
TYPE Hypothesis and Theory

PUBLISHED 03 July 2023

DOI 10.3389/fevo.2023.1212501

OPEN ACCESS

EDITED BY

Jiefeng Wu,

Nanjing University of Information Science and

Technology, China

REVIEWED BY

Ye Tian,

Nanjing University of Information Science and

Technology, China

Chao Gao,

Beijing Normal University, Zhuhai, China

Li Liu,

Zhejiang University, China

*CORRESPONDENCE

Chong Ma

machong@zju.edu.cn

RECEIVED 26 April 2023

ACCEPTED 31 May 2023

PUBLISHED 03 July 2023

CITATION

Xu Z, Ma C, Gao X, Ma Y and Zhou J (2023) A

calibration method for SWMM to mitigate the

impact of the structure defect without

considering runo� on building walls.

Front. Ecol. Evol. 11:1212501.

doi: 10.3389/fevo.2023.1212501

COPYRIGHT

© 2023 Xu, Ma, Gao, Ma and Zhou. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A calibration method for SWMM
to mitigate the impact of the
structure defect without
considering runo� on building
walls

Zhi Xu1, Chong Ma2*, Xichao Gao3, Yiming Ma4,5 and Jinjun Zhou6

1Institute of Science and Technology, China Three Gorges Corporation, Beijing, China, 2College of

Urban Construction, Zhejiang Shuren University, Hangzhou, China, 3State Key Laboratory of Simulation

and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower

Research, Beijing, China, 4Three Gorges Cascade Dispatch and Communication Center, Yichang, China,
5Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, Yichang, China, 6Faculty of

Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, China

In this study, we propose a hypothesis that an automatic calibration framework can

address modeling uncertainties in the Storm Water Management Model (SWMM)

due to structural defects that result in the inability of the model to account for

runo� generated on building walls from wind-driven rain. To test this hypothesis,

we introduce a rainfall error model into the calibration framework to indirectly

consider the e�ects of inclined wind-driven rain on building walls. We couple the

optimization algorithm Di�erential Evolution Adaptive Metropolis (DREAM) with

SWMM using newly developed API functions. To demonstrate the e�ectiveness

of the framework, we conduct a case study in Guangzhou, China and assess the

impacts of rainfall uncertainty on model parameter estimations and simulated

runo� boundaries. The results show that the framework can improve the average

Nash–Sutcli�e index of selected events bymore than 5%. It also captures peak flow

more accurately. This framework contributes to the theory of SWMM calibration

by accounting for structural defects and considering rainfall uncertainty.
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Introduction

Urbanization significantly alters hydrological processes and leads tomore runoff volume,

less concentration time, and more severe flooding (Eakin et al., 2022; Luo et al., 2022;

Pallathadka et al., 2022). To analyze and manage the hydrological characteristics of urban

watersheds, various urban hydrological models, including the Storm Water Management

Model (SWMM), have been developed globally in recent decades (Rodriguez et al., 2008;

Rubinato et al., 2013; Bisht et al., 2016). SWMM, an open-source urban hydrological model

created by the United States Environmental Protection Agency (US EPA), is widely used in

predicting runoff quantity and quality from urban drainage systems. It can simulate both

single-event and long-term continuous rainfall–runoff processes in catchments containing

different types of gray and/or green infrastructures. However, the SWMM model has a

structural limitation as it cannot consider the runoff generated on building walls, leading to

a significant influence on the simulation accuracy in certain situations. Raindrops trajectory

can tilt under windy conditions, blocking rainfall by building walls and forming runoff on

Frontiers in Ecology andEvolution 01 frontiersin.org

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://www.frontiersin.org/journals/ecology-and-evolution#editorial-board
https://doi.org/10.3389/fevo.2023.1212501
http://crossmark.crossref.org/dialog/?doi=10.3389/fevo.2023.1212501&domain=pdf&date_stamp=2023-07-03
mailto:machong@zju.edu.cn
https://doi.org/10.3389/fevo.2023.1212501
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fevo.2023.1212501/full
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Xu et al. 10.3389/fevo.2023.1212501

FIGURE 1

Diagram of the e�ect of wind on runo�.

building walls, altering the characteristics of regional runoff

generation and concentration significantly (Figure 1) (Blocken and

Carmeliet, 2004; Blocken et al., 2013; Gao et al., 2021). Although

most studies obscure this wind-effect problem through calibration,

ignoring the influence of wind may result in misleading parameter

estimates, restricting the application of the SWMM model in

designing flooding control facilities and reducing its capacity to

predict future responses of flooding events accurately (Hussain

et al., 2022; Sytsma et al., 2022).

