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Regional differences and
evolution trends of China’s
industrial green transformation

Chunyan Liu, Jun Xu* and Jun Zhao*

School of Economics and Management, Xinjiang University, Urumqi, Xinjiang, China
Green and low-carbon development is the direction of the current technological

revolution and industrial transformation, while China is still in the historical stage

of deep industrialization and has yet to completely break away from the high-

input, high-consumption, and high-emission development method, and is still

facing serious challenges in terms of improving the efficiency of resource

utilization and reducing pollution emissions. To effectively promote China’s

industrial green transformation, it is necessary to accurately grasp its

development connotations and scientifically realize the measurement of

industrial green transformation. Therefore, this paper measures the efficiency

of China’s industrial green transformation, based on the directional distance

function and the Global Malmquist-Luenberger (GML) index, to portray its

distribution dynamics, regional differences and further identify its growth

drivers. The results found that the overall efficiency of China’s industrial green

transformation has been steadily increasing, and that the regional pattern is

characterized by northwestern, northeastern, central, eastern and southwestern

regions, in that order. The Markov chain estimates show that industrial green

transformation efficiency is most likely to remain in its original state, with

probabilities of 88.31%, 63.54%, 42.86%, and 75.61% for low, medium-low,

medium-high, and high levels respectively, but also has a jump shift

characteristic, with a certain possibility of falling back from the high-efficiency

state to the low state. Dagum Gini coefficient estimation results show that

differences between groups in the five major regions are the main source of

the widening differences in the overall industrial green transformation, with the

contribution remaining at around 60%. Further research suggests that economic

growth, technological progress, foreign trade, and foreign direct investment

(FDI) may lead to a widening of the efficiency gap in industrial green

transformation, while the industrial structure and outward foreign direct

investment (OFDI) help to reduce spatial differences to some extent. Based on

the above conclusions, this paper proposes some countermeasures to promote

the overall improvement and coordinated development of China’s industrial

green transformation.
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1 Introduction

Environmental degradation is closely related to the productive

life of human society and directly affects the quality of economic and

social development, which, if left unchecked, will have a serious and

destructive impact on natural ecosystems and economic and social

systems (Wang andWang, 2023). Since the Industrial Revolution, the

rapid growth of the global economy has met the material needs of

humankind, and the development of the real economy, represented

by the industrial sector, has been the fundamental engine of

economic growth, but it has also left countries facing great

challenges in terms of resources and the environment. The

transformation of the original traditional extensive growth mode

has become a global consensus, and the green transformation of

industry is imperative. The Organization for Economic Cooperation

and Development (OECD, 2005) suggests that in order for industry

to achieve a green economy, it must rise to the level of “green

transformation” , which connotes the realization of the

transformation of the economy from unsustainable to sustainable

development, the transformation of the “black” or “brown” economy

to a green economy, as well as the transformation of low-quality

development to a high-quality development model. Against the

backdrop of tightening global pressure on both resources and the

environment, the United Nations has proposed the 2030 Sustainable

Development Goals, advocating that developing countries should

follow a sustainable development path and avoid the “pollute first,

treat later” development approach of developed countries.

With the reform and opening up and active integration into the

international cycle, China’s industrial system has gradually

improved and its industrial volume has expanded rapidly, making

it the world’s number one industrial and trading nation (Yang et al.,

2017; Shao et al., 2019; Wang et al., 2020a). However, a status quo

that cannot be ignored is that the share of new technology and high-

tech industrial sectors is relatively low, the economic growth drivers

are still dominated by traditional industrial sectors, and the crude

development model has not been fundamentally changed. Although

spectacular economic growth has been achieved, the long-term

expansionary use of resources has also pushed industrial

economic growth close to the boundaries of ecological

constraints, and the resource dividend is gradually being depleted

(Yao et al., 2019; Gao and Yuan, 2022a). According to the Chinese

Statistical Yearbook, industrial value added accounted for 31.0% of

total GDP in 2020 but consumed 66.1% of final energy and emitted

79.8% of sulfur dioxide and 85.1% of carbon dioxide. Under the

development trend that the green economy has become a new

engine of global economic growth and a new advantage in

international competition, China’s new industrialization process is

bound to be affected. Thus, it is urgent to accelerate the green

transformation of China’s industry (Chen et al., 2022a; Li et al.,

2018). However, most current studies only cut in from a certain

perspective to study its specific impact on industrial green

transition, such as Hou et al. (2018) examined the impact of

technological progress on industrial green transition, and Liu et

al. (2022a) examined the impact of economic growth on industrial

green transition. Yet fewer studies have examined industrial green

transformation in depth from its own perspective.
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To effectively promote China’s industrial green transformation,

it is necessary to accurately grasp its development connotation and

scientifically quantify the industrial green transformation.

