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The ecosystem water use efficiency (WUE), a crucial indicator of how climate 
change will affect terrestrial ecosystems, depicts the coupling of the carbon gain 
and water loss in terrestrial ecosystems. In this study, the spatiotemporal variations 
in the WUE and its responses to drought in the Lancang–Mekong River Basin 
(LMRB) from 1982 to 2018 were investigated using the gross primary productivity 
(GPP) and evapotranspiration (ET) data acquired from the Global Land Surface 
Satellite (GLASS) products. The analyses revealed that: (1) the mean yearly WUE 
for the LMRB was 1.63 g C kg−1 H2O, with comparatively higher values in forests 
and warm temperate climatic types. The interaction of temperature and leaf area 
index was the main factor affecting the spatial distribution of WUE. The yearly 
WUE for the entire region exhibited a decreasing trend with a rate of −0.0009 g C 
kg −1 H2O·yr−1, and the spatially significantly decreasing area accounted for 41.67% 
of the total area. (2) The annual WUE was positively correlated with drought in 
the humid regions, accounting for 66.55% of the total area, while a negative 
relationship mainly occurred in the high-altitude cold region. (3) The ecosystem 
WUE lagged behind the drought by 3 months in most regions. The lag effect was 
more apparent in the grassland-dominated upstream region and the cropland-
dominated Mekong Delta. (4) The resilience analysis revealed that the ecosystems 
in forests and temperate climate types were strongly resistant to drought, while 
the grassland and high-altitude regions with a dry and cold climate had relatively 
poor resilience. The results of this study shed light on how the WUE responds 
to drought across diverse land use types, climate types, and elevation gradients, 
uncovering fresh insights into the potential mechanisms behind the impact of 
drought on water and carbon cycles within ecosystems.
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1. Introduction

Drought is a common hydroclimatic hazard and has unfavorable consequences for terrestrial 
ecosystems (Mishra and Singh, 2010; Vicente-Serrano et al., 2020). Drought has been recognized 
as a critical component in the circulation between terrestrial water and carbon (Gentine et al., 
2019), affecting soil evaporation, plant transpiration, and carbon absorption at the ecological 
scale (Liu et al., 2019; Yang et al., 2021). Climate model projections suggest that as a consequence 
of climate change, the frequency and intensity of droughts will increase (Dai, 2012; Su et al., 
2021) and are expected to pose extensive and adverse impacts on ecosystem carbon and water 
exchange (Huang et al., 2016; Gentine et al., 2019; Zhang et al., 2020). The water use efficiency 
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(WUE) is calculated as the rate of carbon assimilation during 
photosynthesis to water loss via transpiration, and it is a crucial metric 
of the coupling of carbon and water in the ecosystem. The ratio of the 
evapotranspiration (ET) to the gross primary production (GPP) at the 
ecosystem scale can be used to determine the WUE (Huang et al., 
2016; Kang and Kang, 2019). Knowledge of drought impacts on WUE 
is essential for elucidating how terrestrial ecosystems respond to 
climate change (Yi and Jackson, 2021; Zhao et  al., 2021; Zhou 
et al., 2021).

The WUE has been extensively inspected on the basis of site 
measurements (Acuna et al., 2015; Medrano et al., 2015; Lin et al., 
2018; Duan et  al., 2020). Scientists have examined the spatial 
variability of the WUE in various regions using network eddy 
covariance measurements (Zhu et  al., 2015; Zhao et  al., 2021). 
However, due to the restricted observations of the eddy covariance 
flux towers, an accurate estimation of the ecosystem WUE at the 
global scale remains difficult (Yang et al., 2020). Recent research has 
shown that process-based ecosystem models and remote sensing 
methods provide new tools to help us comprehensively understand 
the WUE dynamics on regional and even global scales (Wei et al., 
2019; Yang et al., 2020, 2021). For example, the moderate resolution 
imaging spectroradiometer (MODIS), breathing Earth system 
simulator (BESS), Penman-Monteith-Leuning model (PML), Global 
Land Surface Satellite (GLASS), and global land evaporation 
Amsterdam model (GLEAM) have been extensively utilized to assess 
the WUEs of regional or global terrestrial ecosystems (Liu et al., 2019; 
Xu et  al., 2019; Zhao A. et  al., 2020; Measho et  al., 2021; Yang 
et al., 2021).

WUE variations are strongly affected by various biotic (i.e.,  
leaf area index and vegetation types) and abiotic factors (i.e., 
precipitation, temperature, and radiation) (Liu et  al., 2015). The 
influencing factors of WUE had significant spatial heterogeneity and 
varied with the time scales. Li et  al. (2023) employed structural 
equation modeling (SEM) to investigate the influences of WUE in a 
subtropical evergreen forest in southeastern China and found that 
WUE responded significantly to soil moisture (SM) at different time 
scales (from half-hourly to monthly scales). Qin et al. (2023) used 
geographic detector modeling (GDM) to discover that land surface 
temperature (LST) had the strongest driving effect on WUE in Central 
Asia, and temperature (TEM) had the largest interaction effect with 
vegetation cover. Nandy et  al. (2022) used a random forest (RF) 
algorithm to reveal that TEM is the main driver of the WUE in 
Indian forests.

