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Responses of soil N-cycle
enzyme activities to vegetation
degradation in a wet meadow on
the Qinghai-Tibet Plateau

Wenhua Chang, Weiwei Ma*, Liangcui Song, Yanmei Tang,
Yongchun Long, Guorong Xu and Jianyu Yuan

College of Forestry, Gansu Agricultural University, Lanzhou, China
Soil enzymes play a vital role in the functioning of wetland ecosystems, driving

energy flow and material cycling processes. Gahai wet meadow, one of the

important components of alpine wetlands on the Qinghai-Tibet Plateau, has

suffered serious degradation in the last 30 years due to climate change and

human activities. We studied the spatial and temporal heterogeneity of soil

nitrogen content and nitrogen (N)-cycle enzyme activities (i.e., urease,

protease, nitrate reductase and nitrite reductase) in four degraded wet

meadows in the Gahai wetlands. Our results suggested that with increasing

wet meadow degradation, there was a significant decrease in soil water content,

total nitrogen, ammonium nitrogen, microbial biomass nitrogen content,

protease activities, and nitrite reductase activities; Conversely, soil

temperature, nitrate nitrogen content, urease activities, and nitrate reductase

activities increased significantly. Soil urease, protease, and nitrite reductase

activities significantly decreased with increasing soil depth;The highest activity

levels of the three N-cycle enzymes were observed in July and August. The linear

mixed modeling results indicated that there were significant effects of

degradation level and soil depth and their interactions on soil nitrate reductase

and nitrite reductase activities (p < 0.01), while soil depth had significant effects

only on soil urease and protease activities (p < 0.01). Redundancy analyses

showed that soil ammonium and nitrate nitrogen were the main drivers of

changes in soil N-cycle enzyme activity during the degradation of wet

meadows. In summary, our study sheds light on the processes of soil enzyme

activity in an alpine wetland ecosystem and provides valuable information for

understanding the N cycling in these complex systems.
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1 Introduction

Wetlands, as transitional ecosystems between land and water,

cover only 6% of the Earth’s surface (Shen et al., 2022b), but have

been playing unique ecological functions in maintaining ecosystem

stability and regulating climate change (Janse et al., 2019; Wang

et al., 2021). Nitrogen (N) is usually one of the major limiting

nutrients in wetlands, and wetland soils, as the largest nitrogen

reservoir in wetland ecosystems, fulfill essential functions as an N

source, sink, and transformer (Wang et al., 2021). The soil nitrogen

content and the nitrogen transport and transformation rates

significantly affect the changes of N-cycle in wetland ecosystems,

and have an essential role in regulating the biogeochemical cycle of

wetland ecosystems (Mitsch and Gosselink, 2000).

Wetland vegetation is an essential component of wetland

ecosystems and a sensitive indicator of environmental change in

the ecosystem (Maneas et al., 2019). Following global warming and

intensified human activities, wetlands suffer from serious vegetation

degradation or loss worldwide (Xiang et al., 2009; Davidson, 2014;

Hu et al., 2017; Fluet-Chouinard et al., 2023), subsequently affects

soil cycle enzyme activities in the wetland. As an essential type

of wetland, wet meadow degradation has also changed the

composition of plant communities from humidogenes and

aquatics to mesophytes and xerophytes, and some species may

disappear or be replaced by others (Ma et al., 2018). Meanwhile,

wetland degradation also results in a transition from pristine swamp

soil to degraded meadow soil, or even aeolian sandy soil at severely

deteriorated sites, and thus leads to the decomposition of soil

organic matter, the loss of humus and peat layers, and the

reduction of nutrient content (Gu et al., 2018), which further

affects ecological functions (Laurance et al., 2012; Cao et al., 2017).

Soil N-cycle enzymes fulfill an important functionin catalyzing

soil mineralization, sequestration, nitrification, and denitrification.

It is the key indicator for soil N and nutrient cycling, thus soil health

and biogeochemical function of terrestrial ecosystems (Dunn et al.,

2014; Wang et al., 2018; Pu et al., 2019). Specifically, soil urease and

protease can convert soil organic nitrogen into available nitrogen

decomposition (Zantua and Bremner, 1975; Caldwell, 2005). Soil

nitrification and denitrification are regulated by nitrate reductase,

nitrite reductase, and nitrous oxide reductase (Wang et al., 2021).

Many studies have demonstrated that soil enzyme activities are not

only influenced by many factors, including soil environmental

conditions, microbial structure, and substrate quality (Weintraub

et al., 2007; Schimel et al., 2017; Li et al., 2022a), as well as vegetation

type, litter degradation, and nutrient return (Sinsabaugh et al., 2008;

Dong et al., 2019a). Vegetation degradation in wet meadows

changes the vegetation cover, biomass, seed bank quantity, soil

microbial community structure, soil carbon and nitrogen stocks,

and functional genes (Zhang et al., 2002; Ma et al., 2011; Pan et al.,

2020; Li et al., 2022c). Moreover, soil enzyme activity is also closely

related to the differences in hydrothermal conditions caused by soil

layer thickness, with surface soil temperature and nutrients being

superior to those of the subsoil, beneficially promoting soil
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microbial populations and thus affecting enzyme activity(Chen

et al., 2021). Wetland ecosystem degradation caused significant

changes in regional vegetation, soil and other factors, which to some

extent into affected the related soil enzyme activities. However,

changes in soil N-cycle enzyme activities under different vegetation

degradation phases remains poorly understood. Therefore, studies

of the changes in soil N-cycle enzyme activities in vegetation

degradation sites are essential for alpine wetland health evaluation

and management.