Therefore, there is a need to find a way to mitigate modeling

uncertainties caused by the structural defect of SWMM. As

mentioned earlier, the model structural defect arises from the

failure to account for the interaction between inclined rainfall

and building walls. As the distribution of building walls remains

constant for a given urban area, researchers can reduce the impact

of this structural defect by classifying its influence as a part of the

rainfall input uncertainty. The objective of this study is to create

a calibration framework that can effectively address the issue of

rainfall input uncertainty and determine whether it can enhance

the robustness of SWMM.

In addition to rainfall input uncertainty, complex hydrological

models, such as SWMM, are subject to other types of uncertainties,

including equifinality, where multiple parameter sets can produce

equally acceptable predictions (Muñoz et al., 2014; Her and

Chaubey, 2015; Wagner et al., 2019). To estimate the impact

of rainfall input uncertainty and the influence of the previously

analyzed structural defect, a calibration method is needed that can

distinguish between different types of uncertainties. Several studies

have quantified uncertainty in SWMM models, such as Sun et al.

(2014), who incorporated the generalized likelihood uncertainty

estimation (GLUE) method to analyze parameter uncertainty in

a highly urbanized sewershed in Syracuse, NY. Knighton et al.

(2016) evaluated the parameter uncertainty of an SWMM model

that is developed for the Cathedral Run stormwater wetland using

the GLUE method and highlighted the importance of equifinality

and uncertainty in stormwater wetland modeling. Raei et al.

(2019) developed a framework for low-impact development—best

management practices (LID-BMPs) that accounts for parameter

uncertainty with a fuzzy α-cut technique. Other studies, such as

Sharifan et al. (2010), Zhang and Li (2015), Bellos et al. (2017), and

Gorgoglione et al. (2019), have also explored uncertainty analysis

in SWMM models. However, most of these studies focus on only

one type of uncertainty, highlighting the need for a new calibration

framework capable of separating and considering different types

of uncertainties.

To address this issue, we employed a Bayesian-based optimal

algorithm, namely Differential Evolution Adaptive Metropolis

(DREAM), to calibrate the SWMM model. DREAM is an adaptive

Markov chain Monte Carlo (MCMC) algorithm that estimates

the posterior probability density function of model parameters

based on the Bayesian framework. This algorithm is capable

of integrating various types of modeling errors into a single

likelihood function and estimating their distributions. DREAMwas

developed by Vrugt et al. (2009) as an adaptation of the Shuffled

Complex Evolution Metropolis (SCEM-UA) global optimization

algorithm that simultaneously runs multiple chains for global

searching and automatically adjusts the scale and orientation

of the proposal distribution during evolution to the posterior

distribution (Vrugt et al., 2008). DREAM has been shown to be

efficient on complex, highly non-linear, and multimodal target

distributions while maintaining detailed balance and ergodicity.

To enhance the calibration efficiency, we coupled the DREAM

method with SWMM by directly exposing the model parameters

to the calibration framework using PySWMM, a Python package

developed by Emnet (https://github.com/OpenWaterAnalytics/

pyswmm). A case study was conducted in Guangzhou, China, to

evaluate the effectiveness of this proposed calibration framework in

improving the robustness of the SWMMmodel.

Materials and methods

The SWMM model

SWMM simulates rainfall–runoff process on a collection of

sub-catchment areas, which receive precipitation and generate

runoff and pollutant loads and transport the generated runoff

through a system of pipes, channels, storage/treatment devices,

pumps, and regulators (Rossman, 2004). In this study, PySWMM,

a Python-packaged version of SWMM 5.1 (https://github.com/

OpenWaterAnalytics/pyswmm), was used instead of the original

version of SWMM 5.1. PySWMM is free software developed by

Emnet. It provides a Python interface for SWMM.With PySWMM,

users can control the functions and objects in SWMM through

Python and develop algorithms exclusively in Python to control the

calculation process of SWMM. Some API functions are developed

and added into the model to obtain and adjust parameter values,

such as impervious rate and maximum infiltration rate of a sub-

catchment in the SWMM model, while the model is running.

With these API functions, the automatic calibration algorithm and

the SWMM model can be connected easily through a Python

platform. A rainfall error model used to describe the rainfall

input uncertainty, which will be illustrated below in detail, is also

integrated into the SWMMmodel to consider rainfall uncertainty.
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FIGURE 2

The structure and workflow of the developed calibration framework.