Drought may simultaneously alter both components of the WUE 
(the GPP and ET) and is therefore regarded as one of the most 
influential abiotic variables affecting the WUE (Zhao A. et al., 2020). 
The impacts of drought on ecosystem WUE vary according to the 
vegetation types, drought severity, and dry and wet zones (Zhao J. et al., 
2020). According to Yang et al. (2021), over 50% of the vegetated 
regions worldwide have positive correlations between the WUE and 
drought, whereas the negative correlations basically were distributed 
in the high-latitude areas. Yang et al. (2016) discovered that there are 
strong negative relationships between the WUE and the drought index 
in dry areas, while sub-humid and semi-arid zones have positive 
relationships. This discovery is in line with the results of Huang et al. 
(2017), who demonstrated that the WUE in wet ecosystems often 
exhibited both a positive and negative response to drought, while the 
WUE in dry ecosystems frequently exhibited a negative response to 

drought. However, Guo et al. (2019) reported a positive correlation 
between the WUE and the standardized precipitation and 
evapotranspiration index (SPEI) in subarid China. In areas with a high 
humidity, the response of the WUE drought indices was found to 
be both positive and negative.

The core concept for determining how an ecosystem responds to 
a major disturbance is based on resilience (Yi and Jackson, 2021). The 
ecosystem resilience mainly describes the state changes in the 
ecosystem before and after the response to interference (Ingrisch and 
Bahn, 2018). Malone et  al. (2016) quantified the resilience of the 
ecosystem to drought by comparing the changes in the WUE in 
normal years and under drought conditions. Their results revealed 
that the arid ecosystem in California has more drought resistance than 
the high-productivity ecosystem in the northern part of the state. 
Sharma and Goyal (2018a) introduced a resilience index and found 
that many of India’s river basins were insufficiently resilient to drought 
disturbances. Guo et al. (2019) reported that certain ecosystems in 
northeastern, central, and southwestern China demonstrated relatively 
high levels of resilience based on the dimensionless resilience index 
developed by Sharma and Goyal (2018a). In addition, Liu et al. (2019) 
further assessed the WUE resilience to drought in China in several 
dimensions, including the grid cell, land use, climate type, river basin, 
and province.

The Lancang–Mekong River Basin (LMRB) is the largest cross-
border river basin in Southeast Asia, and is unparalleled in terms of 
its biodiversity and ecosystem services. Drought events have been 
more common in the LMRB during the last few decades. Examples of 
years with extreme droughts that threatened water and grain security 
include 1992–1993, 1998–1999, 2003–2005, 2010–2011, 2015–2016, 
and 2019–2020 (Guo et al., 2017; Tran et al., 2019). Recent research 
indicates that both meteorological and hydrological drought will 
intensify in the near future (Li Y. et al., 2021). Nonetheless, there is a 
lack of comprehensive analysis regarding how the WUE responds to 
drought occurrences, as well as a deficiency in research pertaining to 
ecosystem resilience to drought, which is the primary natural disaster 
in the LMRB. Therefore, understanding the impacts of drought on the 
WUE is imperative for managing drought risks and minimizing 
uncertainties in forecasting future terrestrial carbon sequestration. 
We evaluated the response of the WUE to drought in the LMRB from 
1982 to 2018 utilizing remote sensing and model-based data. The 
particular aims of this study were (1) to investigate the spatiotemporal 
changes in the GPP, ET, and WUE from 1982 to 2018; (2) to explore 
how the WUE responded to drought and the ecosystem resilience; and 
(3) to examine the changes in WUE and ecosystem resilience across 
different land use types, climate types, and elevation gradients.

2. Materials and methodology

2.1. Study area

The Lancang–Mekong River (LMR) has the distinction of being 
the longest river in Southeast Asia. It originates on the Tibetan Plateau, 
flows approximately 4,880 km to the southeast, and eventually empties 
into the South China Sea. The LMRB drains a total land area of 
810,000 km2 within the six counties of China, Myanmar, Laos, 
Thailand, Cambodia, and Vietnam. The basin comprises several 
different areas that are differentiated by their diverse topography, 
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drainage patterns, and geomorphology (Mekong River Commission, 
2005). The topography fluctuates greatly in elevation and decreases 
from the northwest to the southeast. The climate characteristics of the 
LMRB transition from a high-altitude continental and temperature 
climate in the upper part of the basin to a tropical monsoon climate 
in the lower part. The annual precipitation ranges from 600 to 
3,000 mm, with the precipitation mainly occurring from May to 
October. The mean annual temperature across the entire region 
exceeds 14°C.