The Qinghai-Tibet Plateau (QTP), located in western China,

has 2.5×106 km2 of wet meadows (about 35% of the total area of the

QTP), which is the most dominant wetland type on the QTP (Xue

et al., 2018; Li et al., 2019). Wet meadows play pivotal roles in soil

and water conservation, climate regulation, and maintenance of

biodiversity (Wei et al., 2015). However, the alpine wetlands are

more vulnerable to climate change than those in lower elevation

regions (Xue et al., 2014). During recent years, there has been a clear

warming trend on the QTP, with annual mean temperature

increasing by 0.4°C per decade (Masson-Delmotte et al., 2021)

and precipitation decreasing by 22 mm per decade (Yang et al.,

2014). At the same time, almost all wetlands on the QTP have been

used for grazing (Hirota et al., 2005), and long-term overgrazing by

livestock has significantly increased vegetation loss (Chen et al.,

2013). These changes have resulted in vegetation degradation of wet

meadows on the QTP (Ma et al., 2011; Wu et al., 2017). Previous

studies showed that vegetation degradation in wetlands significantly

reduced soil enzyme activities (Dong et al., 2019b; Li et al., 2021).

The occurrence and development of vegetation directly or indirectly

mediates soil enzyme activities as the vegetation provides excreta or

exogenous enzymes, exudates, and oxygen to the soil (Paolo

Nannipieri et al., 2018). Nevertheless, very few studies considered

the effects of vegetation degradation on soil N-cycle enzyme

activities in wet meadows, especially on the QTP. Therefore, in

order to better predict soil nitrogen turnover in wet meadows on the

QTP under the background of climate change and anthropogenic

disturbances, studies on changes of soil N-cycle enzyme activities

along the vegetation degradation in the alpine wetland on the QTP

are needed.

To address these concerns, we quatified the soil N-cycle enzyme

activities at non-degraded (ND), lightly degraded (LD), moderately

degraded (MD), and heavily degraded (HD) wet meadows on the

QTP. Our objectives were (1) addressing the question of how soil

N-cycle enzyme activities varied as a consequence of increased

vegetation degradation; (2) analyzing the relationship between soil

N-cycle enzyme activities and soil micro-environment and contents

of inorganic N components. We hypothesized that (a) as the level of

vegetation degradation increases, soil N-cycle enzyme activities

gradually decrease due to lack of input from substrate sources; (b)

with increasing soil depth, soil enzyme activities gradually decreases

because soil temperature tends to decrease; (c) soil N-cycle enzyme

activities will show dynamic changes over time as plant growth

rhythms and soil hydrothermal conditions vary under different the

degrees of vegetation degradation.
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2 Materials and methods

2.1 Study site

The study was conducted at the Gahai-Zecha International

Nature Reserve, Gansu province, China (34°16′N, 102°26′E), which
is located on the northeastern edge of the QTP (Figure 1). The

elevation of the Reserve ranges from 3400 to 4300 m.a.s.l. A cold

temperate continental monsoon climate characterizes the region. It

has an annual average temperature of 1.2°C, annual precipitation of

782 mm, and annual evaporation of 1150 mm, with the most

precipitation occurs during May to September (Figure 2). The soil

type on the site is typical meadow soil with a sandy loam texture,

which is very representative of the QTP (Ma et al., 2018).

2.2 Experimental design

As our previous work reported (Ma et al., 2018), observations of

plant species composition, above-ground biomass, and plant cover

in Gahai wetlands were adopted to identify four vegetation

degradation treatments [i.e., non-degraded (ND), lightly degraded

(LD), moderately degraded (MD), and heavily degraded (HD)].

Specifically the four degradation treatments were all on the same

elevation gradient with a maximum difference of less than 10 meters

(Wu et al., 2020a). We randomly selected three radial sampling lines

starting the moisture gradient from the center of Gahai Lake and

established three 10 m × 10 m sampling plots for each degradation

type on the same line. A total of 12 plots were established for

sampling soils. A buffer zone of at least 5 m was set up between two

linear transects to reduce potential edge effects (Figure 1B). Details
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on the vegetation status of the sample sites were reported in our

previous work (Ma et al., 2018). The basic soil physicochemical

properties of the plots of the different vegetated degraded wet

meadows are shown in Table 1. In early May 2013, we established

plots and maintained them until soil sampling. In addition, Tibetan

sheep and yaks haves grazed in these areas during October to April.
2.3 Soil sampling

