scales in the last decade (Woodward & Williams, 1987;

Münzbergová, 2004; Woodward et al., 2004; Siefert et al., 2012;

Schweiger & Beierkuhnlein, 2016), the general rule of how different

environmental effects on plant distributions change at different

scales still requires systematically quantification.

Environmental factors often vary in their heterogeneity at

different spatial scales, which may lead to the scale dependency of

environmental effects on plant distributions from a macroecological

perspective. For example, climate factors often show larger

heterogeneity at the global scale than at the regional scale (e.g.,

within a city or a state) (Perlwitz et al., 2017), while edaphic

variables are always varying at fine spatial scales. The scale-

dependence of environmental heterogeneity may influence our

detection of plant–environment relationships at broad scales. A

meta-analysis explored the scale-dependence of vegetation–

environment relationship (Siefert et al., 2012), yet it was unable to

give a quantitative description of how different effects vary

specifically across scales.

The taxonomic scale of observations also influences plant

distribution patterns, which has been little investigated until

recently (Cox and Moore, 1985; Queenborough et al., 2009;

Graham et al., 2018; Yeh et al., 2019). The taxonomic level of the

studied object may influence the spatial extent of analysis (by

changing the sample size). For instance, a widely distributed

family can contain wide- and narrow-range genera or species, and

therefore the plant–environment relationship (which is sensitive to

their geographical ranges) may change when shifting from a family

to a genera/species within it (see the example of Asteraceae in Cox

and Moore, 1985). More importantly, taxonomic scales are related

to phylogenetic history (Graham et al., 2018) and may reflect the

effects of evolutionary events on ecological patterns to some extent.

For example, factors induced by long-term history on earth (e.g.,
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climate change through glacial epochs) may influence plant

distributions at the early age of speciation, resulting in variations

among larger taxonomic scales (e.g., family > species). Conversely,

ecological processes such as soil erosion and nutrient turnover may

influence plant distributions at a relatively recent period, leading to

higher impacts at a finer scale.

It is widely recognized that climate conditions generally shape

the current patterns of vegetation across the globe (e.g., Von

Humboldt, 1805; Woodward & Williams, 1987). Climatic

variables show larger heterogeneity at broad spatial scales, which

indicates a stronger effect of climate on plant distributions as spatial

scale increases. Moreover, climate has affected plant distributions

over long evolutionary history by limiting plant dispersal within

specific climate zones across the globe (Woodward et al., 2004) and

by influencing their adaptation and speciation under climate change

(Levin, 2019). Thus, plants’ responses to climate are more likely to

be detected at higher taxonomic scales (e.g., family > species). Thus,

relative effects of climate may increase with spatial and

taxonomic scales.

Soil heterogeneity tends to occur at smaller spatial scales

compared with climate (Weil & Brady, 2017), indicating that soil

effects may happen at relatively fine spatial extents. Soil properties

determine the nutrients and microbial activities that are important

for plant growth and dispersal, usually at a small scale (Jamir et al.,

2019; Martinez-Almoyna et al., 2020). These activities occurred

within a relatively short period in the history of earth. Thus, soil

variables are more likely to affect plant distributions at lower

taxonomic levels. In general, we can hypothesize that soil effects

increase with both decreasing spatial and taxonomic scales.

However, studies on plant–soil relationships have typically

focused on community scales, with less attention on large-scale

patterns (Marage & Gégout, 2009; Ni & Vellend, 2024).

Understanding how soil influences change with scale can

contribute to predictions of large-scale species distribution and

diversity patterns (Beauregard & de Blois, 2014).

Topographical factors have both direct (e.g., forming

geographical barriers at higher spatial extents across the

landscape) and indirect effects (e.g., shaping elevational

microclimate and soil conditions at regional and local scales) on

plant distribution (Lomolino, 2001; Barry, 2008). They are more

likely to influence montane taxa than lowland ones because

mountain ecosystems contain much more variation in

topographic conditions and other related changes in climate and

soil. Therefore, the influence of spatial extent may diminish when it

is beyond mountain ranges. Geographic isolation arising from

topography may cause the allopatric divergence and speciation of

related species distributed in mountain and lowland areas (Vargas

et al, 2020). Hence, the variations in the response of plants to

topography are more likely to be remarkable at the species level

than at the family level.