2.2. Data

Both the GPP and ET datasets were obtained from the GLASS 
product-generating system1 (Zhao et al., 2013; Liang et al., 2021). For 
estimating the monthly and yearly WUE, we utilized the GLASS GPP 
and ET data with a resolution of 0.05° and a temporal interval of 
8 days, covering the period from 1982 to 2018. The monthly 0.05° 
precipitation (PRE) datasets from 1982 to 2018 were obtained from 
the Climate Hazards Group InfraRed Precipitation with Station 
(CHIRPS) data (version 2.0) (Funk et al., 2015). The monthly potential 
evapotranspiration (PET) data for 1982–2018 was obtained from the 
GLEAM2 (version 3.5a) (Martens et  al., 2017). The PET datasets 
underwent uniform interpolation to a 0.05° grid and were 
subsequently aggregated to a monthly time scale for consistency with 
the resolution of the CHIRPS data.

In addition, the influencing factors of WUE in this study included 
leaf area index (LAI), photosynthetically active radiation (PAR), vapor 
pressure deficit (VPD), SM, PRE, TEM, and relative humidity (RH). 
Specifically, the LAI and PAR were obtained from MOD15A2H V6 
level 4 and MCD18C2 Version 6.1, respectively (Knyazikhin et al., 
1999; Myneni et al., 2015; Wang D. et al., 2020). The SM and RH were 
obtained from ERA5-Land and ERA5 reanalysis datasets, respectively 
(Muñoz Sabater, 2019; Hersbach et al., 2023). The VPD was calculated 
using RH and TEM (Jiao et al., 2019; Li et al., 2023). These datasets 
were processed into annual values with a spatial resolution of 0.05° for 
the period from 2003 to 2018.

Other ancillary data included land use type data procured from 
the MODIS MCD12C1 products3 (Broxton et al., 2014), the lasted 
global map of Köppen–Geiger climate types (Peel et al., 2007), and a 
digital elevation model (DEM) obtained from the Shuttle Radar 
Topography Mission (SRTM) data.4 The spatial distributions of the 
elevation, land use, and climate types are shown in Figure 1. Details 
about the definitions of land use and climate types are shown in 
Table 1.

2.3. Methodology

2.3.1. WUE
At the ecosystem scale, the WUE can be calculated as follows 

(Yang et al., 2016):

1 http://www.glass.umd.edu/

2 https://www.gleam.eu

3 https://lpdaac.usgs.gov/products/mcd12c1v006/

4 https://earthexplorer.usgs.gov/
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where WUE stands for the water use efficiency (unit: g C kg−1 
H2O); and GPP and ET represent the gross primary production (unit: 
g C m−2) and evapotranspiration (unit: mm), respectively.

2.3.2. Drought index
The SPEI is a commonly employed metric for assessing drought 

conditions and provides insights into the spatiotemporal variability of 
drought. The computation of the SPEI is founded upon the water 
balance approach, necessitating the utilization of PRE and PET as the 
primary input parameters (Vicente-Serrano et al., 2010). The distinct 
features across various time-scales can be characterized by the SPEI 
owing to its incorporation of the sensitivity of the Palmer drought 
severity index (PDSI) to alternations in the evaporation demand and 
the variable time-scale features of the standardized precipitation index 
(SPI) (Vicente-Serrano et al., 2010). The CHIRPS PRE and GLEAM 
PET data with 0.05° resolution and monthly resolutions from 1982 to 
2018 were employed to calculate the SPEI (Jiang et al., 2021). We used 
the 1-month (January to December) and 12-month SPEI for 
December to represent the monthly and annual drought conditions, 
respectively. In addition, a threshold of −1 was selected to indicate 
drought conditions.

2.3.3. Ecosystem resilience index
The analysis of resilience was conducted utilizing the WUE as the 

metric for evaluating the ecosystem’s response to drought (Sharma 
and Goyal, 2018a,b). The identification of drought was initially 
conducted using the SPEI, with the selection of the worst drought year 
for the per pixel being determined using the SPEI-12. The ratio Rd of 
the WUE during the worst drought year (WUEd) to the average yearly 
WUE (WUEm) is defined as follows:

 
R WUE

WUEd
d

m
= .

 
(2)

The non-dimensional parameter Rd provides an assessment of the 
ecosystem resilience based on the value categories (Table 2).

2.3.4. Statistical analysis
The Mann–Kendall (MK) trend analysis is commonly employed 

to test trends in climate and vegetation data as it does not necessitate 
adherence to normality assumptions of the data series (Kendall, 1948). 
In this study, the modified MK (Wang et al., 2019) was employed to 
ascertain the trends in the GPP, ET, and WUE during 1982–2018. The 
significant trends (5% level) were evaluated. In addition, Sen’s slope 
analysis was performed to detect any alterations in the trend of the 
time series (Sen, 1968). The GDM (Wang et al., 2010; Song et al., 
2020), a tool for quantifying the heterogeneity of spatial stratification, 
was applied to quantitatively analyze the potential effects of different 
factors (i.e., PRE, TEM, SM, RH, VPD, PAR, and LAI) on the spatial 
distribution of WUE over the LMRB. The GDM includes factor, 
interaction, risk, and ecological detectors (Wang et al., 2010). In this 
study, we employ the factor detector to explore the contributions of 
different factors to WUE, and the interaction detector to reveal the 
joint contribution of two factors to WUE. Furthermore, we conducted 
Pearson correlation analysis to examine the relationship between the 
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time series of the SPEI and WUE. To investigate the lagging impacts 
of drought on the WUE, the Pearson correlation coefficients (PCCs) 
between the SPEI-1 and monthly WUE for different lag windows 
(0–12 months) were calculated, and the lag window with the 
maximum Pearson correlation coefficient (MPCC) was taken as the 
lag time (LT) (Ji et al., 2021).