From June to September 2020 (June 18th, July 16th, August 13th,

and September 15th), soil samples were collected pattern at seven

random points following an “S” pattern at depths of 0-10 cm, 10-20

cm, and 20-40 cm in the plots using a 5 cm diameter soil sampler. For

each plot, soil samples from the same soil depths were pooled to form a

mixed soil sample. All soil samples were placed in self-sealing bags,

stored in bubble boxes with ice packs, and quickly transported back to

the laboratory. After removing stones, residual roots, and debris, the

sample was divided into two sub-samples. One sub-sample was stored

at 4°C to determine soil ammonium nitrogen, nitrate nitrogen, and

microbial biomass nitrogen; the other sub-sample was air-dried and

passed a 2 mm sieve for the determination of soil N-cycle enzyme

activities and other physicochemical properties.
2.4 Soil physicochemical properties and
nitrogen component analysis

Soil total nitrogen (TN) was determined using the semi-micro

Kjeldahl distillation-titration method (Lu, 2000). Soil ammonium
B

C

A

FIGURE 1

Information of study area and sampling site information. The map of the study area (A); Schematic diagram of sampling lines along vegetation
degradation gradient (B). Four degraded wet meadow types (C).
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nitrogen ðNH+
4–NÞ and nitrate nitrogen ðNO–

3–NÞ were determined

by leaching-distillation of the KCl solution method (Riley et al.,

2001). Chloroform fumigation with K2SO4 solution leaching was

used for determining microbial biomass nitrogen (MBN) (Brookes

et al., 2002). Soil water content (SWC) and temperature (TEM)

were recorded at 0-10 cm, 10-20 cm, and 20-40 cm depths using 5

TM and EC-TM sensors, respectively, during May 2019 and

October 2022; sensors were connected to a datalogger (Em 50G,

Decagon, USA) and data were automatically transferred to the

logger every 10 minutes.
2.5 Soil N-cycle enzyme activity analysis

The soil urease and protease activities were analyzed following

Guan et al. (1986). For urease activity, air-dried soil (3 g) was

incubated with 6 ml urea solution and 12 ml citrate buffer for 24 h at

37°C. At the end of the incubation, 4 ml of sodium phenolate
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solution and 3 ml of NaClO solution were added, and then the soil

suspension was shaken for 30 min. After the solution reached room

temperature, it was assayed at 578 nm using a spectrophotometer

(UV-2450, Shimadzu, Kyoto, Japan). For measuring protease

activities, 2 g of air-dried soil was incubated for 24 h at 37°C with

20 ml 1% casein solution and 0.1 ml toluene. At the end of the

incubation, 0.5 ml 0.1 N NaClO solution and 3 ml Na2SO4 solution

were added, and the soil suspension was shaken for 30 minutes,

then centrifuged for 15 min (6000 r/min), and 1 ml 2% ninhydrin

solution was added, and the solution was bathed in boiling water for

10 min, the solution was assayed colorimetrically at 560 nm using

a spectrophotometer.

Soil nitrate reductase activity was determined colorimetrically

using potassium nitrate as a substrate (Abdelmagid and Tabatabai,

1987). The air-dried soil samples (1 g) were incubated with 1 ml of

0.8 M 2,4-dinitrophenol solution, 1 ml of 0.1 M potassium nitrate

solution,1 ml of 0.1 M glucose solution, and 5 ml distilled water at

30°C for 24 h. After incubation, 1 ml Alumina potassium alum
TABLE 1 Basic soil physical and chemical properties in sample plots.

ND LD MD HD

pH 7.92 ± 0.04 A 7.79 ± 0.06 B 7.77 ± 0.08 B 7.76 ± 0.06 B

BD (g·cm-3) 0.36 ± 0.01 C 0.39 ± 0.02 C 0.61 ± 0.05 A 0.56 ± 0.03 B

SOC (g·kg-1) 52.55 ± 7.85 A 42.01 ± 5.60 AB 36.45 ± 1.89 AB 32.99 ± 5.99 B

TP (g·kg-1) 1.48 ± 0.51 A 1.29 ± 0.30 AB 1.17 ± 0.08 B 1.15 ± 0.22 B

TK (g·kg-1) 6.03 ± 0.41 A 6.02 ± 0.44 A 5.74 ± 0.26 AB 5.58 ± 0.42 B

AHN (g·kg-1) 1.96 ± 0.06 A 1.78 ± 0.15 AB 1.73 ± 0.22 AB 1.36 ± 0.30 B

NHN (g·kg-1) 2.38 ± 0.22 A 1.90 ± 0.08 B 1.63 ± 0.12 C 1.59 ± 0.06 C

AMMN (g·kg-1) 0.33 ± 0.00 A 0.30 ± 0.01 B 0.31 ± 0.01 B 0.25 ± 0.03 C

ASN (g·kg-1) 0.11 ± 0.01 A 0.09 ± 0.02 AB 0.06 ± 0.02 B 0.10 ± 0.02 AB

AAN (g·kg-1) 0.32 ± 0.04 A 0.33 ± 0.02 A 0.33 ± 0.06 A 0.18 ± 0.03 B

HUN (g·kg-1) 1.20 ± 0.12 A 1.05 ± 0.03 B 1.03 ± 0.03 B 0.84 ± 0.11 C
Values are means ± standard deviation (Mean ± SD). BD, bulk density; SOC, soil organic carbon; TP, total phosphorus; TK, total potassium; AHN, acid-hydrolyzable nitrogen; NHN, non-acid
hydrolyzable nitrogen; AMMN, Ammonia nitrogen; ASN, Amino sugar nitrogen; AAN, Amino acid nitrogen; HUN, Hydrolysable unknown nitrogen. ND, non-degraded; LD, lightly degraded;
MD, moderately degraded; HD, heavily degraded. Different capital letters indicate significant differences between different degradation levels (p <0.05).
BA