To explore how environmental factors shape plant distributions

at different spatial and taxonomic scales, we studied global plant

distributions. First, we assessed the impacts of climate, soil, and

topography on plant distributions using the random forest

algorithm for wide-ranging plants at varying scales. We then used
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mixed effect models to analyze the effects of the spatial and

taxonomic scales of different environmental variables on plant

distributions. Through these, we aimed to test our hypotheses:

climatic factors have greater importance on plant distributions with

increasing spatial scales and at higher taxonomic scales (H1), while

edaphic factors have the opposite trends, i.e., increasing influence at

finer spatial and taxonomic scales (H2). Topography has a stronger

effect at higher taxonomic scales (H3) but limited influence along

spatial scales. By quantifying plant–environment patterns across

scales, we attempt to provide a macroecological perspective on the

changes in ecological patterns and processes with scales.
Methods

Plant distribution data and
environmental variables

We collected species occurrence information (species presence

data with geographical coordinates) from the Global Biodiversity

Information Facility (GBIF, http://www.gbif.org/; data accessed in

2021) database, using family names in The Plant List (TPL, http://

www.theplantlist.org/).1 Then we used the “CoordinateCleaner” R

package to clean the original occurrence data, discarding

coordinates that matched the centroids of countries, capitals,

known botanical institutions, and GBIF headquarters, zero

coordinates and equal latitude and longitude, as well as those

falling in the sea (Zizka et al., 2019). We also excluded

occurrences where geographical information was missing or

duplicated. We then selected widely distributed families, which

were distributed in at least the main continents (excluding

Antarctica) and across a wide range of latitudes (spanning more

than ninety degrees). We focused on wide-ranging families because

narrow-ranging plant groups were likely to have restricted ranges,

and so their responses to the environment might be simplified

across scales or may not be detected at varying spatial scales. We

ultimately obtained 205 families, 688 genera, and 1610 species for

the subsequent analyses (Supplementary Information

Appendix S2).

We obtained information on climatic, topographic, and soil

variables, which are crucial in determining plant distributions at

multiple scales. Temperature and precipitation variables were

derived from WorldClim (http://www.worldclim.org/). Solar

radiation was obtained from Global Solar Alta 2.0 (https://

globalsolaratlas.info/).2 We collected the properties of topsoil (e.g.,

total nitrogen, pH) from two databases, the Harmonized World Soil
1 The Plant List (2013). Version 1.1. Published online; http://

www.theplantlist.org/ (accessed 1st January, 2019).

2 Data obtained from the “Global Solar Atlas 2.0, a free, web-based

application developed and operated by the company Solargis s.r.o. on

behalf of the World Bank Group, utilizing Solargis data, with funding

provided by the Energy Sector Management Assistance Program (ESMAP).

For additional information: https://globalsolaratlas.info.
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Database (HWSD; https://www.fao.org/soils-portal/data-hub/soil-

maps-and-databases/harmonized-world-soil-database-v12/en/;

Fischer et al., 2008) and the Global Soil Database (http://

globalchange.bnu.edu.cn/research/soilw; Shangguan et al., 2014).

We derived topographic variables (i.e., elevation, aspect, and

slope) from the Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) Global Digital Elevation Model

(GDEM). All the environmental variables (Supplementary

Information Appendix S1: Table S1.1) were processed into 30

arc-second rasters, and the values were extracted according to the

geographical locations of the corresponding plant taxa. We

conducted principal component analysis (PCA) for variables from

the same resource (e.g., temperature and precipitation from

WorldClim) or of similar type (e.g., soil properties from two

databases) to avoid spurious collinearity among original variables

and to reduce environmental dimensions for subsequent analyses.

For 19 climate variables (indexes about temperature and

precipitation) in worldClim, we used the first three principal

components (PCs)that accounted for > 80% of the variance. For

15 soil variables, we used the first five soil PCs. which accounted

for > 70% in soil variables (Supplementary Information Appendix

S1: Tables S1.3, S1.4). We ultimately obtained 12 environmental

variables (including eight PC axes) for subsequent analysis

(Supplementary Information Appendix S1: Table S1.2).
Random locations, spatial and
taxonomic scales

We assessed the effects of spatial scales based on different spatial

extents at the regional scale. We first randomly sampled 500

locations across the globe (Figure 1). These locations distribute

across all the main continents and cover most ecological biomes

(bothWhittaker biomes, Whittaker, 1975, andWWF biomes, Olson

et al., 2001; Supplementary Information Appendix S1: Figure S1.1).