SWMM model calibration

For prediction purposes, the parameter values should

accurately reflect the invariant properties of the specific system

that they represent (Vrugt et al., 2008). However, although most

of the parameters in the SWMM model have physical meanings,

there are some parameters, which cannot be measured directly.

Therefore, these parameters need to be meaningfully derived

through calibration against historical records of some state

quantities of the catchment.

The hydrological simulation of a catchment by the SWMM

model can be expressed by Eq. (1):

Y = f (θ , ζ̂ , φ̂), (1)

where Y =
{

y1, . . . , yn
}

represents the simulated results of the

model such as streamflow; ζ̂ refers to the measured boundary such

as precipitation and evapotranspiration; φ̂ represents the initial

conditions; θ = {θ1, . . . , θd} represents model parameters; and f

represents the deterministic or stochastic transition function (the

SWMM model in this study). Let Ŷ =
{

ŷ1, . . . , ŷn
}

represent

measurements of observed system behavior (streamflow in this

study). The difference between Y and Ŷ can be mathematically

expressed by the residual vector [Eq. (2)]:

εi

(

θ |Ŷ , ζ̂ , φ̂
)

= yi

(

θ |ζ̂ , φ̂
)

− ŷi i = 1, . . . , n. (2)

The calibration is to make the residuals as close as zero. The

traditional approach is to build an objective function for the

residuals, such as the sum of squared residuals [which is shown in

Eq. (3)], and tominimize the objective function by tuning the values

of the parameters.

SSR
(

θ |Ŷ , ζ̂ , φ̂
)

=
n

∑

i=1

εi

(

θ |Ŷ , ζ̂ , φ̂
)2

. (3)

The approach mentioned above only focuses on errors caused

by the model parameters but ignores the errors associated

FIGURE 3

Map of the study area and locations of monitoring equipment. The

area within the red line is the study area. Map data: © Google, Maxar

Technologies.

with model inputs, initial conditions, model structures, and

measurements of observed system behavior (streamflow in this

paper). Therefore, it may not obtain the “best-fit” values of

the parameters or obtain fake “best-fit” parameters that do not

represent the properties of the real-world hydrologic system.

Physically, the errors associated with initial conditions can be

eliminated with the model running. As the model input, such as

precipitation and evapotranspiration, is of high spatio-temporal

heterogeneity, the errors associated with the model input are

much greater than that associated with streamflow measurements.

Consequently, the residual vector betweenY and Ŷ can be rewritten

as Eq. (4):

εi

(

θ , s
(

ζ̂

)

|Ŷ , φ̂
)

= yi

(

θ , s
(

ζ̂

)

|φ̂
)

− ŷi i = 1, . . . , n, (4)

where s represents the error function of the model input.

An algorithm, which can consider different sources of error,

is needed to minimize the residuals expressed in Eq. (4). Bayesian

statistics coupled with Monte Carlo sampling is a practical method
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TABLE 1 Details of the rainfall events.

Events Date Duration
(min)

Rainfall
depth
(mm)

20180530 2018/5/30 44 29

20180622 2018/6/22 50 27.8

20180625 2018/6/25 234 49.8

20180713 2018/7/13 17 8.4

20180724 2018/7/24 49 16.4

20180828 2018/8/28 350 61.4

20180831 2018/8/31 301 39.6

20190825 2019/8/25 255 58.6

FIGURE 4

Watershed overview in the SWMM model.

to settle this problem (Vrugt et al., 2009). It can estimate different

sources of errors simultaneously and give the posterior distribution

of the parameters of the SWMM model and the input errors

model. Assuming that the residuals described in Eq. (4) are

independent and Gaussian distributed with constant variance (σe)

and a constant mean (0), the posterior probability density function

of the parameters, including parameters of the SWMM model and

the input errors model, can be identified as follows:

p
(

θ , s
(

ζ̂

)

|Ŷ , φ̂
)

= c · p (θ) · p
(

s
(

ζ̂

))

·
n

∏

i=1

1√
2πσe

exp






−

(

yi

(

θ , s
(

ζ̂

)

|φ̂
)

− ŷi

)2

2σ 2
e






,

(5)

where c is a normalizing contact; and p (θ) and p
(

s
(

ζ̂

))

represent the prior distribution of θ and s
(

ζ̂

)

, respectively.