FIGURE 2

Average monthly precipitation and temperature from 1981 to 2010 (A); Daily precipitation and the average temperature for the study area from June
to September 2020 (B). The datum of temperature and precipitation were taken from the local climate station located at the Nature Reserve with a
logging interval of every 60 min.
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saturated solution was added to the soil samples. And shaken for 30

minutes and filtered. Afterward, 1 ml of the filtrate was mixed with

4 ml of a color reagent (a-naphthylamine-sulfanilic acid) and

mixed for 15 min. The optical density was then observed in a

spectrophotometer against the blank at 520 nm. Soil nitrite

reductase activity was determined by a modified colorimetric

method using sodium nitrite as a substrate (Schinner et al., 1996).

Triplicates of 1 g soil samples were incubated with 2 ml of Sodium

nitrite solution (0.25 M), and 5 ml distilled water at 30°C for 24 h.

The subsequent assay was performed similarly to the nitrate

reductase activity assay.

We measured the four soil N-cycle enzyme activities with both

substrate-free (substituted with water) and soil-free controls to

illustrate the hydrolysis of non-enzymatic substrates.
2.6 Statistical analyses

Prior to the data analysis, we tested the data for normal

distribution and homogeneity of variances using the Shapiro-

Wilk test and Levene’s test, respectively. Moreover, performed a

natural logarithm transformation on data that did not satisfy the

normal distribution. One-way ANOVA was used to determine the

effect of vegetation degradation and soil depth on soil properties,

followed by Tukey’s HSD post hoc test for multiple comparisons

(p < 0.05). We used the lme4 package to perform the linear mixed

model (LMM) analysis to test the effects of vegetation degradation

levels, soil depth and their interactions on soil N-cycle enzyme

activities (Bates et al., 2014). Redundancy analysis (RDA) was
Frontiers in Ecology and Evolution 05
performed on environmental indicators and N-cycle enzyme

activities using the vegan package (Oksanen et al., 2013), and the

Monte Carlo permutation test (n = 999) and forward selection were

applied to analyze the effects of environmental factors on soil N-

cycle enzyme activities. The contribution of each explanatory

variable was decomposed based on hierarchical partitioning

theory using the rdacca.hp package (Lai et al., 2022). All the

analyses were carried out in R (R Core Team, 2022). Graphic

illustrations were generated using Origin 2022 software (Origin

Lab Corporation, Northampton, MA, USA).
3 Results

3.1 Variation of soil water content and
temperature under different levels of
vegetation degradation

As the degradation of wet meadow vegetation increases, soil

temperature rised while soil water content decreased (Figure 3). In

all soil layers, the soil water content followed a sequence of ND > LD

> MD > HD, and the change in water content tended to level off as

the soil layer deepens. The average soil water content in the 0–10 cm

layer was 33.10 m3·m-3, higher than in the 10–20 cm layer (28.40

m3·m-3) and the 20–40 cm layer (23.60 m3·m-3). Soil water content

in ND and LD plots tended to decrease gradually over time, while

increased gradually in MD plots. Soil temperature in each soil layer

showed a single-peaked curve over time, reached a maximum in the

middle of August. The average soil temperature in the 0–10 cm soil
B C

D E F

A

FIGURE 3

Soil water content and temperature in the 0-40 cm soil layers at different levels of vegetation degradation from June 20th to October 11th. (A), (B)
and (C) show the soil water content in the 0-10 cm, 10-20 cm and 20-40 cm soil layers, respectively; (D), (E) and (F) show the soil temperature in
the 0-10 cm, 10-20 cm and 20-40 cm soil layers, respectively. ND, non-degraded; LD, lightly degraded; MD, moderately degraded; HD, heavily
degraded.
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layer was 11.90°C, higher than in the 10–20 cm layer (11.52°C) and

the 20–40 cm layer (11.25°C).
3.2 Variation of soil N fraction
content under different levels
of vegetation degradation

Soil nitrate-nitrogen contents increased from 4.33mg·kg-1 at the ND

plots to 8.25 mg·kg-1 at the HD, an increase of 90.28%. Soil total

nitrogen, ammoniumnitrogen, andmicrobial biomass nitrogen contents

decreased during the process of vegetation degradation, varied from 3.27

to 1.96 g·kg-1, 6.37 to 3.65mg·kg-1, and 48.06 to 27.46mg·kg-1 respectively
(Table 2). Except for ammonium and nitrate nitrogen in the LD, the

remaining properties in the LD,MD, andHDwere significantly different

from those in the ND (p < 0.05). In addition, soil N inorganic contents

varied across the vertical soil profile. Soil ammonium nitrogen and

microbial biomass nitrogen alone appear to have a general downward

trend in the soil depth series at the four degradation levels. In contrast,
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soil nitrate nitrogen contents were increased. The total nitrogen contents

were decreased across soil depths at ND, LD, and MD plots, but the

corresponding values were increased at HD.
3.3 Variation of soil N-cycle enzyme
activities in different levels
of vegetation degradation