3. Results

3.1. Spatiotemporal variations in GPP, ET, 
and WUE

The fluctuations in the annual GPP, ET, and WUE during 1982–2018 
are illustrated in Figure 2. The yearly GPP of the terrestrial ecosystems 
exhibited great variations, ranging from 1679.79 to 1883.58 g C m−2, and 
the mean value over multiple years was 1790.77 g C m−2 (Figure 2A). 
There was a slight upward trend in the yearly GPP with a rate of 0.65 g C 
m−2·yr−1. During the study period, the ET exhibited a significant upward 
trend with a rate of 1.98 mm·yr−1, and its multi-year mean annual value 
was approximately 1070.81 mm (Figure 2B). The annual WUE exhibited 
a non-significant decreasing trend with a rate of −0.0009 g C kg−1 
H2O·yr−1 for the entire study period, with a mean rate of 1.63 g C kg−1 H2O 
and a variation range of 11.54–11.79 g C kg−1 H2O (Figure 2C).

Figures  3, 4 shows spatial distribution and temporal trends, 
respectively, of the yearly GPP, ET, and WUE over the study period 
across the LMRB. From 1982 to 2018, the average yearly GPP and ET 
of the terrestrial ecosystems in the LMRB exhibited large spatial 
variability, and this is attributed to the impacts of the soil, vegetation, 
and climate types, which exhibited considerable gradients throughout 
the basin. The high annual GPP values mainly occurred in Yunnan 
Province, Laos, and northeastern Cambodia, while the low value of 
annual GPP values primarily occurred in the source of the LMRB on 
the Qinghai–Tibet Plateau, the Khorat Plateau in Thailand, and the 
flood plain of Tonle Sap Lake in Cambodia, and the Mekong Delta in 
Vietnam (Figure  3A). Most of the areas in Laos and Cambodia 

exhibited significant decreasing trends in the annual GPP during 
1982–2018, while the annual GPP exhibited significant increasing 
trends in the source of the basin on the Qinghai–Tibet Plateau, the 
southern Yunnan, the Khorat Plateau in Thailand, and the Mekong 
Delta in Vietnam (Figure 4A). The spatial pattern of the annual ET 
exhibited a clear decreasing trend from south to north. Higher ET 
values occurred in the downstream region with high temperatures and 
a humid climate. In contrast, lower ET values occurred in the 
upstream region with a cold and dry climate (Figure  3B). 
Approximately 94.76% of the total area exhibited an increasing ET 
trend (Figure 4B). The spatiotemporal variation pattern of the annual 
WUE basically agreed with that of the GPP (Figures 3C, 4C). The 
higher annual WUE values (2–3 g C kg−1 H2O) were principally 
distributed in Yunnan Province and Laos, while the low values (0–1 g 
C kg−1 H2O) primarily occurred in the river source region on the 
Qinghai–Tibet Plateau, the Khorat Plateau in Thailand, and the flood 
plain of the Tonle Sap Lake in Cambodia, and the Mekong Delta in 
Vietnam. Regarding the entire area, 18.26% of the study area exhibited 
a significant increase in the WUE, while 41.67% exhibited a significant 
decrease (Figure 4C). It should be noted that the highland area in 
northern Laos exhibited a significant decreasing trend in the yearly 
WUE, which was mainly due to the increase in the ET.

The influencing factors of the spatial distribution of WUE were 
quantified by using GDM. All of the factors in Figure 5 have passed 
the significance test of 0.01. The larger the Q-value, the higher the 
contribution to WUE. Figure 5 indicates that TEM (Q = 0.80) was the 
most important factor affecting the spatial distribution of WUE in the 
LMRB, followed by VPD (Q = 0.78). In addition, TEM and LAI were 
the most significant interaction factors affecting WUE in the LMRB.