However, the assumption of the independent identical

distribution of the residuals is usually not realistic in hydrologic

modeling. The time series of residuals are typically autocorrelated

and non-stationary. To obtain relatively reasonable parameters and

predictive uncertainty, a first-order autoregressive (AR) scheme of

the residuals is introduced [Eq. (6)]. The first-order AR model can

at least partly account for the autocorrelation of residuals and thus

the influence of model structural uncertainty.

εi = ρεi−1 + vi i = 1, · · · , n, (6)

where ρ is the first-order correlation coefficient, εi is the residual

(ε0 = 0), and v ∼ N(0, σv
2) is the unexplained error and Gaussian-

distributed with constant variance (σv) and a constant mean (0).

With the AR-1 model shown in Eq. (6), the residual time series can

be represented by

δi

(

θ , s
(

ζ̂

)

, ρ
∣

∣

∣
Ŷ , φ̂

)

= εi

(

θ , s
(

ζ̂

)

|Ŷ , φ̂
)

− ρεi−1

(

θ , s
(

ζ̂

)

|Ŷ , φ̂
)

. (7)

The posterior probabilities of the parameters can then be identified

as follows:

p
(

θ , s
(

ζ̂

)

, ρ|Ŷ , φ̂
)

= c · p (θ) · p
(

s
(

ζ̂

))

· p (ρ)

·
∏n

i=1

1√
2πσv

exp






−

δi(θ , s
(

ζ̂

)

, ρ|Ŷ , φ̂)
2

2σ 2
v






.

(8)

As the probability distribution defined in Eq. (8) cannot be

derived through analytical analysis, a newly developed MCMC

method called DREAM was introduced to generate samples from

the posterior probability distribution. In calibration, σv was also

regarded as a calibration parameter.

To reduce heteroscedasticity, the observed and simulated

streamflow is transformed by the BOX-COXmethod (Box and Cox,

1964):

τ (Y , λ) =
{

(Yλ − 1)/λ if λ 6= 0

ln(Y) if λ = 0
(9)

where Y represents the observed and simulated streamflow and λ

is a transformation parameter and can be obtained by maximum-

likelihood estimation.

Input error of the model

The storm depth multiplier model (Kavetski et al., 2003) is

chosen to consider the uncertainty associated with rainfall forcing.

The model introduces a multiplier for each rainfall event based

on the idea that the rainfall depth measurements may have a

systematic error for each storm caused by the movement of the

storm cell within the catchment, but the internal storm pattern

may be kept relatively well (Kavetski et al., 2006). By tuning these

multipliers (m = {m1, . . . ,mn}) within a reasonable range, the

errors associated with rainfall forcing can be reduced. Compared
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TABLE 2 Value range of the sensitive parameter.

Parameters Description (unit) Range Data source

N-Imperv Manning’s roughness of the impervious area (0, 0.03) Zeng et al. (2020)

N-Perv Manning’s roughness of the pervious area (0.03, 0.80) Zeng et al. (2020)

Dstore-Imperv Depth of depression storage on the impervious

area (mm)

(1, 3) Zeng et al. (2020)

Dstore-Perv Depth of depression storage on the pervious area

(mm)

(2, 8) Zeng et al. (2020)

%Slope Average surface slope (0, 0.03) Field investigation

K (Width) Width factor of the overland flow path (0, 5) InfoSWMM user manual (Inc., 2005)

Conductivity Soil-saturated hydraulic conductivity (mm/h) (1, 200) Zeng et al. (2020)

%Imperv Percent of impervious area (0, 0.80) SWMM user’s manual (Rossman, 2004)

Initial defect Porosity and initial moisture content (0, 0.50) SWMM user’s manual (Rossman, 2004)

with the additive errors model, the multiplicative errors model has

an advantage that it does not depend on the scale of rainfall depths

while it cannot correct observed rainfall depths of zero (Kavetski

et al., 2006; Vrugt et al., 2008).

Generally, the multipliers are assumed to be subject to a

Gaussian distribution with the variance (σm) and a constant mean

(µm). Based on the assumption that rain gauges tend to capture

unbiased rainfall depths, µm was set to 1. As to how to obtain the

value of σm, please refer to Kavetski et al. (2006) for details. In this

study, σm was estimated jointly with other parameters through the

proposed calibration framework.

Substitute the input error model in Eq. (8) with the storm depth

multiplier model, Eq. (8) changes to

p
(

θ ,m, ρ|Ŷ , φ̂
)

= c · p (θ) · p (ρ) · N
(

m|µm, σ
2
m

)

·
∏n

i=1

1√
2πσv

exp






−

δi

(

θ , s
(

ζ̂

)

, ρ
∣

∣

∣
Ŷ , φ̂

)2

2σ 2
v






.