The activities of soil urease, protease, nitrate reductase, and

nitrite reductase changed remarkably during the process of

vegetation degradation (p < 0.05) (Figure 4). Vegetation

degradation decreased the urease and nitrate reductase activities

but increased the protease and nitrite reductase activities, with more

pronounced effects in the upper soil (0–10 and 10–20 cm) than in

the deeper soil (20–40 cm). With the increase of soil depth, soil

urease, protease, and nitrite reductase activities decreased. However,

soil nitrate reductase activities increased in ND, LD, and MD, while

first decreased and then increased in HD. The linear mixed model
B

C D

A

FIGURE 4

Soil N-cycle enzyme activities in different levels of vegetation degradation (mean ± sd, n = 3). Urease activity (A); Protease activity (B); Nitrate
reductase activity (C); Nitrite reductase activity (D). ND, non-degraded; LD, lightly degraded; MD, moderately degraded; HD, heavily degraded.
Different capital letters indicate significant differences between degradation levels (p < 0.05), and different lowercase letters indicate significant
differences between soil layers (p < 0.05).
TABLE 2 Results of linear mixed model analysis testing the effects of degradation and soil depth on soil N-cycle enzyme activities.

Factor df
Urease Protease Nitrate reductase Nitrite reductase

F p F p F p F p

Degradation 3 0.0595 0.9807 0.9069 0.4471 16.0141 <0.001 11.8065 <0.001

Soil depth 1 31.0854 <0.001 131.4148 <0.001 19.8469 <0.001 50.0595 <0.001

Degradation * Soil depth 3 0.7687 0.5189 0.1626 0.3370 4.3171 0.0105 4.1162 0.0129
fr
Summary of linear mixed model analyzing the effects of degradation and soil depth on four soil N-cycle enzyme activities, using degradation, soil depth, and their interaction as fixed effects, time
as a random effect.
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showed that vegetation degradation and soil depth had significant

effects on soil N-cycle enzyme activities (p < 0.001) (Table 3).

Significant interaction effects of vegetation degradation and soil

depth were observed in the nitrite reductase activity (p < 0.001).
3.4 Temporal variation in soil N-cycle
enzyme activities in different levels
of vegetation degradation

The four soil N-cycle enzyme activities showed notable temporal

fluctuations in the 0–40 cm soil layer under the four vegetation

degradation levels (Figure 5). In all vegetation degradation levels, soil

urease and nitrite reductase activities peaked in August, with urease

activities ranged from 1.12 to 1.60 mg·g-1·24h-1 and nitrite reductase

activities ranged from 0.52 to 0.63 mg·g-1·24h-1. The urease and nitrite

reductase enzyme activities at four degradation levels had significant

differences (p < 0.05) throughout the growing season. Soil protease

activity was lowest in June and highest in July. Soil nitrate reductase

activity fluctuated from June to August and increased significantly in

September. The mean values of soil protease and nitrate reductase

enzyme activities in LD, MD, and HD were significantly lower than

those in ND (p < 0.05).
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3.5 Relationships among soil variables and
N-cycle enzyme activities

The four soil N-cycle enzyme activities (urease, protease, nitrate

reductase, and nitrite reductase) were positively correlated

with TEM (Figure 6). Urease activity was negatively with TN

and NO–
3−N, but positively correlated with NH+

4−N and

MBN. Protease activity was significantly and positively correlated

with NH+
4−N, NO

–
3−N, MBN, and SWC. A positive correlation

between protease activity and TN was observed, although the

correlation coefficient was relatively low. Meanwhile, TN, NH+
4−N,

MBN, and SWC were negatively with nitrate reductase activity while

positively correlated with nitrite reductase activity; NO–
3−N was

positively correlated with nitrate reductase activity, while negatively

with nitrite reductase activity.

RDA showed that the first two axes explained a total of

78.37% (June), 65.25% (July), 81.72% (August), and 56%

(September) of the total variation in soil N-cycle enzyme

activities (p < 0.001) (Figure 7). NH+
4−N and SWC explained

42.43% and 16.37% of soil N-cycle enzyme activities in June,

respectively; MBN and NH+
4−N explained 33.66% and 22.45% in

July, respectively; TN and NO–
3−N explained 25.78% and 21.92%

in August respectively; MBN and NO–
3−N explained 23.63% and

20.17% in September respectively.
TABLE 3 Soil properties under different levels of different vegetation degradation.