Frequents of different biomes were not same due to varying areas of

these biomes across the globe and different data density in GBIF

database (even when we have conducted data manipulation to

reduce sample bias). Then, we created “plots” around the center

of each location, spanning 1° × 1°, 2° × 2°, 3° × 3°, 4° × 4°, 5° × 5°,

6° × 6°, 7° × 7°, 8° × 8°, 9° × 9°, or 10° × 10° (i.e., 10 levels of spatial

extents at the regional scale). We considered all occurrences of a

plant taxon (only at the family, genus, or species level) in each plot

with a specific spatial extent as an individual dataset. In this case we

can analyze scales effect by controlling the locations (as random

effects in the mixed effect model below). Plant taxa with less than

three occurrences within a sampled plot were removed from the

datasets. We further selected the plots with at least three taxonomic

groups at the corresponding taxonomic scale to satisfy the random

forest analysis. We focused on the extent instead of the grain

because plant occurrence was obtained as scattered data (with

geographical coordinates) and was processed to the same

resolution as environmental variables. For a comparison at a

specific location, we assessed the difference in relative

environmental effects across 10 levels of spatial extents and 3

levels of taxonomic ranks.
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Relative importance of
environmental factors

We used random forest to assess the relative importance of the

environmental factors affecting plant distribution at multiple scales.

The random forest algorithm is a combination of tree predictors,

where each tree relies on the values of a random vector that are

sampled independently and with the same distribution for all trees

in the forest (Breiman, 2001). It is more precise and applicable when

dealing with large multivariate data (nonlinear, correlated, or

biased) than classical statistical methods, and hence it is widely

used in classification and regression, especially the selection of

variables in ecology (Cutler et al., 2007; Genuer et al., 2010). We

conducted random forest for every dataset (species data at one

particular spatial and taxonomic scale in a location) separately. In

each random forest model, we used presence–absence of 0.5° × 0.5°

grid cells as dependent variables, and associated environmental

variables (12 variables in every grid corresponding to occurrence) as

explanatory variables. Presence points were defined as occurrence

records of a plant taxon (at family, genus, or species levels), while

absence points were represented by the same number of presence

points (pseudo-absences) that were randomly selected from

background grid cells for every focal taxon (Barbet-Massin et al.,

2012). Datasets with less than three occurrences were excluded due

to the requirements of random forest.

We performed random forest algorithms using the

“randomForest” package in R 3.6.1 (Liaw & Wiener, 2002). The

random forest takes bootstrapped samples from the original dataset

to build a decision tree, and then average the predictions of each tree

for a final model. The number of sampled trees in our study was set

to 500 for every test. We used the mean decrease Gini (MDG) to

assess the relative contribution of every environmental factor. It

measures the total decrease in node impurities (averaged over all

trees) from splitting on the variable, so it reflects the overall

importance of every variable from the model. Larger MDG values

indicate greater importance (Hong et al., 2016). We calculated the

MDG value for every environmental factor at every spatial and
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taxonomic scales. To facilitate comparison among datasets of

different scales, we standardized the MDG values to the range of

0 to 1 in every dataset using the equation MDGStandardized,i = MDGi/

(o15
i MDGi). For species occurring in the same location at the same

spatial and taxonomic scale, we conducted the random forest

algorithm separately for every species (or genus or family) taxon

respectively. Thus, we obtained over 15000 datasets at different

spatial and taxonomic scales to run random forest in total.

To evaluate the model performance, we used the out of bag

(OOB) error rates from random forest model. It is an estimate of

error rate, calculated as (1 – accuracy), which means that lower

OOB indicated higher accuracy. We also calculated the cross-

validation out of bag (CV OOB) error rates as supplementary,

using “rf.crossValidation” functions in “rfUtilities” R package

(Evans & Cushman, 2009).
Mixed effect models

We used mixed effect models to test the effects of spatial and

taxonomic scales on the relative importance of environmental

factors (represented as MDG values of every variable at specific

scales from the random forest). We performed different models for

three types of variables (climate, soil, and topography) and for every

single factor (12 variables, including PCs). First, we classified the

environmental variables into three groups (i.e., climate, soil, and

topography) and conducted the analysis separately for each group.