(10)

Distributed routing e�ect algorithm for
mobility

Distributed Routing Effect Algorithm for Mobility is an

adaptive MCMC algorithm to efficiently estimate the posterior

probability density function of parameters in high-dimensional,

complex sampling problems (Vrugt et al., 2009). The method

explores global optimal samples by running multiple chains

simultaneously and tuning the scale and orientation of the

proposal distribution to the posterior distribution automatically.

Themethod shows excellent efficiency onmultimodal target, highly

non-linear, and complex distributions while maintaining ergodicity

and detailed balance.

The linkage between DREAM and SWMM

DREAM and the SWMM model were connected within a

Python platform. As described in Section The SWMM model,

the SWMM model was packaged through Python language, and

some APIs used to obtain and change the parameter values of

the SWMM model were developed and added to the model. With

the APIs, the DREAM method can obtain and adjust the model

parameters directly instead of rewriting the input file of the SWMM

model frequently, which can improve the efficiency of computation.

Besides, the storm depth multiplier (m) was integrated into the

SWMM model to consider the rainfall input uncertainty. The

calibration procedure is as follows (Figure 2):

Step 1. The parameters of the integrated model, combining

the SWMM model, AR-1 model, and storm depth

multiplier model, are sampled through the DREAM

module according to their prior probability distributions.

If rainfall uncertainty is not considered, the values of all the

storm depth multipliers will be set to 1.

Step 2. The sampled parameter values are passed to the integrated

model through the developed APIs. The streamflow

is then simulated by the model, and the posterior

probabilities are calculated based on the simulated and

observed streamflow.

Step 3. The Markov chain is expanded through the DREAM

algorithm according to the obtained posterior probabilities.

The termination condition of the Markov chain is then

checked. If the termination condition is met, stop the

calibration, otherwise, return to Step 1.

The workflow of different calibration frameworks (with and

without the storm depth multiplier model) is similar. The

multipliers of the storm depth multiplier model are sampled in

the framework considering the rainfall uncertainty but set to be 1

in the framework not considering the rainfall uncertainty model.
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FIGURE 5

The posterior marginal probability density distributions of parameters only considering parameter uncertainty.

Study area and model building

Study area and data collection

For the application study, a small commercial area located

in Zhihuicheng, Guangzhou, China was selected. Zhihuicheng is

situated in the northeast of the Tianhe district of Guangzhou,

characterized by a subtropical monsoon climate with an average

annual precipitation of 1,650mm and an annual mean temperature

of 21.8◦C. The area experiences heavy rainfall from April to

September, which causes frequent flooding. With relatively flat

terrain, the study area spans 11.37 hm2, with commercial land

accounting for approximately 70% of the land use. Figure 3

provides detailed information on the study area, including its

main features.

Rainfall data were collected using a self-recorded tipping rain

gauge placed on the roof of the tallest building located southwest

of the study area, with an accuracy of 0.2mm. Runoff data

were collected using an ultrasonic flowmeter with an accuracy of

2% FS, placed in the manhole near the outfall of the drainage

system of the area, with a collection interval of 1min. The rain

gauge and flowmeter weremanufactured by THWater (http://www.

thuenv.com/h-col-103.html), with their specific locations shown in

Figure 3.
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FIGURE 6

Comparison between the observed runo� and simulated runo� using the model calibrated only considering parameter uncertainty. The shadow of

the black line represents the 95% uncertainty range caused by parameter uncertainty.

Eight rainfall events and the corresponding streamflow were

selected for the case study. The details of the rainfall events are

shown in Table 1.

Model building

The study area was divided into 34 sub-catchments based

on the topography and distribution of manholes. The drainage

system consisted of 29 junctions (each representing a manhole), 30

conduits, and 1 outfall, as obtained from the local government and

verified through field investigation. The land use data and soil type

were also obtained through field investigation, with commercial

land being the predominant land use and clay being the primary

soil type.

To model the infiltration process, the Green-Ampt method was

employed, while the dynamic wave method, a complete solution

of the one-dimensional Saint-Venant flow equation, was used to

model the routing process. SWMM provides various infiltration

and routing methods, but these two methods were chosen for

this study. The spatial distribution of the drainage system and

sub-catchments is shown in Figure 4.