Treatment Depth
(cm)

TN
(g·kg-1)

NH+
4−N

(mg·kg-1)
NO–

3−N
(mg·kg-1)

MBN
(mg·kg-1)

ND 0-10 3.24 ± 0.18 Aa 7.98 ± 0.63 Aa 4.01 ± 0.31 Bb 62.56 ± 0.82 Aa

10-20 3.68 ± 0.32 Aa 5.82 ± 0.72 Ab 4.09 ± 0.46 Cb 47.90 ± 7.99 Ab

20-40 2.90 ± 0.26 Ab 5.31 ± 0.71 Ab 4.90 ± 0.26 Ca 33.71 ± 4.04 Ac

0-40 3.27 ± 0.08 A 6.37 ± 0.21 A 4.33 ± 0.10 C 48.06 ± 1.94 A

LD 0-10 3.16 ± 0.19 Aa 7.49 ± 0.26 Aa 4.59 ± 0.20 Ba 46.27 ± 4.94 Ba

10-20 2.74 ± 0.21 Bab 5.76 ± 0.41 Ab 5.03 ± 0.97 Ca 32.46 ± 0.97 Bb

20-40 2.41 ± 0.29 Bb 5.05 ± 0.49 Ab 5.65 ± 0.42 Ca 30.40 ± 3.91 Ab

0-40 2.77 ± 0.22 B 6.10 ± 0.13 B 5.09 ± 0.17 C 36.38 ± 1.44 B

MD 0-10 2.63 ± 0.17 Bab 5.82 ± 0.78 Ba 5.40 ± 0.89 Bb 45.37 ± 5.26 Ba

10-20 2.71 ± 0.37 Ba 4.41 ± 0.64 Bb 6.57 ± 0.39 Bab 35.34 ± 5.95 Bab

20-40 2.18 ± 0.05 Bb 3.56 ± 0.46 Bb 7.42 ± 0.53 Ba 28.38 ± 4.76 Ab

0-40 2.51 ± 0.15 B 4.60 ± 0.46 B 6.46 ± 0.32 B 36.36 ± 0.27 B

HD 0-10 1.83 ± 0.24 Ca 4.40 ± 0.26 Ca 7.56 ± 1.71 Aa 33.47 ± 7.14 Ca

10-20 1.98 ± 0.17 Ca 3.90 ± 0.89 Ba 8.42 ± 1.12 Aa 28.91 ± 2.38 Bab

20-40 2.08 ± 0.21 Ba 2.65 ± 0.17 Bb 8.76 ± 0.44 Aa 20.00 ± 3.83 Bb

0-40 1.96 ± 0.15 C 3.65 ± 0.44 C 8.25 ± 1.07 A 27.46 ± 3.60 C
Values are means ± standard deviation (Mean ± SD). ND, non-degraded; LD, lightly degraded; MD, moderately degraded; HD, heavily degraded. TEMP, temperature; SWC, soil moisture
content; TN, total nitrogen; NH+

4−N, ammonium nitrogen; NH+
4−N, nitrate nitrogen; MBN, microbial biomass nitrogen. Different capital letters indicate significant differences between

degradation levels (p < 0.05), and different lowercase letters indicate significant differences between soil layers (p < 0.05).
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FIGURE 6

The Pearson correlation coefficient between soil N-cycle enzyme activity and environmental factors. URE, urease; PRO, protease; NR, nitrate
reductase; NIR, nitrite reductase; TN, total nitrogen; NH+

4−N, ammonium nitrogen; NO–
3−N, nitrate nitrogen; MBN, microbial biomass nitrogen; SWC,

soil water content; TEM, temperature. *, **, and *** represent p < 0.05, p < 0.01, and p < 0.001, respectively.
B

C D

A

FIGURE 5

Temporal dynamics of soil N-cycle enzyme activities in wet meadows with different levels of vegetation degradation. Urease activity (A); Protease
activity (B); Nitrate reductase activity (C); Nitrite reductase activity (D). The average values of soil N-cycle enzyme activities at each degradation level
are shown in the box plots. Capital letters indicate the result of the post hoc Tukey’s HSD multiple range test for variations in soil enzyme activities
among wet meadows with different levels of degradation. ND, non-degraded; LD, lightly degraded; MD, moderately degraded; HD, heavily degraded.
Frontiers in Ecology and Evolution frontiersin.org08

https://doi.org/10.3389/fevo.2023.1210643
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Chang et al. 10.3389/fevo.2023.1210643
4 Discussion

4.1 Responses of soil N-cycle enzyme
activities to vegetation degradation

Soil enzymes, produced by both soil microorganisms and plant

roots, serve an essential role in facilitating biogeochemical cycling in
Frontiers in Ecology and Evolution 09
terrestrial ecosystems (Sinsabaugh et al., 2009). Soil urease

facilitates the hydrolysis of urea to ammonia (Su et al., 2004),

while protease promotes the hydrolysis of proteins and peptides to

amino acids, which are both involved in the soil N-cycle and are

essential indicators of soil nitrogen availability (Wallenstein et al.,

2009). Our study found that soil urease activity was significantly

higher other degraded sites compared to non-degraded ones
B

C D

E F

G H

A

FIGURE 7

Redundancy analysis (RDA) between soil N-cycle enzyme activities and soil physical and chemical properties. (A), (C), (E), and (G) showed the RDA
two-dimensional ranking diagram for June, July, August and September, respectively, the blue arrows represent soil physical and chemical
properties, and the red arrows represent soil N-cycle enzyme activities. The length of the arrows represents the degree of influence between soil
physicochemical properties and N-cycle enzyme activity. (B), (D), (F), and (H) showed the effects of soil microenvironments and nitrogen content on
soil N-cycle enzyme activities in June, July, August and September, respectively. URE, urease; PRO, protease; NR, nitrate reductase; NIR, nitrite
reductase; TN, total nitrogen; NH+

