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Editorial on the Research Topic

Plant-soil-microbe interactions and drivers in ecosystem development
and ecological restoration
Studies on the ecological restoration or rehabilitation of deeply disturbed and degraded

ecosystems, and reintegration of fragmented, dysfunctional landscapes around the world

report failures or unsatisfactory outcomes. These failures are increasingly attributed to

inadequate consideration of substrate and its implications for plant and microbial

establishment and survival (Mendes et al., 2019). Much greater knowledge of soil

processes and interactions is needed if we are to develop techniques and technology that

will help us come reasonably close to achieving global restoration aspirations (Cross et al.

2019; Aronson et al., 2020).
Better consideration of soil biota, and other critical edaphic factors, is clearly needed to

ameliorate and revitalize substrate conditions and plant-soil interactions so as to

sustainably restore and support indigenous microbial, invertebrate and vertebrate fauna,

and vegetation communities, ecosystems and landscapes (Cross and Lambers, 2017; Cross

et al., 2021a; Cross et al., 2021b). It has been proposed that, at least in some regions, soil

characteristics and their changes through time likely represent among the strongest drivers,

filters and leverages for species establishment, ecological succession and recovery, and

overall effectiveness in ecological restoration and rehabilitation (ERR) projects (Bauer et al.,

2015; Cross, 2021; Cross and Lambers, 2021).

The processes influencing pedogenesis and nutrient cycles in soils also impact the

establishment and succession plant species and assemblages through time (Eger et al., 2011;

Lambers et al., 2011; Laliberté et al., 2013). They are also dynamic and influenced in their

turn by complex plant-soil, plant-microbe, and microbe-soil interactions (Lambers et al.,

2008; van Schöll et al., 2008; Shanmugam and Kingery, 2018). Recent studies have

identified substrate conditions limiting, or totally blocking ERR efforts. These include,

but are not limited to, highly altered materials presenting ecologically hostile chemical
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environments (such as extreme pH), challenging hydrological and

osmotic conditions, unsuitable macronutrient stoichiometry for

ecologically specialized native vegetation, shortfalls of organic

biomass, insufficient or disproportionate abundance of key

functional soil microbial groups, or high concentrations of

biologically toxic contaminants (Huang et al., 2012; Cross and

Lambers, 2017; Cross et al., 2017; Busso and Pérez, 2018).

Recognition of these multiple, complex, and interwoven

obstacles has led to significantly greater consideration of the role

of substrate and edaphic factors in ERR (Nolan et al., 2021); this has

reached the point of calls for projects to consider ‘engineering’

substrates that are suitable for desired biota following significant

disturbance to substrates from activities such as mining (Huang

et al., 2012; Kumaresan et al., 2017), or to artificially inoculate soils

with commercial microbial blends (Farrell et al., 2020; Valliere et al.,

2020; Contos et al., 2021), despite limited and inconsistent

experimental evidence for the efficacy and risks associated with

these techniques (Lance et al., 2019; Wong et al., 2022; Zhong

et al., 2023).

Current understanding of the natural processes and mechanisms

driving soil development and determining patterns of vegetation and

microbial diversity and composition continues to hinder progress in

ERR, as well as in related undertakings such as regenerative

agriculture and urban regreening projects. But we must also

support and learn from the pioneering sites, programs, networks,

and breakthroughs taking place in the worldwide movement of

ecological restoration and improved ecosystem management. In

this collection of papers, we bring together articles on one of the

critical focal and leverage points where we can intervene to improve

ecosystem trajectories at terrestrial sites undergoing ERR: the intricate

and complex ecosystems that are soils.

Our Research Topic solicited studies presenting empirical data

pertaining to the interactive relationships connecting soil, soil

microbes, invertebrates, and plants, aiming to enhance our

understanding of soil and vegetation developmental processes in

the context of ERR. As Tedesco et al. (2023) have recently

summarized, and many other authors have provided evidence for,

from long-term experimental restoration sites at landscape and

smaller spatial scales (Jellinek et al., 2014; Budiharta et al., 2016;

Hein et al., 2019; Hong et al., 2022): ecological restoration in today’s

world must go “beyond ecology” and become “a process for social-

ecological transformation” (Tedesco et al., 2023). There is a risk

otherwise that ERR activities will not achieve their full potential as

an investment in human, social, cultural, and natural capital

(Aronson et al., 2020). The global literature continues to add new

and powerful evidence that soils and soil microbiota should be

considered a very high priority for research and development, as key

places to intervene along ecosystem recovery trajectories to advance

and accelerate restoration processes (Nolan et al., 2021).

