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Introduced species provide the opportunity to study evolutionary change on

short time scales—a key first step to understand and manage the ecosystem-

level impact of invasions. This study examined mitochondrial DNA sequence

variation in cytochrome c oxidase subunit 1 (COI) for 26 insect species—

Coleoptera (9), Hymenoptera (9), and Lepidoptera (8)—introduced to the

Nearctic from the Palearctic. A total of 6,302 barcode records were retrieved

from BOLD (boldsystems.org) to compare sequence diversity between the native

and introduced range. As expected, genetic variation averaged nearly an order of

magnitude lower in introduced populations (2.19 × 10−5 substitutions per

nucleotide) than in the native range (1.48 ×10−4 substitutions per nucleotide).

Nonsynonymous and synonymous changes had a similar incidence in the

introduced populations (p-value = 0.83, averaging respectively 1.08 × 10−5 and

1.11 × 10−5 substitutions). By contrast, nonsynonymous changes were ten-fold

less frequent than synonymous changes in the native populations (p-value <

0.001, averaging 1.74 × 10−5 and 1.3 × 10−4 substitutions, respectively). Patterns

of sequence variation in the introduced range were largely congruent across the

three insect orders which suggests that they are produced by general processes.

This study explores the molecular evolution of introduced species, a

fundamental aspect to improve understanding of their biology and manage

their impact on ecosystems.
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Introduction

The molecular clock hypothesis (Zuckerkandl and Pauling,

1962; Margoliash, 1963) was a key advance in evolutionary

biology because it enabled estimation of the age of lineages.

However, it is now known that rates of molecular evolution vary

among lineages due to different biological attributes (e.g.,

generation length, metabolic rate), demographic fluctuations, and

natural selection (Langley and Fitch, 1974; Felsenstein, 1981). In

addition, these rates also show variation within lineages through

time, from high values in short-term pedigree studies to the much

lower long-term phylogenetic rate (Ho et al., 2005; Ho et al., 2007;

Henn et al., 2009).

Studying sequence divergence among breeding lines exposed to

population bottlenecks is a common method for examining

evolutionary rates over short intervals. This approach fosters the

fixation of newly arisen variants via genetic drift, allowing detailed

examination of the nature and incidence of spontaneous mutations.

However, the insights obtained by this method have limited

applicability to natural populations (Konrad et al., 2017) where

substitution rates are determined by demographic history (Otto and

Whitlock, 1997; Cabrera, 2021) and by the interplay of genetic drift

and natural selection (Woolfit, 2009). Introduced species represent

natural experiments unfolding in historical times, which provide

the opportunity to compare the evolution of populations in their

native and introduced ranges.

The present study compares rates and patterns of nucleotide

substitution among populations of 26 species of Coleoptera,

Hymenoptera, and Lepidoptera introduced to the Nearctic from

the Palearctic within the last 20–200 years. Each of these species

undoubtedly experienced a population bottleneck during its

introduction, but then experienced exponential population

growth, first at its site of introduction and subsequently as it

expanded its range in the Nearctic. In fact, some of these species

are still expanding their ranges (e.g., Sweeney et al., 2020; Strange

et al., 2011). This work examines the molecular evolution of

introduced species and addresses the following questions:
Fron
1. Is sequence variation in the natural and invaded range

different?

2. Are there differences in the occurrence of nonsynonymous

and synonymous mutations?

3. Are patterns taxon-specific or similar among insect orders?
Methods

Dataset

This study examined sequence variation in the 5` end

of the cytochrome c oxidase 1 gene for 6,302 specimens of

26 insect species introduced to the Nearctic from the Palearctic

(Supplementary Table 1). Nine species were Coleoptera (1,954

records), nine were Hymenoptera (2,045 records), and eight were

Lepidoptera (2,303 records) (Supplementary Table 2). The average
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number of records per species for Coleoptera was 161 (33–487) and

56 (21–136) respectively in the Nearctic and in the Palearctic.

Hymenoptera averaged per species 203 (3–1,237) and 24 (11–81)

records respectively in the Nearctic and Palearctic. The average

records per species for Lepidoptera was 146 (11–428) and 142 (29–

577) respectively in the Nearctic and Palearctic. Sequence records

and associated metadata are available on BOLD (boldsystems.org)

