AUTHOR=Dai Erfu , Zhang Guangyu , Fu Gang , Zha Xinjie TITLE=Can meteorological data and normalized difference vegetation index be used to quantify soil pH in grasslands? JOURNAL=Frontiers in Ecology and Evolution VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/ecology-and-evolution/articles/10.3389/fevo.2023.1206581 DOI=10.3389/fevo.2023.1206581 ISSN=2296-701X ABSTRACT=
Quantifying soil pH at manifold spatio-temporal scales is critical for examining the impacts of global change on soil quality. It is still unclear whether meteorological data and normalized difference vegetation index (NDVI) can be used to quantify soil pH in grasslands. Here, nine methods (i.e., RF: random-forest, GLR: generalized-linear-regression, GBR: generalized-boosted-regression, MLR: multiple-linear-regression, ANN: artificial-neural-network, CIT: conditional-inference-tree, SVM: support-vector-machine, eXGB: eXtreme-gradient-boosting, RRT: recursive-regression-tree) were applied to quantify soil pH. Three independent variables (i.e., AP: annual precipitation, AT: annual temperature, ARad: annual radiation) were used to quantify potential soil pH (pHp), and four independent variables (i.e., AP, AT, ARad and NDVImax: maximum NDVI during growing season) were applied to quantify actual soil pH (pHa). Overall, the developed eXGB models performed the worst (linear regression slope < 0.60;