Therefore, this paper measures the efficiency of China’s industrial

green transformation based on the directional distance function and

GML index, portrays its distribution dynamics and regional

differences in both time and space dimensions, and further

identifies its growth drivers. The main contributions of this paper

can be summarized as follows. Firstly, drawing on scholars such as

(Cheng and Zervopoulos, 2014; Gao et al., 2021), this paper

constructs a directional distance function based on a slack

measure and GML index model to measure the efficiency of

industrial green transformation, and incorporates CO2 in the

non-desired output to demonstrate China’s industrial green

transformation that takes into account the carbon attainment and

carbon neutrality targets. Secondly, considering that the traditional

three major regions may not accurately reveal the regular

characteristics of China’s industrial green transformation, this

paper combines natural, economic, and social development

characteristics to regroup China’s 30 provinces into five major

regions. Then we combine the use of kernel density estimation,

Markov chains, and Dagum Gini coefficients to paint a more

detailed picture of the evolutionary characteristics and spatial

differences of China’s industrial green transformation, providing

reference ideas for promoting the overall improvement of industrial

green transformation in each region. Thirdly, a quantile model is

used to examine the role of economic development, industrial

structure, technological progress, foreign trade, FDI, and OFDI, to

identify the key influencing factors of China’s industrial green

transformation at different levels, and then to target the potential

green values driving the industrial green transformation.

The rest of this paper is structured as follows. Section 2 reviews

the literature on industrial green transformation. Section 3

introduces the methodology and data. Section 4 presents the

measured results and evolutionary trends of industrial green

transformation. Section 5 details the regional differences in

industrial green transition and the sources of the differences.

Section 6 discusses the factors influencing the industrial green

transit ion. Final ly , Sect ion 7 draws conclusions and

policy implications.
2 Literature review

2.1 Definition of industrial
green transformation

Since the industrial revolution, the rapid growth of the global

economy has met the material needs of human beings, but it has

also left countries facing huge challenges in terms of resources and

the environment, such as the global warming problem caused by

massive greenhouse gas emissions threatening sustainable

economic development (Jordaan et al., 2017; Wang et al., 2020b),

environmental pollution seriously affecting human health (Wei

et al., 2018; Li et al., 2020), extreme weather reducing wheat

production (Elahi et al., 2021) and Water stress in agriculture
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(Razzaq et al., 2022). Given the increasing resource depletion and

environmental pollution, it has become a global consensus to

change the original traditional extensive growth mode, and a

green transformation of industry is imperative. The Organisation

for Economic Co-operation and Development (OECD) suggests

that for the industry to achieve a green economy, it must rise to the

level of a “green transition”, which includes a shift from an

unsustainable to a sustainable economy, a shift from a “black” or

“brown” economy to a green economy, and a shift from a low-

quality to a high-quality development model (OECD, 2005).

Graedel et al. (2012) believes that the green transformation of

industry connotes a shift in industrial development from crude to

intensive and from highly polluting to less polluting. Kemp and

Never (2017) state that industrial green transformation is an

industrial green production process from unsustainable to

sustainable, which is characterized by reduced environmental

impact, reduced pollution emissions, increased production

efficiency, increased resource utilization rate, and sustainable

development (Du et al., 2021). Ran et al. (2023) argue that

fundamental to China’s industrial green transformation is the

promotion of sustained improvements in industrial green total

factor productivity. Ren et al. (2022a) identify industrial green

transformation as a series of shifts based on the transformation of

the production function from one characterized by natural factor

inputs to one characterized by green factor inputs, with the

underlying growth drivers stemming from institutional change

and technological change (Mao et al., 2019).
2.2 Measurement of industrial
green transformation

The existing measurement methods can be divided into two

categories: the evaluation systemmethod and the indicator selection

method, where the indicator selection method can be divided into

single-factor indicators and total-factor indicators.

In terms of constructing the evaluation system, scholars have

used hierarchical analysis and entropy methods to fit the multi-

dimensional evaluation system to quantify industrial green

transformation. For example, Yuan et al. (2020b), Han et al.

(2020), and Gao and Yuan (2022b), based on China’s Industrial

Green Development Plan (2016–2020) and the Green Development

Indicator System, build an evaluation index system for industrial

green transformation from the aspects of industrial economic

development, resource and environmental carrying capacity, and

industrial structure optimization, etc. The advantage of the index

system is that it has a wide coverage, but the tertiary indicators are

mainly derived through subjective screening, which tends to

duplicate information (Cao et al., 2021).