For each group, we added all variables’ relative importance (e.g., the

sum of relative importance of all three climate PCs and solar

radiation) at one location at one specific spatial and taxonomic

scale to represent the relative effect of this group, viewed as

independent variables in our mixed effect models. We calculated

the average MDG values of all species in the same dataset (i.e., one

plot with the one specific spatial and taxonomic scales) and variable

group before modeling. The fixed effects included the spatial and

taxonomic scales, and the interaction between spatial and

taxonomic scales. The random effects included sampled locations
FIGURE 1

Distribution of 500 plots randomly selected across the globe.
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and their two- interactions with spatial and taxonomic scales. We

then also repeated these analyses separately for each environmental

variable, in which we set spatial and taxonomic scales and their

interaction as fixed effects, and sampled locations and their two-way

interactions with spatial and taxonomic scales as random effects.

We conducted the mixed-effect model with the “lmer” R

package (Pinheiro et al., 2021). All the mixed effect models meet

the assumption of linear mixed effect models by checking

distributions of residuals-fitted values. The R square of every

mixed effect model was calculated using the ‘r.squaredGLMM’

function in the ‘MuMIn’ package (Bartoń, 2013) in R (R Core

Team, 2023), based on a conditional R square concerned with

variance explained by both fixed and random factors (Nakagawa &

Schielzeth, 2013).
Results

Generally, relative importance of climatic variables mostly

ranged between 0.33 to 0.47, while relative importance of soil

variables almost ranged from 0.031 to 0.38. Topography variables

showed relatively lower importance than climate and soil, ranging

from 0.2 to 0.3 (Figure 2). Most random forest models perform well,

as both OOB error rates and CV OOB error rates are almost less

than 10% (Supplementary Information Appendix S1: Figure S1.2).

We found significant scale-dependence patterns of different

environmental effects across spatial extents (1° × 1°, 2° × 2°, 3° ×

3°, 4° × 4°, 5° × 5°, 6° × 6°, 7° × 7°, 8° × 8°, 9° × 9° and 10° × 10° at the

regional scale) on plant (family, genus, and species) distributions

(Figure 2 and Table 1). Overall, climate and topography increased

their importance in determining plant distributions with larger

spatial extents (Figures 2A, C), while soil showed the opposite

trends (Figure 2B). Trends in topographical effects across spatial

scales were relatively flatter than for climate and soil. Notably, 4° ×
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4° appeared to be a threshold for trends in climate and topography:

clear rising trends for climate and flatter trends for topography

could be found at extents larger than 4° × 4°.

Within each group of climate, soil, and topography,

environmental factors showed differential importance with

changing spatial extents (Figure 3). For example, despite the

general decreasing tendency of soil variables, two of soil PCs

(PC4 and PC8) showed diverse trends across spatial scales. For

topographical variables, aspect and slope presented a similar growth

tendency with spatial extent, while elevation showed much more

variation among the studied plots (Diagrams 10–12 in Figure 3).

With the exception of these, the trends in most specific factors were

basically consistent with the general trend of climate, soil, or

topography across spatial scales.

The relative importance of environmental variables on plant

distributions significantly differed among the taxonomic scales (i.e.,

family, genus, and species) (Figures 2, 3; Tables 1, S1.2). Generally,

climate had a larger influence on plant distributions at higher

t a x o n om i c l e v e l s t h a n t h a t a t l ow e r o n e s ( i . e . ,

family>genus>species. Figure 2A). However, for soil and

topography, variables were more important at the species than

genus levels, followed by the family level (Figures 2B, C).

For climate, most factors had less importance on plant

distributions at the family level than at the species and genus

levels (Diagrams 1–4 in Figure 3). On the contrary, edaphic

factors had higher importance at finer taxonomic scales, with

exceptions at particular spatial extents (e.g., PC5 and PC6 at 2° ×

2° and 3° × 3°; Figure 2B and Diagrams 5–9 in Figure 3).

Topography had a similar rank as soil (species> genus >family),

in spite of a complex pattern in elevation where the ranking

changed diversely at different spatial scales (Figure 2C, Diagrams

10–12 in Figure 3). The difference in the relative effects among the

three taxonomic levels was finer in the soil variables than climate

and topography (Figure 2 and Diagrams 5–9 in Figure 3).
A B C

FIGURE 2

Relative importance of climate, soil, and topography variables on plant distributions across taxonomic scales (family, genus, and species) and spatial
extents (1° × 1°, 2° × 2°, 3° × 3°, 4° × 4°, 5° × 5°, 6° × 6°, 7° × 7°, 8° × 8°, 9° × 9°, and 10° × 10°). Points and vertical lines showed the means and
standard errors, respectively. The regressions were weighted by the inverse of the standard errors. Climate variables contain solar radiation and the
three PC axes of temperature and precipitation. Soil variables contain the five PC axes of soil properties. Topographic variables include elevation,
slope, and aspect. Trends in specific factors are shown in Supplementary Information Appendix S1: Table S1.2.
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The relative importance of environmental factors showed varying

spatial-dependence trends at different taxonomic levels (Figures 2, 3).