Parameter sensitivity analysis

To reduce the number of parameters considered during

calibration, sensitivity analysis is usually performed beforehand

to distinguish influential from non-influential parameters. In this

study, the Morris method (Niazi et al., 2017; Behrouz et al.,

2020) was utilized for the parameter sensitivity analysis, which
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FIGURE 7

Comparison of Nash–Sutcli�e indices of the simulations obtained through the two di�erent calibration approaches. “const” and “var” refer to

calibration strategies that do not consider and consider input uncertainties, respectively. The boxes indicate the 25th, 50th, and 75th percentiles of

the scaling rates, and the vertical lines indicate the 5th and 95th percentiles. Black markers refer to values >1.5 times the interquartile range away

from the bottom or top of the box.

identifies global sensitivity by sampling local derivatives on a

specific grid throughout the parameter space. Nine parameters were

identified as sensitive in the study area, including “width,” which

was represented by Eq. (11) to maintain the spatial variation of the

parameter while reducing the dimension of the parameter set. The

details of these parameters are shown in Table 2.

Based on the sensitivity analysis, the study identifies nine

parameters that are considered sensitive within the study area. To

reduce the parameter set’s dimension while retaining the “width”

parameter’s spatial variation across different sub-catchments, the

parameter “width” is represented by Eq. (11) Table 2 shows the

details of these parameters. Although the modeling results are

highly sensitive to the percentage of impervious surfaces, the study

did not choose it as a calibration parameter. This is because it is a

measurable parameter and is not influenced by the modeling scale.

W = K ·
√
A, (11)

Where W represents the width of the sub-catchment; A represents

the area of the corresponding sub-catchment; andK is a scale factor

that needs to be calibrated.

Calibration strategy

To calibrate the model, the first six rainfall events and their

corresponding streamflow at the outfall were used for calibration,

while the last two rainfall events and their corresponding

streamflow were used for verification. Two calibration approaches

were employed to evaluate the impact of rainfall input uncertainty,

and thus, partly the wind effect, on model calibration: one with a

storm depth multiplier model and one without.

All parameters, except for the “width” parameter, were assumed

to be the same across different sub-catchments due to the relatively

small and simple study area, where these parameters vary little.

The “width” parameter, represented by “K”, varied between sub-

catchments of different shapes. After the Markov chains converge

(Vrugt et al., 2009), a total of twice the number of calibrated

parameters Markov chains were obtained, and the last one-

third of the samples in each chain were used to summarize the

marginal densities of parameters and generate simulated outputs.

It should be noted that, unlike the first calibration approach,

which resulted in unrealistic values for some parameters due to

compensating for errors in rainfall data, the posterior marginal

probability density distributions of all parameters calibrated using

the second approach, which considers both parameter uncertainty

and input uncertainty, were approximately Gaussian, indicating

that the optimal values of all parameters were located in physically

reasonable ranges.

The residuals, the peak streamflow bias, and the total

streamflow bias were selected as the calibration objectives. The

Nash–Sutcliffe index (ENS), the peak flow bias, and the total

streamflow bias were used to evaluate the calibration efficiency,

which are shown in Eq. (12–14).

ENS = 1−
∑n

t=1 (qt,obs − qt,sim)
2

∑n
t=1 (qt,obs − qobs)2

(12)

EQW =
∑n

t=1 (qt,obs − qt,sim)
∑n

t=1 qt,obs
(13)
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FIGURE 8

The posterior marginal probability density distributions of parameters calibrated considering both parameter uncertainty and input uncertainty.

EPR =
qp,obs − qp,sim

qp,obs
(14)

where qt,obs and qt,sim represent the observed streamflow and

simulated streamflow, respectively; qp,obs and qp,sim represent the

observed peak flow and simulated peakflow, respectively; qobs
represents the average of the observed streamflow; t represents the

time step of the streamflow sequence; and n represents the total

number of the runoff sequence.

Results and discussion

The estimation of model parameters was initially conducted

by considering only the parameter uncertainty. Figure 5 shows
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FIGURE 9

Comparison of parameter values obtained from the two di�erent calibration approaches. The boxes indicate the 25th, 50th, and 75th percentiles of

the scaling rates, and the vertical lines indicate the 5th and 95th percentiles. Black markers refer to values >1.5 times the interquartile range away

from the bottom or top of the box.

the posterior marginal probability density distributions of the

estimated parameters. The results demonstrate that the estimations

of K, %Imperv for commercial land, %Imperv for green land, and

Dstore-Imperv are primarily located in a relatively narrow interval,

which is within the individual prior range of the parameters.