In terms of single factor indicators, Mensah et al. (2019)

measure the industrial green transformation of OECD countries

from three indicators: total CO2 emissions, production-side carbon

emissions, and demand-side carbon emissions. Yu et al. (2018) and

Mao et al. (2019) quantify the greening degree of industrial

structure with the proportion of highly polluting industries. Liu

and Chen (2022) directly take the number of green patent
Frontiers in Ecology and Evolution 03
applications as the proxy variable of industrial green

transformation. Such indicators visualize a particular feature of

industrial green transformation, but also ignore the quality of

economic growth and fail to capture the desirable outputs and

undesirable outputs generated by energy consumption (Cheng

et al., 2020).

In terms of total factor indicator, improving green total factor

productivity (GTFP) is an important way to achieve industrial green

transformation (Zhang et al., 2020). Since GTFP can reflect both

desired and undesired outputs and the harmony between economic

and ecological development, a large number of scholars have chosen

this indicator to measure industrial green transformation (Wu et al.,

2022; Yu et al., 2022; Zeng et al., 2023). In addition, some other

scholars believe that the root of China’s industrial green

transformation is to promote the continuous improvement of

industrial green total factor productivity through technological

innovation. Subsequently, based on this definition, many scholars

have chosen industrial green total factor productivity as an

indicator for measuring industrial green transformation. For

example, Cheng et al. (2020) use the global Malmquist-

Luenberger index to measure green total factor productivity to

analyze the green transformation in 30 Chinese provinces. Qu et al.

(2020) use NDDF and DEA methods to measure the green

transformation efficiency of manufacturing industries in China.

Tian et al. (2022) calculate the green transformation efficiency of

enterprises in heavily polluting industries in China by using super-

efficient SBM. Ran et al. (2023) measure China’s industrial green

transition using industrial green total factor productivity calculated

by the super-efficient SBM.
2.3 Influencing factors of industrial
green transformation

Domestic factors of industrial green transformation include

economic level (Gao and Yuan, 2022b; Liu et al., 2022b), industrial

structure (Lin and Wang, 2023; Lin and Xie, 2023), technological

progress (Wu and Zhang, 2020; Yan et al., 2020), and

environmental regulation (Hou et al., 2018; Guo and Yuan, 2020).

In terms of influence of the economic level, Gai et al. (2022) believe

that economic development is the direct driving force for the

efficiency of industrial green development. Chen et al. (2022b)

further find that this positive effect has a significant spatial

spillover effect. In terms of industrial structure optimization,

Yuan et al. (2020a) find that the impact of manufacturing

agglomeration on green economic efficiency shows a positive U-

shaped characteristic of first inhibiting and then promoting and

emphasize that to achieve high-quality manufacturing development

requires promoting industrial structure upgrading and reducing the

congestion effect generated by industrial agglomeration. Similarly,

Yang et al. (2023) points out that at this stage, China’s industrial

green transformation needs to focus on the efficiency and quality of

industrial development, rather than blindly pursuing quantity. In

terms of R&D investment and technological progress, Li et al.

(2019) and Fu et al. (2020) argue that the slow progress of green

technology is an important limiting factor for the improvement of
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industrial green development, and that increasing investment in

science and technology innovation and environmental protection

can effectively improve industrial green development. In terms of

environmental regulation, Zhai and An (2020) believe that it helps

to achieve industrial green transformation. However, Sun et al.

(2022) find that strict environmental regulation inhibits the

contribution of technological progress to industrial green

transformation in the eastern provinces of China. Yuan and

Xiang (2018) and Li (2019) suggest that environmental regulation

has not contributed to China’s industrial green development.

Under closed conditions, technological advancement depends

only on the domestic stock of intellectual capital, whereas under

open conditions, intellectual capital is characterized by cross-

country diffusion (Pan et al., 2020), trade openness, foreign direct

investment, and outward foreign direct investment all influence

industrial green transformation. For trade opening, some scholars

argue that trade liberalization will facilitate the spillover and

diffusion of advanced and clean technologies, helping to promote

industrial green transformation (Hao et al., 2021). For example,

Ding et al. (2022) find that trade openness has contributed to the

green transformation of Chinese industry using provincial panel

data from China. The opposing view is that trade expansion

increases production, which requires more energy to be

consumed, thus increasing pollution emissions (Xu et al., 2020).

For example, Yu et al. (2022) use cross-country panel data to find

that imports and exports contribute to green productivity in high-

income countries, but not in low-income countries. Ren et al. (2014)

find that a widening trade surplus is an important cause of increased

industrial pollution emissions in China. In terms of foreign direct

investment, Liu et al. (2022a) discuss the impact of FDI on

industrial green transformation in terms of both quantity and

quality using a provincial panel in China. They find that FDI

quality has no significant effect on industrial green transformation

and that FDI quantity inhibits industrial green transformation in

neighboring areas. Qiu et al. (2021) finds that the impact of FDI on

industrial green transformation has both pollution halo and

pollution paradise effects, and that environmental regulation and

policy guidance can weaken the negative effect of FDI. Hu et al.