For example, plant species did not show apparent increasing trends in

the relative importance of climate effects such as family and genus

(Diagram 1 in Figure 2). The interactive effects between spatial extent

and taxonomic scale on environmental importance were statistically

significant (Table 1 and Supplementary Information Appendix S1:

Table S1.5), indicating the interplay of spatial and taxonomic scales

on the influence of the environment on plant distributions. Some

factors such as elevation and solar radiation showed contrary trends

with increasing spatial extents at the family and genus levels

(Diagrams 4 and 10 in Figure 3). Variations in the relative

importance of soil variables among the family, genus, and species

levels were comparatively smaller when considering the specific

edaphic variables (Figure 2B and Diagrams 5–8 in Figure 3).
Discussion

Our study found significant evidence for both the spatial and

taxonomic scale-dependence of environmental effects on plant

distributions (Table 1). Climate variables showed greater

importance at larger spatial (larger than 4° × 4°) and higher

taxonomic scales (Table 1 and Figures 2A, 3), while soil variables

exhibited opposite trends for both spatial and taxonomic scales

(Table 1 and Figures 2B, 3). Topography indicated a relatively slow

increase with spatial scale, with a larger impact on plant

distributions at the species level than at the genus and family

levels (Table 1 and Figures 2C, 3). These findings emphasize the

scale-dependence of the relative environmental effects that shape

plant distributions, suggesting a multi-scale insight into studying
Frontiers in Ecology and Evolution 06
plant–environment relationships. Here we discuss our main

findings and the potential mechanisms below.
Scale dependence of climate effects

Climatic variables had a larger impact on plant distributions

when the spatial and taxonomic scales increased at spatial extents

larger than 4° × 4°. The results overall support our hypotheses (H1)

relating to the spatial and taxonomic scale-dependence patterns of

climate effects on plant distributions within limited scales. These

results are congruent with past descriptions and analyses of the

vegetation of the world (as far back as Von Humboldt, 1805). High

spatial variation in climate conditions at large spatial scales may

possibly explain the spatial scale-dependence of climatic effects on

plant distributions. However, stochasticity appeared at fine scales

(<4° × 4°), where the trends in climate effect with spatial scale varied

significantly among different taxonomic levels. These may due to

the variety of local processes (e.g., stochastic processes) at finer

spatial scales. Thus, it is more reliable to use climate variables for

predicting plant distribution patterns at a relatively broad spatial

scale, where climatic constraints such as temperature extremes and

light intensity restrict plant radiation across the globe.

Plants have evolved traits to adapt to climate change and

extreme climate (e.g., episodic freezing) or have dispersed to

more suitable areas (Zanne et al., 2014). The relative importance

of climatic effects among different taxonomic levels shows that the

response of plants to climate may be more distinct between families

than within families (e.g., among species), indicating that the

climate-related traits of plants are the consequence of long-term

adaptive evolution (Zanne et al., 2014).
TABLE 1 Effects of spatial extents (i.e., 1° × 1°, 2° × 2°, 3° × 3°, 4° × 4°, 5° × 5°, 6° × 6°, 7° × 7°, 8° × 8°, 9° × 9° and 10° × 10°) and taxonomic scales (i.e.,
family, genus, and species levels) on the relative importance of the impact of environmental factors (categorized into three groups: climate, soil, and
topography) on plant distributions.

NumDF DenDF F P

Model: climate (R2 = 0.96)

taxa 2 997.3 956.059 ***

space 9 4484.1 19.117 ***

taxa:space 18 8949.9 120.144 ***

Model: soil (R2 = 0.95)

taxa 2 996.2 267.274 ***

space 9 4487.0 62.977 ***

taxa:space 18 8952.0 15.767 *

Model: topography (R2 = 0.92)

taxa 2 998 823.05 ***

space 9 4485 160.81 ***

taxa:space 18 8953 77.58 ***
***, P< 0.001. *, P<0.05.
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Scale dependence of soil effects

Soil was more important at finer spatial scales and at lower

taxonomic levels (i.e., species>genus>family), which aligns well with

our hypothesis (H2). The effects of soil on plant distributions

diminished at large spatial extents with greater soil heterogeneity

(Figure 2B). Soil heterogeneity at fine spatial scale may cause

variation in the strength of ecological processes that shape local

plant distributions and coexistence, such as the root absorption of

nutrients, microbe shifts, and mycorrhizal symbiosis (Smith &

Read, 1997; Callaway, 2007; Wang et al., 2019).