3.2. Spatial and temporal variations in 
droughts

To investigate the temporal progression of droughts, a Hovmöller 
diagram of the SPEI was constructed for 1982–2018, using time scales 

FIGURE 1

(A) Elevation, (B) land use types, and (C) climate types in the LMRB.
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ranging from 1- to 12-month (Figure 6A). Overall, the cumulative 
impacts of the SPEI became more visible with longer wet and dry 
periods as the time scale increased. The SPEI exhibited a discernible 
alternation between the periods of aridity and humidity. Several 
persistent drought episodes were identified in this study: 1982–1984, 
1994–1996, 2004–2005, 2009–2010, and 2015–2016. Inter-annual 
variations in the extent of the drought-affected regions within the 
LMRB were observed between 1982 and 2018 (Figure 6B). In general, 
the area affected by drought accounted for more than 50% of the total 
area during 1983, 1994, 1998, and 2016. It is noteworthy that an 
impressive 75% of the region was affect during the drought event in 
2015–2016. The drought areas were larger before 2000 than after 2000. 
During the 37-year study period, the drought frequency varied from 
5.41 to 29.73% in the LMRB, with an average value of 17.31% 
(Figure  6C). In general, the drought prone areas were mainly 
distributed in the upstream and midstream region of the LRB, 
northern Laos, and eastern Cambodia, where the drought frequency 
was greater than 22%. In addition, compared with the lower Mekong 
River Basin (MRB), the LRB was more vulnerable to the droughts.

3.3. Responses of the WUE to drought

In Figure 7A, the PCC between the annual WUE and SPEI is 
shown in terms of the spatial distribution. It can be seen that the PCC 
ranged from −0.7828 to 0.5818 across the LMRB, and approximately 
10.39% of the entire area demonstrated a significant correlation, 
suggesting a robust response of the WUE to the drought. The negative 
correlations mainly occurred in the upstream region with a high-
altitude cold climate, indicating that the WUE strengthened under 
drought conditions. The positive correlations were widely distributed 
in the lower LRB and the lower MRB with humid climates. The 
regions with significant positive correlations were concentrated in 
Laos, Thailand, and Cambodia, suggesting that drought weakened 

the WUE in these regions. Figure 7B shows the LT of the WUE’s 
response to drought. As shown in Figure 7B, drought had a significant 
lagged effect on the WUE in the LMRB. The LT was between 1 and 
11 months, with clear spatial distribution patterns. In over 68.18% of 
the total study area, the WUE lagged behind the drought by 3 months. 
In the areas located upstream of the LRB and the Mekong Delta, the 
LT was relatively longer, indicating a slow response of the WUE 
to droughts.

The spatial distribution of the ecosystem resilience is shown in 
Figure 8. The concept of the ecosystem resilience index (Rd) pertains 
to the extent to which an ecosystem experiences the impact of 
drought stress and subsequently recuperates from it. The higher the 
Rd value is, the stronger the resilience of the ecosystem is. It can 
be seen that 38.90% of the total area was resilient to drought (Rd > 1). 
These regions were mainly found in Laos, suggesting that the 
ecosystems within this region were able to maintain their 
productivity by augmenting their WUE when water was scarce. 
Approximately 40.72 and 12.27% of the total area were slightly or 
moderately non-resilient, respectively, indicating that the 
productivity of the ecosystem was affected by drought disturbances. 
The severely non-resilient ecosystems were predominantly located 
in the upstream region and the Mekong Delta, accounting for 8.11% 
of the total area. These ecosystems were delicate and had a hard 
time adjusting to drought-related disturbances.

3.4. Changes in the WUE and ecosystem 
resilience to the drought at different scales

Figure 9 shows the ET, GPP, WUE, and ecosystem resilience of the 
different land use types. In terms of the natural vegetation types, it was 
found that the mean yearly GPP and ET of the EBF (see abbreviations 
in Table 1) were higher than those of the other forest types, reaching 
2575.71 g C m−2·yr−1 and 1257.51 mm·yr−1, respectively; however, the 

TABLE 1 List of land use types and Köppen–Geiger climate types over LMRB with their full title and abbreviation.

Elements Full title Abb. Full title Abb.