4−N, ammonium nitrogen; NO–
3−N, nitrate nitrogen; MBN, microbial biomass nitrogen; SWC, soil water content;

TEM, temperature.
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(Figure 3). We argue that vegetation degradation may increase soil

urease activity in wet meadows through changes in the soil

microclimate and nutrient availability. Degradation of wet

meadow vegetation has impacted the regional water table and soil

temperature, leading to alterations in the type abundance of soil

microbes. The lack of vegetation cover can increase surface soil

temperatures, and urease activity is known to be more sensitive to

temperature changes (Sardans et al., 2008). The increase in

temperature will break the regional low-temperature limitation

effect, increasing enzyme secretion by soil microorganisms and

improving the production of soil urease (Burns et al., 2013). This

was confirmed by the strong positive correlation between soil urease

activity and soil temperature (Figure 6). In addition, vegetation

degradation may increase certain soil nutrient contents (Table 2),

thus accelerating organic matter decomposition and nutrient

cycling, increasing in microbial activity and urease. However, it

must be noted that while increased urease activity may provide

short-term benefits, it may also lead to long-term degradation of

wetland ecosystems by changing the chemical and physical

properties of the soil and reducing its ability to support

healthy vegetation.

Contrarily, vegetation degradation led to a significant decrease

in soil protease activity (Figure 4). It indicates that temperature was

not the primary factor influencing the variability of soil protease

activity in wet meadows. Previous research has suggested that soil

protease activity is primarily influenced by soil type, vegetation, and

plant biomass (Song et al., 2013). On the one hand, during the

degradation of wet meadows, with the continuous reduction of soil

water, the changing trend of plant succession pattern is from

aquatic to wet to moderate to dry. Vegetation degradation

significantly reduced vegetation height, cover, species richness,

and above-ground biomass (Ma et al., 2018). This may have

resulted in a reduced amount of vegetation litter and root

exudates, thus a decrease in the substrate source material, leading

to a reduction in protease activity (Vranova et al., 2013). There

result support our first hypothesis (a). On the other hand, the

gradual decrease in topsoil moisture due to vegetation degradation

reduces enzymatic reactions (Table 2) (Li et al., 2022d). To some

extent, it affects the source of protease substrates and their diffusion

and synthesis rates (Sardans et al., 2008; Brockett et al., 2011),

leading to a reduction in protease activity. It is consistent with the

findings of the reduced protease activity as a result of degradation in

the Zoige Alpine wetlands (Huo et al., 2013).

Soil nitrate reductase is able to catalyze NO–
3 to NO–

2, while

nitrite reductase catalyzes NO–
2 to N2O or NH+

4 (Szajdak and Gaca,

2010; Li et al., 2015). Both of them are the dominant enzymes

involved in soil denitrification and the allosteric assimilation of

NO–
3−N to NH+

4 (Coyotzi et al., 2017; Jin et al., 2019). Our study

demonstrated that vegetation degradation led to a significant

increased in soil nitrate reductase activity but decreased in

nitrite reductase activity (Figure 4). There was a close

relationship between soil nitrogen content and nitrate reductase

and nitrite reductase activities (Figure 7). The main reason for

there results was that nitrate nitrogen was involved in soil

denitrification as a substrate. The increase in soil nitrate

nitrogen content due to vegetation degradation could lead to a
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rise in the rate of nitrate reductase synthesis (Deiglmayr et al.,

2006). As previously reported, soil nitrate reductase was a

substrate-inducing enzyme, and its activity was easily induced

by nitrate (Wang et al., 2000), hence nitrate reductase activity may

be increased with increasing nitrate nitrogen content. Vegetation

degradation caused coupling between soil N-cycle enzyme activity

and soil nutrient content in wet meadows. Multiple factors acted

together in soil nitrogen cycling in wet meadows, and our results

corroborate previous studies on wetland ecosystems under

vegetation degradation (Song et al., 2014; Fan et al., 2021).
4.2 Response of soil N-cycle enzyme
activities to soil depth

Soil N-cycle enzyme activities in wet meadows exhibited a

significant difference at varying soil depths (Figure 4). We found

that surface enzyme activities were higher compared to those in

deeper layers for all vegetation degradation levels, except for nitrate

reductase activity. Such difference may be due to the surface soil

having more nutrient contents than the deep soil (Peng and Wang,

2016), and these results supported our second hypothesis. In a

previous study, we found out that the soils in the region are shallow,

the vegetation is dominated by herbaceous plants with a shallow

and underdeveloped root system (Ma et al., 2020). The reduction of

plant roots often leads to a decreased in soil enzyme activity (Xiao

et al., 2015), and a weakening effect of roots on N-cycle enzyme

activity in deep soils (Enriquez et al., 2015). In addition, the

presence of apoplast and humus in the surface layer increases the

content of soil organic matter, which acts as a precursor for enzyme

synthesis Song et al., 2014; Ai et al., 2023). Furthermore, the

concentration of enzyme substrates is more abundant in the

surface soil layer than in deep layers (Niemi et al., 2005), which

further reduces soil enzyme activity (Acosta-Martıńez et al., 2006).