Soil effects were stronger at relatively lower taxonomic scales

(Figure 2B), suggesting that fine-scale processes related to soil (e.g.,

plant–soil feedback) are more likely to vary among species than

families. This indicated that these processes may be driven by recent

events and thus may be more dynamic. Despite the general

decreasing trends in soil effects with spatial and taxonomic scales,

specific factors within the category showed different patterns
Frontiers in Ecology and Evolution 07
(Figures 2B, 3). For example, the relative importance of PC4 and

PC8 (mainly representing soil texture and gravel, respectively)

increased with spatial extents. This implies that internal processes

related to soil niche are complex and varied.
Scale dependence of topography effects

The topographical effects on plant distribution were relatively

intricate and unpredictable across spatial scales (Figures 2C, 3).

Topographical factors affect plant distributions by causing changes

in other ecological conditions (Irl et al., 2015; Slaton, 2015;

Muscarella et al., 2020), such as the microclimate and edatope of

plant habitats along an elevational gradient, which is nonlinear and

difficult to predict. Nevertheless, their influences are perhaps

strongly related to the presence of montane species with a limited

range in mountainous areas. Thus, topographical effects should not

be continually increased at large scales beyond the geographical
FIGURE 3

Relative importance of 12 environmental factors on plant distribution across taxonomic levels (family, genus, and species) and spatial extents (1° × 1°,
2° × 2°, 3° × 3°, 4° × 4°, 5° × 5°, 6° × 6°, 7° × 7°, 8° × 8°, 9° × 9° and 10° × 10°). Points and vertical lines show the means and two times of the
standard error, respectively. Predicted lines were from the regressions of the relative importance of environmental variables against the area of
regional plots, which were performed separately for each taxonomic level. The regressions were weighted by the inverse of the standard errors.
Environmental variables were as follows: climate (PC1 to PC3, Solar), soil (PC4 to PC 8) and topography (ELE, SLO, ASPL). Abbreviations of
environmental factors are defined in Table S1.2.
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range of mountains. This was confirmed in our analysis whereby the

trends in topographical effects that increased with spatial scale

flattened at spatial extents larger than 4° × 4° (with the exception of

6° × 6° for species; Figure 2C).

The influence of topography on plant distributions also

emanates from the unique evolutionary histories of montane

ecosystems (Muellner-Riehl et al., 2019). Topographical factors

showed more influence at the species level than at the genus and

family levels (Figure 2C). This result supports our hypothesis of the

taxonomic scale-dependence of topographical effects (H3),

revealing the impact of evolutionary history on montane floras.

Topography probably had a stronger effect on species than on

families because montane floras tend to be related to nearby

lowland floras. On the contrary, most of the variation in plant

distributions caused by topographical changes has occurred recently

in evolutionary history (Kelly & Goulden, 2008).
Limitations of study scale dependence

Generally, climate variables’ relative importance is larger than

topography and soil (Figure 2), which is similar to results of our

former study on environmental effects on global plant distributions

(Huang et al., 2021). However, the detection of environmental

effects depends on the methods we use. Additional analyses of

other measurements (e.g., MaxEnt model) also show similar trends

in relative environmental effects changing with spatial and

taxonomic scales, though different in importance value to some

degrees (Supplementary Information Appendix S3).

Nevertheless, it is still difficult to know how multi-scale

processes interact with each other that shape the scale-

dependence patterns in our study using large-scale occurrence

data. For example, global and regional changes in biological

diversity are the origins and consequences of fine-scale

phenomena (Levin, 1992) or assemblage-level processes (e.g.,

biotic interaction and dispersal). The interplay of multi-scale and

cross-scale processes is actually comprehensive and poorly

understood, and further studies integrating community ecology,

macroecology, and macroevolution are needed.
Conclusion

Our study reveals the scale-dependence of environmental effects

on plant distributions, indicating various ecological processes

underlying plant distribution patterns across spatial and

taxonomic scales. However, the internal mechanistic processes

require further exploration. Overall, we highlighted the

importance of scales in disentangling plant–environment

relationships and other ecological studies. It is important to

integrate the diverse ecological patterns driven by multi-scale

processes from the population and community to macroecological

perspectives, to better understand natural systems across time

and space.
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