Land use types

Evergreen needle-leaf forest ENF Permanent wetlands PW

Evergreen broadleaf forest EBF Croplands CR

Deciduous broadleaf forest DBF Urban and built-up UB

Mixed forests MF Cropland/natural vegetation mosaic CNV

Woody savannas WS Snow and ice SNW

Savannas SA Barren or sparsely vegetated BAR

Grasslands GR Water WTR

Köppen–Geiger 

climate types

Tropical–monsoon climate Am
Temperate–without dry season–warm summer 

climate
Cfb

Tropical–savannah climate Aw Cold–dry winter–cold winter climate Dwd

Arid–steppe–cold climate Bsk Cold–dry winter–cold summer climate Dwc

Temperate–dry summer–warm summer climate Csb
Cold–without dry season–warm summer 

climate
Dfb

Temperate–dry winter–hot summer climate Cwa Polar–tundra climate ETH

Temperate–dry winter–warm summer climate Cwb
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highest mean annual WUE values occurred in the ENF (2.53 g C kg−1 
H2O). In contrast to the EBF, the ENF has a smaller leaf area and 
significantly smaller evaporation, and thus, it had a higher WUE. The 
mean yearly WUE of the GR (1.35 g C kg−1 H2O) was lower than all 
forest types. The mean yearly WUEs of the natural vegetation types 
were ranked as follows: ENF > MF > EBF > WS > SA > DBF > GR. For 
the other land use types, the mean annual WUE of the PW was low 
(less than 1 g C kg−1 H2O). This was because the PW had sufficient 
water and its evapotranspiration was relatively strong. The low values 
of the WUE observed in the context of the BAR can be attributed to 
the limited vegetation cover and high evaporation rates (Li G. et al., 
2021). Moreover, the LMRB (especially the lower regions) exhibited a 
high proportion of CR (Figure 1), and its mean yearly WUE (1.09 g C 
kg−1 H2O) was only higher than that of the PW and the BAR, 
indicating that food production systems consume a lot of water in 
comparison to the carbon they gain. Non-productive phases with 
higher soil evaporation relative to permanent vegetation may also have 
an impact on CR’s lower annual WUE (Tang et al., 2014). The mean 
annual WUEs of the land use types were ranked as follows: 
CNV > UB > CR > BAR > PW. During the period of 1982–2018, the 
annual WUEs of the EBF, DBF, WS, SA, and PW exhibited significant 
downward trends; however, the GPP values remained largely 
unchanged, indicating that the decline in the WUE was due to an 
increase in ET. Additionally, the significant upward WUE trends of the 
GR, CNV, and BAR were primarily due to the increased GPP. Although 
the ET and the GPP of the CR both showed a significant increasing 
trend, WUE showed an insignificant increasing trend. This might 
be because the areas with more cropland in the lower LMRB tended 
to have higher air temperatures, which affected the photosynthesis and 
transpiration of crops at the same time and thus affected the WUE 

growth trend of crops. The ecosystem resilience of the CNV was 
greater than 1, indicating that it had a strong drought resistance. The 
other terrestrial ecosystems in the LMRB were found to be slightly 
non-resilient.

Figure 10 shows the ET, GPP, WUE, and ecosystem resilience over 
the different climate types. The annual ET and GPP exhibited obvious 
differences in the various climate types. The highest ET occurred in 
the Am (see abbreviations in Table 1) (1246.16 mm), while the lowest 
ET was observed in the ETH (269.81 mm). The GPP was the highest 
in the Cwa (2592.82 g C m−2), while it was only 221.59 g C m−2 in the 
ETH. It was found that the yearly WUE was the highest in the Cfb 
zone (2.68 g C kg−1 H2O); however, the yearly WUE was low in the 
ETH (around 0.8 g C kg−1 H2O). The annual WUEs of the climate 
types were ranked as follows: Cfb > Dfb > Cwa > Cwb > Csb > Bsk > Am 
> Aw > Dwb > Dwc > ETH. Overall, the WUEs of the warm temperate 
climates (Cfb, Cwa, Cwb, and Csb) were higher than those of other 
climate types. The yearly WUE exhibited a significant decreasing trend 
in the Am, which was ascribed to a significant increase in the ET and 
a decrease in the GPP. In addition, the annual WUEs of the Bsk, Csb, 
Cwb, Dwb, Dwc, and ETH exhibited significant increasing trends, 
which was primarily attributed to the augmentation of the GPP. The 
ecosystem resilience of the Csb, Cwb, and Cfb was greater than 1, 
demonstrating the ecosystem’s resistance to the drought. However, the 
ecosystem resilience of the Dwc was only about 0.82, indicating that 
it was greatly affected by drought and had a poor resilience.

Figure 11 shows the ET, GPP, WUE, and ecosystem resilience in 
different elevation gradients. Overall, the trends of the ET, GPP, and 
WUE initially increased and then decreased with increasing altitude. 
The regions below 2000 m had higher ET values (above 1,000 mm), 
while the regions above 3,500 m had smaller ET values (below 
500 mm). The 1,000–1,500 m elevation areas had the highest yearly 
GPP (2612.84 g C m−2), whereas the areas above 5,000 m has the 
lowest annual GPP (219.89 g C m−2). The 500–3,500 m regions had 
relatively high WUEs (above 2.0 g C kg−1 H2O), and the lowest (0.69 g 
C kg−1 H2O) and highest (2.69 g C kg−1 H2O) values occurred in the 
>5,000 m and 2,500–3,000 m elevation gradient, respectively. The 
annual WUE in the <1,000 m elevation gradient exhibited a significant 
decreasing trend, which was primarily caused by the increase in the 
ET. In contrast, a significant increase in the WUE was occurred in the 
>3,500 m elevation gradients, which was mainly attributed to the 

TABLE 2 The value categories of the Rd. and corresponding implications.

Rd value Implication

≥1.0 Resilient

0.9–1.0 Slightly non-resilient

0.8–0.9 Moderately non-resilient

≤0.8 Severely non-resilient

FIGURE 2

Variations in the mean yearly (A) GPP, (B) ET, and (C) WUE from 1982 to 2018.
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increase in the GPP. With respect to the ecosystem resilience, the areas 
>5,000 m were severely non-resilient.

4. Discussion

On the basis of the GLASS GPP and ET, we estimated that the 
mean yearly WUE across the LMRB during 1982–2018 was 1.63 g C 
kg−1 H2O. Using a similar method, Wang L. et al. (2020) and Pokhrel 
et al. (2021) analyzed the ecosystem WUE of the surrounding regions 
and found that the multi-year averaged WUEs of Tibetan Plateau and 
China were 0.65 g C kg−1 H2O and 1.08 g C kg−1 H2O, respectively. 