in the public dataset “DS-MTEVOL” (dx.doi.org/10.5883/

DS-MTEVOL).
Mitochondrial COI characterization

Sequences were available for 4,451 Nearctic and 1,851 Palearctic

specimens. Most were obtained with Sanger sequencing, but some

(Nearctic—2.4%, Palearctic—3.8%) were obtained using Sequel

SMRT sequencing (Pacific Biosciences). All sequence records

included a minimum of 500 unambiguous base pairs. DNA

sequences for each species were aligned in Geneious Prime

(version 2022.1.1) employing MUSCLE (Edgar, 2004) and the

consensus sequence was used as the reference to assess sequence

diversity. Rates of sequence variation were standardised with

respect to the number of nucleotide sites examined. Because the

termini of sequences generated by Sanger analysis are more subject

to uncertainty, ~15 bp were trimmed from both the 5’ and 3’ ends of

the alignment. The present analysis focused on sequence variation

among singleton haplotypes which represented 228 of the total

1,062 haplotypes. They were targeted for analysis because we aimed

to characterize sequence diversity that was likely to have arisen after

introduction. Under this condition, exposure to genetic drift is

maximized, while natural selection will only have removed the most

disadvantageous mutations.
Statistical analyses

Mann-Whitney U tests were used to compare rates of sequence

variation between Nearctic and Palearctic populations, as well as the

ratio of nonsynonymous to synonymous mutations between

Nearctic and Palearctic populations. ANOVA was performed at

two levels of analysis. The first examined differences between two

categories of substitution (i.e., nonsynonymous, synonymous) in

the Nearctic and in the Palearctic. The second examined differences

among insect orders (Coleoptera, Hymenoptera, Lepidoptera) for

both substitution categories in the Nearctic and in the Palearctic.

Statistical tests were performed using R studio (ver. 2022.7.1)

(https://www.rstudio.com).
Results

Variation in DNA barcode sequences for Nearctic specimens of

the 26 introduced species (Figure 1A) was low, averaging just 2.19 ×

10−5 substitutions per site (range: 1.4 × 10−5–2.85 × 10−5). By

comparison, variation was almost an order of magnitude higher

(U = 32; p-value < 0.001) (Figure 1A; Supplementary Table 3) in
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their Palearctic populations, averaging 1.48 ×10−4 (range: 1.01 ×

10−4–2 × 10−4) substitutions per site.

Analysis also revealed that nonsynonymous variants were, on

average, slightly commoner than synonymous variants in Nearctic

specimens (mean ratio = 1.03, range: 0.71–1.50) (Figure 1B). By

contrast, the nonsynonymous to synonymous ratio was much lower

in Palearctic specimens (mean = 0.12, range: 0.08–0.19) (Figure 1B).

This nearly 10-fold difference was highly significant (U = 117; p-

value < 0.001) (Supplementary Table 3).

The nonsynonymous and synonymous changes for all species

among the three insect orders in the Nearctic averaged among the

three insect orders respectively 1.08 × 10−5 (range: 6.51 × 10−6–1.4 ×

10−5) and 1.11 × 10−5 (range: 7.44 × 10−6–1.6 × 10−5) substitution

per site (Figure 2), with no significant differences among the

two categories of substitution (F = 0.047; p-value = 0.829;

Supplementary Table 4). However, analysis of Palearctic

populations showed that nonsynonymous changes per site

averaged 1.74 × 10−5 (range: 7.19 × 10−6–3.17 × 10−5), while

synonymous changes were nearly 10-fold more frequent (F =

21.81; p-value < 0.001; Supplementary Table 4) with an average

of 1.3 × 10−4 (range: 9.34 × 10−5–1.68 × 10−4) (Figure 2). Levels of

sequence variation within each category of substitution (i.e.,

nonsynonymous and synonymous) across the three insect orders

were similar and therefore non-significant in the Nearctic (Figure 2;

Supplementary Table 4). Levels of sequence variation were also

similar among taxa at the nonsynonymous changes in the native

populations (F = 2.34; p-value = 0.12; Supplementary Table 4), but

it revealed high variation among taxa at the synonymous changes in

the native populations (F = 13.14; p-value < 0.001; Supplementary

Table 4; Figure 2).
Discussion

In long-established populations such as those in the Palearctic,

which served as the source for introduction to the Nearctic,

intraspecific sequence variation has accumulated for hundreds of

thousands of years across multiple glacial cycles (Hewitt, 2004). The

much lower levels of variation detected in their Nearctic

counterparts is an expected result of population bottlenecks

during introduction. Genetic impoverishment is inevitable
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because they derive from just a few individuals from one or few

populations from the native range—a pattern commonly observed

in introduced species (e.g., Colautti and Lau, 2015; D’Ercole et al.,

2022; North et al., 2021). While this work considers species

introduced to different bioregions, it is worth noting that other

mechanisms could produce similar patterns at smaller geographic

scale. Not only adaptive mutations could deplete genetic diversity at

linked sites through selective sweeps (e.g., Lattorff et al., 2015;

VanBuren et al., 2016), but geographic isolation following

founder effect (e.g., Barros et al., 2022) and anthropic pressure

can also produce local loss of diversity (e.g., Robin et al., 2022).