This suggests that these parameters are more sensitive in the

study area than others and that the DREAM method can identify

reasonable parameter values. However, it should be noted that most

parameters are approximately Gaussian, except for %Imperv for

commercial land, %Imperv for green land, and N-imperv. The

posterior marginal probability distributions of these parameters

are significantly different from the normal distribution, with most

probability mass concentrated at the upper boundaries of these

parameters. This indicates that the optimal parameter values

may fall beyond the physically realistic range. The contradiction

between the optimal parameter values and the physical limitations

could be attributed to the representativeness of the parameter

itself, the structural deficiencies of SWMM, and the errors in the

input data.

Figure 6 presents a comparison between the simulated and

observed runoff of the outfall, while Figure 7 displays the Nash–

Sutcliffe indices of the simulations. Overall, the calibrated SWMM

model can well capture the fluctuation characteristics of the runoff

for most rainfall events, as shown by the Nash–Sutcliffe indices

that exceed 0.55 for the majority of the events, except for event

20180831. However, the relatively low Nash–Sutcliffe index for this

event is due to the significant underestimation of the streamflow

after the peak flow. This could be caused by measurement errors

in runoff or domestic sewage discharged into the drainage system,

given the absence of rainfall during this period.

Furthermore, the hydrographs of the simulated runoff in

Figure 6 reveal that the uncertainty of the simulated runoff is

not as significant as that suggested by the posterior marginal

probability distributions of the model parameters. In other words,

the uncertainty of the parameters is greater than that of the

simulated runoff, indicating that different parameter sets could

lead to similar simulated results. This confirms the presence of

equifinality in the SWMM model. It is also worth noting that the

calibrated SWMM model tends to underestimate the peak flow

for most rainfall events. This suggests that flood control facilities

designed solely based on the SWMMmodel calibrated considering

only parameter uncertainty may fail to perform adequately.

Figure 8 shows the posterior marginal probability density

distributions of the selected model parameters and storm depth

multipliers obtained from the calibration considering both

parameter and input uncertainty. In contrast to the distributions

obtained from calibration only considering parameter uncertainty,

the distributions of all parameters are approximately Gaussian,

indicating that the optimal parameter values are within physically

realistic ranges. The differences between the two calibration

approaches suggest that the unrealistic parameter values for

%Imperv of commercial and green land and N-imperv obtained

from the first approach were likely to compensate for errors in the

rainfall data.

In Figure 9, additional contrast is presented for parameter

values derived from the two calibration methods. The findings

indicate that, with the exclusion of the N-Perv parameter, the

majority of parameter values exhibit a notable distinction between

the two calibration methods. The reason for the exemption of the

N-Perv parameter could be due to the insignificant effect that this
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FIGURE 10

The posterior marginal probability density distributions of storm depth multipliers.

parameter has on the simulated runoff in the study region, as the

ratio of permeable surfaces in the study locality is relatively low.

Figure 10 displays the posterior marginal probability density

distributions of storm depth multipliers, indicating that most of the

storm depth multipliers are approximately Gaussian distributed,

except for the storm depth multipliers of rainfall events during the

validation period. This result suggests that the DREAM method

can effectively define storm depth multipliers. It should be noted

that the storm depth multipliers during the validation period

were randomly sampled from the storm depth multiplier samples

of rainfall events during the calibration period, which may have

caused the abnormal distributions of the storm depth multipliers

during the validation period.

From Figure 11, it is evident that the medians of storm depth

multiplier samples range from 1.2 to 2.0 in the study area,

indicating that the rain gauge underestimates the actual rainfall

depth significantly. This result contradicts the findings of Vrugt

et al. (2008), who observed that most storm depth multipliers

are distributed around 1 in their study on input uncertainty in

hydrological modeling of natural watersheds. It has been suggested

in some studies that precipitation data obtained by tipping bucket

rain gauges can be largely influenced by the wind field nearby

(Dotto et al., 2014).

To investigate the relationship between storm depthmultipliers

and nearby wind fields, we present the corresponding wind speeds

of the rainfall events in Table 3. The results reveal that higher

wind speeds are generally associated with greater storm depth

multipliers, indicating that the wind field has a significant impact

on rainfall errors. Notably, the underestimation of rainfall depth

in our study is more severe than in other studies. This may be
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FIGURE 11

Comparison of storm depth multipliers for di�erent rainfall events.