Surface soils also possess a better structure, porosity composition,

and agglomerates and are more susceptible to external disturbances

than deep soils (Pan et al., 2020). In particular, the metabolic

enzymatic capacity of soil microorganisms is inhibited by the

weakening of hydrothermal conditions in the soil profile (Xiao

et al., 2015). Soil water content not only directly affects the growth

of soil microorganisms and nutrient effectiveness but also indirectly

changes the magnitude of soil enzyme activity by altering soil

oxygen content and leaching (Fan et al., 2021). Finally, soil

nutrient effectiveness decreases as soil depth increases, leading to

a decline in microbial activity and fecundity (Xiao et al., 2015).

These are in line with the changes in soil enzyme activity under

vegetation degradation in other studies (Ananbeh et al., 2019; Li

et al., 2020).

4.3 Temporal dynamics of soil N-cycle
enzyme activities

Our study observed evident temporal dynamics change of N-

cycle enzyme activities, and the peak values of soil urease, protease,

and nitrite reductase activities were occurred in July and August

(Figure 5), which aligns with our third hypothesis. Soil enzyme
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production and turnover rates may be influenced by changes in

hydrothermal conditions (Kivlin and Treseder, 2014). In the QTP

region, vegetation starts to turn green in May due to the low

temperature and low soil nutrient content of the soil, and the

above-ground part of the vegetation grows relatively slowly in June,

when the main nutrients are still in the ground (Wu et al., 2020b),

and soil organic matter content is high, leading to gradual

improvement in soil N-cycle enzyme activity. During July and

August, the temperature and precipitation exhibited optimal

conditions (Figure 2). These favorable environmental factors

promote plant metabolism and concomitant augmentation in root

secretions (Finzi et al., 2006), consequently enhanced soil microbial

activity. The favorable hydrothermal conditions increase the

contact area between soil enzymes and substrates, further

increasing the soil N-cycle enzyme activity (Kotroczó et al., 2014).

As soil temperature and moisture declined in September,

unfavorable hydrothermal conditions inhibited microbial growth,

reproductive metabolism, and other activities (Cui et al., 2019),

leading to a reduction in soil N-cycle enzyme activities.

In wet meadow vegetation undergoes different growth stages

and phenological changes throughout the season (Shen et al., 2023).

Plants input organic matter into the soil during growth by exuding

root secretions. These organic substances act as substrates for soil

enzymes, thus stimulating soil enzyme activity (Li et al., 2022b). On

the contrary, when plants are dormant or senescent, the decrease in

organic matter content leads to a decrease in the activity of soil

enzymes (Burns et al., 2013; Wang et al., 2022). At the same time,

differences in plant growth and nutrient requirements with different

periods lead to changes in the input of substrate sources (Shen et al.,

2022a), and subsequently affect the temporal dynamics of soil

enzyme activity.

Furthermore, as an integral part of the wetland hydrologic

system, wet meadows are subject to seasonal fluctuations in water

levels (Cao et al., 2017). This seasonal variation causes significant

differences in the hydrothermal conditions and oxygen exchange

rates of the soil (Freeman et al., 1996), which can particularly affect

changes in the activity of soil nitrate reductase and nitrite reductase

(Li et al., 2012), as they are more sensitive to changes in soil water

content (Figure 6). Specifically, soils may be inundated during high

water table, leading to reduced oxygen utilization and altered

microbial activity. While, during low water table, the soil becomes

drier (Engelaar et al., 1995), potentially affecting the enzyme-

substrate interactions and ultimately the soil enzyme activity (Pu

et al., 2019). In conclusion, through the combined effects of different

biotic factors (vegetation growth rhythms) and abiotic factors (soil

hydrothermal conditions) (Brockett et al., 2011). Resulting in

dynamic changes in soil N-cycle enzyme activity in wet meadows

with different vegetation degradation, thus affecting soil nutrient

cycling and other biogeochemical processes.
5 Conclusions

In the present study, we analyzed the changes of soil nitrogen

contents and related soil N-cycle enzyme activities to different levels
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of vegetation degradation in the northeastern Qinghai-Tibet Plateau

wet meadows. The results showed that the vegetation degradation in

wet meadows reduced soil water content, total nitrogen,

ammonium nitrogen, and microbial biomass nitrogen content in

the 0–40 cm soil layer but increased soil temperature and nitrate

nitrogen content. Vegetation degradation also reduced soil protease

and nitrite reductase activities while raised soil urease and nitrate

reductase activities, which could further aggravate wet meadow

degradation. The degree of degradation and soil depth had

significant effects on soil N-cycle enzyme activities, with soil

urease, protease, and nitrite reductase activities showing

significant surface aggregation. Soil ammonium and nitrate

nitrogen contents were the most important abiotic drivers of soil

N-cycle enzyme activities during the degradation succession. In

conclusion, our findings provide useful insights into the soil N-cycle

enzyme activities of degraded wet meadows on the QTP, which

are essential for assessing the soil N-cycle under alpine

wetland degradation.
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