They additionally reported an increase in the WUE over the study 
period in this region. Contrary to their findings, we found that the 
yearly WUE in the LMRB declined at a rate of −0.0009 g C kg−1 
H2O·yr−1. The decline in the WUE in the LMRB was caused by an 
increase in the GPP, which was largely offset by an increase in ET 
under global warming.

The findings of our study indicate that TEM and VPD were 
important factors affecting the spatial distribution pattern of WUE in 
LMRB (Figure 5). Nandy et al. (2022) found similar results in India, 
where TEM was the most important driver of the WUE in forests. 
Jiang et al. (2019) also discovered that these two factors in the Pacific 
Northwest mainly controlled WUE on some short time scale. The 

FIGURE 3

Spatial distributions of the mean yearly (A) GPP, (B) ET, and (C) WUE during 1982–2018 across the LMRB.

FIGURE 4

Temporal trends of the mean yearly (A) GPP, (B) ET, and (C) WUE during 1982–2018 across the LMRB.
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mean yearly WUEs of the various types of vegetative cover differed, 
with forests having a greater WUE than grasslands and croplands 
having the lowest WUE (Figure 9). These findings are consistent with 
the global and Chinese trends of the average yearly WUE reported in 
prior scholarly works (Tang et al., 2014; Li G. et al., 2021). Nevertheless, 
other investigations conducted in China have reported that grasslands 
exhibited the lowest WUE values (Liu et al., 2015; Guo et al., 2019). 
The variation in the outcomes of these studies may be  partially 

ascribed to the differences in the environmental circumstances, plant 
varieties, cultivation regions, and agronomic practices. In addition, 
the WUEs of the warm temperate climate types (Cfb, Cwa, Cwb, and 
Csb) were higher, while those of the cold and polar climate types 
(Dwe, Dwd, and EFH) were lower (Figure 10), which is consistent 
with previous finding at the global scale (Xia et al., 2015) and in India 
(Sharma and Goyal, 2018a). In arid ecosystems, the evaporation of 
water from bare soil, which is not necessarily linked to productivity, 
has a tendency to reduce the WUE in comparison to more humid 
regions (Sun et al., 2016). Overall, the WUE exhibited a decreasing 
trend that initially increased and then decreased with increasing 
elevation. The highest value occurred in the 2,500–3,000 m elevation 
gradient (2.69 g C kg−1 H2O) (Figure 11). These results are consistent 
with the results of Xue et al. (2015), that is, an inverse connection 
between the WUE and altitude across a global range of 1,150–5,000 m. 
Negative correlations were also discovered between the elevation 
gradient and the WUE in China (Zhu et al., 2015) and India (Nandy 
et al., 2022). The variations in the vegetation composition and climatic 
conditions with elevation gradients gave rise to distinct differences in 
the WUE at low and high elevations (Liu et al., 2020).

The spatial heterogeneity of the correlation between the WUE 
and drought was noteworthy and was attributable to the diverse 
vegetation, climate, and underlying surface properties. The positive 
correlations were mostly observed in the humid climate zones, 
while the negative correlations primarily occurred in the cold and 
dry regions (Figure 7). This result is in line with the findings of 

FIGURE 5

The extent of the impact of each factor driver on WUE across the 
LMRB.

FIGURE 6

Spatial and temporal variations in droughts. (A) Hovmöller diagram of the SPEI at 1- to 12-month time scales. (B) Variations in the drought area. 
(C) Spatial distribution of the drought frequency.
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previous studies (Yang et al., 2016, 2021; Huang et al., 2017). In 
high-latitude regions and semi-arid/sub-humid zones, the 
correlation between the WUE and drought was influenced by the 

ET, while in tropical forests, it was mainly determined by the GPP 
(Yang et  al., 2021). Plants in arid areas respond to moisture 
limitations more rapidly, with larger decreases in the ET than in the 
GPP, increasing the WUE (Guo et al., 2019). In contrast, plants in 
humid environments are less able to adjust to drought, so the dry 
conditions had a larger influence on the plant WUE (Zhao et al., 
2021). Additionally, the lagged effect of drought on the WUE has 
been reported in previous studies (Liu et al., 2015; Yang et al., 2016; 
Huang et  al., 2017; Ji et  al., 2021). Our results indicate that the 
ecosystem WUE lagged behind the drought by 3 months in most 
regions of the LMRB. The lagged effect was more apparent in the 
grassland-dominated upstream region and cropland-dominated 
Mekong Delta. Comparable results were obtained by Liu et  al. 
(2015), who revealed that the lagged influence of drought on the 
monthly WUE was relatively longer in regions in China that were 
dominated by farmland and grassland and shorter in regions that 
were predominantly forested.