The boxes indicate the 25th, 50th, and 75th percentiles of the

scaling rates, and the vertical lines indicate the 5th and 95th

percentiles. Black markers refer to values >1.5 times the

interquartile range away from the bottom or top of the box.

TABLE 3 Wind speeds corresponding to the studied rainfall events.

Events Storm depth
multiplier

Wind speed (m/s)

20180530 1.26 2.7

20180622 1.56 3.0

20180625 1.55 3.0

20180713 1.90 4.5

20180724 1.21 -

20180828 1.84 2.5

“-” means the data are missing.

attributed to the placement of the rainfall gauge on the roof of

a building, where turbulence is intensified by the wind-blocking

effect of the building, thereby significantly reducing the catch

efficiency of rainfall gauges. While antecedent soil moisture is

another factor that can influence storm depth multipliers, it is

expected to have a relatively small effect in the studied area due to

the predominance of impervious surfaces.

Figure 12 shows the comparison between the simulated runoff,

which considers both parameter and input uncertainties, and

the observed runoff used as the reference. The results indicate

that the approach that considers both parameter and input

uncertainties produces better peak flow predictions than the

approach that only considers parameter uncertainty, especially

during the validation period. This suggests that the former

approach is more appropriate for runoff prediction, which serves

as the basis for designing urban flood control facilities. Nash–

Sutcliffe indices of runoff simulations obtained through the two

calibration approaches are compared in Figure 6. Most of the

Nash–Sutcliffe indices of simulations obtained from the model

calibrated considering both parameter and input uncertainties

are greater than those obtained from the model calibrated only

considering parameter uncertainty. Although the Nash–Sutcliffe

indices of runoff simulations considering both parameter and

input uncertainty are less than that only considering parameter

uncertainties for events 20180530 and 20180724, they are still

acceptable. Furthermore, the optimal model parameter values

calibrated considering both parameter and input uncertainties are

more physically realistic than those calibrated only considering

parameter uncertainty. These results suggest that the calibration

approach considering both parameter and input uncertainties is

more robust than that only considering parameter uncertainty.

Moreover, the discharge of 20180831 is underestimated by both

calibration strategies. It may be caused by the SWMM models that

do not consider society’s water cycle, as the underestimation occurs

during the peak period for domestic sewage discharge.

Although the case study shows that the proposed framework

can mitigate the impact of the structural defect to some extent.

it should be noted that the framework only solves the problem

from a data perspective. It cannot distinguish the specific impact

of the model structural defects and lead to more uncertainties in

simulated results. In a further study, the runoff on building walls

should be considered in a more physical way.

Conclusion

In this study, an automatic calibration framework, which

can mitigate modeling uncertainties arising from the structural

defect of SWMM, was developed based on Bayesian theory. The

framework considered both parameter and rainfall uncertainties

and integrated DREAM and modified SWMM through newly

developed API functions in SWMM to obtain and adjust parameter

values. Additionally, a rainfall error model featuring a storm depth

multiplier was incorporated to account for systematic errors and

partially consider the wind effect. A case study in Guangzhou,

China, was conducted to demonstrate the use of the calibration

framework. The calibration capability of the framework was tested,

and the impacts of rainfall uncertainty on model parameter

estimations and simulated runoff boundaries were identified. The

main conclusions are as follows.

(1) The contradiction between the optimal parameter

values and the physical limitations is probably ascribed to

the representativeness of the parameter itself, the structural

deficiencies of SWMM, and the errors in the input data. The

newly developed framework can obtain relatively reasonable

parameter values of SWMM models. (2) The rain gauge tends

to underestimate the actual rainfall depth obviously in the study

area and ignoring rainfall uncertainty may lead to unrealistic

estimations of model parameters. (3) Higher wind speed leads

to a greater storm depth multiplier, indicating that the effect of

the wind field is an important source of rainfall errors. Parameter

values estimated when considering both parameter uncertainty

and rainfall uncertainty are well defined within their physically

realistic ranges in the study area. (4) Calibration considering both

parameter uncertainty and rainfall uncertainty captures peak flows

much better and is more robust in terms of the Nash–Sutcliffe

index than that only considering parameter uncertainty.

In conclusion, this study offers a reliable approach to improving

the accuracy of SWMM through an automatic calibration

framework that accounts for uncertainties in model parameters

and rainfall.
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FIGURE 12

Comparison between the observed runo� and simulated runo� using the model calibrated considering both parameter uncertainty and input

uncertainty. The shadow of the black line represents the 95% uncertainty range caused by parameter uncertainty and input uncertainty.
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