Given the severe bottlenecks experienced by introduced species, one

might expect they only include haplotypes prevalent in the native

range. However, they included a considerable number of low

frequency haplotypes, variants which might have arisen after

introduction. Human pedigree studies have revealed mutation

rates up to 100-fold higher than phylogenetic rates and

(Sigurdardóttir et al., 2000; Howell et al., 2003) with no bias

towards synonymous changes (Denver et al., 2000). This time-

dependent rate variation has been linked to transient

polymorphisms through three main processes. The first is the

limited efficiency of purifying selection over short intervals. While

moderately deleterious haplotypes will ultimately be purged by

natural selection, their fate is mainly determined by genetic drift

over short intervals (Ho et al., 2005; Ho et al., 2007). Second, the

apparent mutation rate is elevated by population expansion

(Cabrera, 2021), and introduced populations typically experience

exponential growth. When population size is stable through time

(N0 = N1), the probability of transmission of a newly arisen

mutation to the next generation remains constant (1/N0)

(Kimura, 1991). By contrast, if population size doubles each

generation (2N0 = N1), the probability of transmission also

doubles (2/N0). This raises the number of both neutral and

deleterious mutations, and extends their persistence in the

population (Waxman, 2012; Gazave et al., 2013; Peischl et al.,

2013)—a phenomenon termed “expansion load”. Lastly, effective

population size can influence substitution rates because it regulates

the balance between genetic drift and selection (Ohta, 1992;

Woolfit, 2009). The small size of populations at the leading edge

of the species distribution reduces the efficacy of selection so slightly

deleterious mutations can increase in frequency by genetic drift.
BA

FIGURE 1

Comparison of the levels of DNA barcode sequence variation per nucleotide site (A), and mean ratio of nonsynonymous to synonymous changes (B) for
populations of 26 insect species belonging to three insect orders introduced to the Nearctic from the Palearctic; bars show the standard error.
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Although the retention of ancestral polymorphisms is often used to

explain the occurrence of transient polymorphisms (Henn et al.,

2009; Peterson and Masel, 2009), most introductions involve few

individuals, making it unlikely that the diversity present in invasive

species predates their introduction.

Multiple factors can explain the elevated ratio of nonsynonymous

to synonymous changes in the Nearctic. First, the low occurrence of

synonymous changes in the introduced populations is likely a

consequence of their young age and their resulting lack of genetic

structure. Second, because transient polymorphisms often involve

slightly deleterious mutations (as described above), this higher ratio

can, at least in part, be explained by the prevalence of such mutations.

Third, selection could enhance the incidence of nonsynonymous

mutations. While functional constraints generally impose purifying

selection, which limit amino acid substitutions (Ballard and

Whitlock, 2004; Meiklejohn et al., 2007), a shift in selection

pressures can favour substitutions. Aside from occupying a novel

physical environment, introduced populations are typically exposed

to fewer parasites, parasitoids, and predators than their ancestral

populations (Torchin et al., 2003; Perkins et al., 2008). Because of this

relaxed selection, they can invest less in defensive mechanisms

(Phillips et al., 2010). Hence, it is possible that reduced purifying

selection (rather than positive selection) underlies the observed

pattern. Lastly, while operational issues such as PCR errors, editing

errors, and amplification of non-target sequences should equally

affect specimens in the native and in the invaded range, their

overall impact merits examination. Past studies revealed that the
Frontiers in Ecology and Evolution 04
transition from T/A ! C/G contributes to ~70% of all polymerase

errors (McInerney et al., 2014; Potapov and Ong, 2017). Analysis of

the nonsynonymous changes detected in this study showed that PCR

errors have played a negligible role as T/A ! C/G transitions only

account for ~10% of all changes in Lepidoptera and in Coleoptera,

and none in Hymenoptera. Similarly, editing errors have likely

marginal effect on sequence variation. To confirm this fact, trace

files were manually examined whenever available, and ~15 bp from

the termini of each Sanger sequence were trimmed to minimize such

errors. The incidence of heteroplasmy was never examined on

introduced species, but the high spontaneous mutation rate and the

presence of multiple copies of mitochondrial DNA per cell set the

condition for the proliferation of such variants. Mutation

accumulation studies support this theoretical prediction as they

reveal that most mutations are in fact heteroplasmic when few

generations are considered (Haag-Liautard et al., 2008; Howe et al.,

2010; Konrad et al., 2017). While Sanger-based sequencing enables

only a coarse investigation of sequence heterogeneity (Just et al.,

2015), analysis of trace files in our dataset showed that about 25% of

the nonsynonymous mutations in our sequence dataset are associated

with double peaks. Future work could involve use of high throughput

sequencing to allow a complete characterization of the spectrum of

gene copies present in an individual, enabling detection of variants at

frequency lower than 2% (White et al., 2017; González et al., 2020).

Mutations introduce genetic variation, enabling organisms to

adapt to environmental change. Past studies have examined

mutational patterns in the mitochondrial genome through short-
FIGURE 2

Comparison of the levels of sequence variation per nucleotide site in the barcode region of COI in Nearctic and Palearctic populations of 26 species
belonging to three insect orders. Bars show the standard error.
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term laboratory experiments, but similar studies have rarely been

conducted in natural settings. In this study, we show how

introduced species can address this gap. Our analysis shows

that introduced populations show depleted levels of sequence

variation as expected because of bottlenecking during population

establishment. However, our results indicate that the constellation

of newly arisen mutations in these introduced populations is

characterized by an unusually high incidence of non-synonymous

variants, a pattern consistent among the species in three insect

orders. This pattern may reflect a response to varying selective

pressure following the occupancy of new environments, or it may

simply reflect that natural selection has not yet had sufficient time

to excise weakly disadvantageous mutations in a scenario of

demographic growth.
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