Our results show that 38.90% of the total area was resilient to 
droughts (Figure 8). However, the ecosystem resilience varied with the 
land use, climate types, and elevation gradients. Regarding land use 
type, the ecosystem resilience of the CNV exhibited strong drought 
resistance, while the GR was less resistant to droughts (Figure 9), 
which is in line with the findings of Tian et al. (2011) and Guo et al. 
(2019), who reported that grassland is more vulnerable to drought in 
China and monsoonal Asia, and the main for this reason is that 
grassland has a low water storage capacity and shallow roots, so it is 
easily affected by fluctuations in the shallow soil water (Liu et al., 2021; 
Zhao et al., 2021). Regarding the climate type, the temperate climate 
types (Csb, Cwb, and Cfb) had a higher resilience, while the 
ecosystems in the cold and polar climate (Dwc) were severely 
non-resilient, which is consistent with the findings of Sharma and 
Goyal (2018a,b). Regarding elevation gradient, the areas above 

FIGURE 7

Spatial distributions of the (A) Pearson correlation coefficient (PCC) between the yearly WUE and SPEI, and (B) the lag time (LT) of the response of the 
WUE to drought.

FIGURE 8

Spatial pattern of ecosystem resilience to drought based on the 
WUE.
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4,500 m were less resistant to drought, and the vegetation composition 
and climate conditions in the high elevation area gave rise to poor 
resilience to drought.

In addition to climate change, previous studies have concluded 
that human activities also contribute to WUE changes. For example, 
Zheng et al. (2019) found that the main driver of the rising annual 
WUE of the ecosystem on the Chinese Loess Plateau is due to 
revegetation. According to Du et  al. (2019), human activities, 
including afforestation, were responsible for around 16% of the WUE 
trends in northern China. On the basis of the findings of Wang L. et al. 
(2020), while human activities have had a negative impact on the 

WUE, with a reduction of 20.2%, the increase in the WUE on the 
Tibetan Plateau was primarily driven by climate change, with a 
contribution rate of 78.9%. Li G. et al. (2021) reported that the rise in 
the vegetation WUE in China from 2001 to 2014 was driven by human 
activities (66.75%) and climate change (33.25%). As a result, further 
investigation is warranted to examine how human activities and 
climate change will impact the WUE in the LMRB in the future.

It should be noted that our study still had several uncertainties. 
Even though the GLASS GPP and ET performed rather well in terms 
of spatial pattern and temporal dynamic (Zhao et al., 2013; Liang et al., 
2021), the WUE trends calculated from GLASS had some 

FIGURE 9

Means and trends of the (A) GPP, (B) ET, (C) WUE, and (D) ecosystem resilience for the different land use types.

FIGURE 10

Means and trends of the (A) GPP, (B) ET, (C) WUE, and (D) ecosystem resilience for the different climate types.
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discrepancies with other remote sensing-driven models (Yang et al., 
2021). Additionally, high-resolution precipitation and PET 
information would surely aid in the monitoring of droughts. However, 
both satellite-based and model-based products were subject to 
inherent errors. For instance, the CHIRPS precipitation had high 
correlation coefficients with gauge observation, however, it tended to 
systematically overestimate precipitation in the upstream region and 
underestimate precipitation in the downstream region of the LMRB 
(Luo et  al., 2019; Wu et  al., 2019). The GLEAM-PET also was 
associated with errors due to the calculation methods and forcing data 
(Jiang et al., 2021). Moreover, the spatial interpolation of datasets with 
various spatial resolutions (e.g., the original spatial resolutions of 
GLASS, ERA5-land, and GLEAM are 0.05°, 0.1°, and 0.25°, 
respectively) may also cause uncertainties. To lessen uncertainty 
brought on by a single model or dataset, additional efforts must 
concentrate on integrating multiple datasets to better understand 
ecosystem WUE response to drought.

5. Conclusion

In this study, the spatiotemporal variations in the WUE and its 
response to drought in the LMRB from 1982 to 2018 were investigated. 
The changes in the WUE and ecosystem resilience to drought were 
then assessed in relation to land use types, climate types, and elevation 
gradient. The main findings of this study are as follows:

(1) The mean yearly WUE was 1.63 g C kg−1 H2O in the LMRB, 
and the forests and warm temperate climates had higher WUE values. 
The interaction of temperature and leaf area index were the main 
factor affecting the spatial distribution of WUE. The yearly WUE 
exhibited a decreasing trend with a rate of −0.0009 g C kg−1 H2O·yr−1 
across the entire region, and 63.05% of the total area experienced a 
spatially decreasing WUE trend.

(2) The annual WUE was positively correlated with drought in the 
humid region, accounting for 66.55% of the total area, while it mainly 
exhibited a negative relationship in the high-altitude cold region.

(3) The ecosystem WUE lagged behind the drought by 3 months 
in most regions of the LMRB. The lagged effect was more apparent in 
the grassland-dominated upstream region and cropland-dominated 
Mekong Delta.

(4) The results of the resilience analysis suggest that the ecosystems 
in forests and temperate climates were strongly resistant to drought, 
while the grassland and high-altitude regions with dry and cold 
climates had a poor resilience.
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