While none of the four articles in this Research Topic explicitly

undertake or assess ecological restoration, each examines different

mechanisms and processes relating to plant-soil-microbial

interactions that have deep relevance to the theory and practice

of ERR.

The first article by Beñares-de-Dios et al. provides a detailed

examination of the literature pertaining to the role of soil and
Frontiers in Ecology and Evolution 02
climate as determinants of floristic composition, focusing on

tropical forests. The authors examine the relative importance of

different environmental factors as drivers of plant species

occurrence across different spatial scales and in different forest

ecosystems. Beñares-de-Dios et al. contribute to growing

understanding of the importance of soil and climatic factors as

drivers of vegetation and microbial community patterns over large

spatial scales. This builds upon the seminal work of Nottingham

et al. (2018), and supports previous hypotheses around a strong

importance of edaphic factors as determinants of species

establishment and development at smaller scales in ERR (Cross,

2021; Cross et al., 2021a; Cross et al., 2021b).

Second, Fu et al. use high-throughput sequencing to evaluate

the degree to which soil microbial diversity varies among different

urban forest ecosystems as a function of soil and other

environmental characteristics. The degree to which ecological

degradation and, conversely, ERR, act as drivers of the diversity

and composition of soil microbial communities has attracted

significant international research interest in recent years (Hu

et al., 2016; Li et al., 2016; Hamonts et al., 2017; Kumaresan et al.,

2017; Deng et al., 2020). This interest has intensified with increasing

accessibility and decreasing cost of sequencing technologies (Hart

et al., 2020). Fu et al. report strong association between vegetation

composition and microbial community, with considerable

distinction in microbial diversity among different vegetation

types, in line with previous studies highlighting soil microbes as

powerful drivers of plant diversity (Van Der Heijden et al., 2008).

Thirdly, Jiang et al. examine the resource limitations influencing

microbial communities in unique Karst tiankeng (limestone

sinkhole) habitats, in the context of ecological degradation in

these ecosystems, using soil ecoenzymatic stoichiometry. The

contribution of microbial communities to biogeochemical cycling

in ecological recovery activities, and the degree to which their

natural contribution to ecological functioning is impaired by

disturbance or degradation, is a topic of considerable interest in

ERR (Hamman and Hawkes, 2013; Gagen et al., 2019; Moreira-Grez

et al., 2019; Sun and Badgley, 2019). Jiang et al. notably report that

level of degradation considerably impacts resource availability for

microbial communities and contextualize their results around

regional biodiversity conservation and restoration prioritization.

The development of approaches prioritizing ERR activities to

achieve maximum outcome is another hot topic in the

international literature.

Lastly, He et al. present the results of an experimental pot study

examining the potential utility of three perennial grasses in

ameliorating soil contaminated with cadmium or petroleum

hydrocarbons. Phytoremediation of contaminated soils in this

manner (whether through the activity of plants, microbes, or

both) is a growing international focus point (Pilon-Smits, 2005;

Ali et al., 2013; Grison, 2015; Losfeld et al., 2015), particularly as a

component of post-mining ERR where substrates, especially

tailings, frequently contain high concentrations of heavy metals

(Hur et al., 2011; Stojanović et al., 2012; Cross et al., 2017; Xie and

van Zyl, 2020). He et al. assess the action of root exudates from the

studied grasses in assisting the translocation of cadmium and

petroleum hydrocarbons into above-ground biomass in different
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soils, and conclude that such root exudates likely represent a tool of

significant utility in phytoremediation. Outcomes from their study

contribute to a large and growing body of work improving our

understanding of the complex mechanistic processes required to

effectively ameliorate, and subsequently rehabilitate or restore,

contaminated sites.

There is a clear and growing urgency for ecological restoration

and rehabilitation, advanced phytoremediation, and other allied

activities to be undertaken around the world. Ecological

degradation is widespread and profound, eroding biodiversity and

ecosystem functionality, not to mention landscape connectedness,

and human health and wellbeing, at scales ranging from local all the

way to the biospheric. Increasingly, scientists and practitioners are

recognizing the crucial importance of soil and soil microbiota in

ecosystem recovery in all ecological, and social-ecological systems.

Stronger emphasis is being placed on these organisms when

promoting and testing methods to support and maintain

spontaneous recovery following degradation, and when

undertaking active interventions for ERR in all contexts. As the

four articles presented here illustrate, there are significant

opportunities for examination of plant-soil-microbial interactions

to improve the approaches, efficiencies, and outcomes of efforts to

halt and reverse ecological damage to our global ecosystems.
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