(2018) develop a discussion that foreign direct investment entry has

a promoting effect on the green transformation of industrial sectors

that are greener but has a restraining effect on less green industries.

In terms of outward foreign direct investment, through cross-

border M&As and greenfield investment, OFDI not only

broadens the international market for multinational enterprises,

but also enables them to gain access to key technologies in the host

country, thus forming reverse technological spillovers, promoting

the productivity and technological innovation capacity of the home

country and influencing the high industrial green transformation

(Piperopoulos et al., 2018; Hao et al., 2020). For example, Kong et al.

(2021) find that market-seeking OFDI provides a channel for the

transfer of gradually saturated production capacity in home

countries, which in turn provides more scope for domestic

production segments to adjust to higher value-added segments,

helping to promote industrial green transformation. Zhang (2022)

believes that in the face of high environmental standards in
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developed countries, multinational companies will continue to

develop and innovate new technologies to achieve green

production to gain a more stable market share, and that the

application of R&D results in home countries will help to achieve

industrial green transformation. Peng et al. (2023) point out that

OFDI can improve the sustainable productive capacity of Chinese

industrial firms, but the impact is heterogeneous depending on the

absorptive capacity in terms of human capital, R&D intensity, and

technology gaps.
3 Methodology and data

3.1 Methodology

3.1.1 Directional distance function and GML index
Industrial green transformation should balance production

efficiency and environmental quality. It is difficult for a single

indicator to measure both factors simultaneously, while an

evaluation system built through subjectivity tends to duplicate

information (Cao et al., 2021), therefore, referring to Cheng and

Zervopoulos (2014); Gao et al. (2021), this paper quantifies

industrial green transformation using industrial green total factor

productivity measured by the DDF-GML method.

Firstly, construct an undesired output efficiency model and an

expected output efficiency model based on the DDF. According to

Chung et al. (1997), assuming that there are n DMUs, each with i

inputs x = (x1, x2,⋯, xi) ∈ R+
i , yielding j desired outputs y = (y1, y2,

⋯, yj) ∈ R+
j and m non-desired outputs b = (b1, b2,⋯, bm) ∈ R+

m,

and let the directionality vector be g = (gy , gb) and t(t = 1, 2, 3⋯,T)

represent each period, the DDF for period t is:

Dt(xt , yt , bt ; g) = sup g j(yt + g gy , b
t − g gb) ∈ Pt(xt)

� �
(1)

where xt is a vector of capital, labor, and energy inputs; yt and bt

denote the vector of desired and undesired outputs, respectively; and

g is the value of the directional distance function that maximizes

desired output and minimizes undesired output Pt(xt) is the set of

production possibilities, which includes both desired and undesired

outputs, and the undesired outputs are weakly disposable.

Secondly, propose the non-desired output efficiency model and

desired output efficiency model by specifically varying the above

directional vectors. The non-desired output efficiency model is:

s : t :

a* = mina

xl ≤ xk, yl ≥ yk, bl = abk
l ≥ 0

8>><
>>:

(2)

where a is the optimal solution of the non-desired output

efficiency model; x, y, and b denote the factor input, desired

output, and non-desired output values respectively; and c is a

vector of weight coefficients relative to the DMU being evaluated

in the effective DMU portfolio. a is the ratio of the potential

optimal non-desired output to the actual non-desired output of the

decision unit under the given conditions of factor inputs and desired
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outputs. The higher the value of a , the lower the potential for a

reduction in the undesired outputs of the DMU.

And the desired output efficiency model is:

s : t :

b* = min b

xl ≤ xk, yl ≥ (1 + b)yk, bl = bk

l ≥ 0

8>><
>>:

(3)

where b is the desired output expansion potential under the

non-desired output constraint, the higher the value of b , the greater
the desired output expansion potential of the DMU.

Finally, the GML index analysis method is used to measure the

efficiency under environmental constraints. According to Oh

(2010), the GML index from period t to t+1 is defined as:

GMLt,t+1(xt , yt , bt , xt+1, yt+1, bt+1) =
1 + DG(xt , yt , bt)

1 + DG(xt+1, yt+1, bt+1)
(4)

If industrial activities produce more desired output and less

undesired output, then GMLt,t+1> 1, indicating higher productivity

and contributing to industrial green transformation; if they produce

less desired output and more undesired output, then GMLt,t+1< 1,

indicating lower productivity and inhibiting industrial

green transformation.

3.1.2 Dagum Gini coefficient
The Dagum Gini coefficient method is used to systematically

analyze the regional differences in China’s industrial green

transformation. According to Dagum (1997), the inter-group Gini

coefficient can be calculated as Eq.(5):

Ghk =
onh

i=1onk
l=1 yhi − yklj j

nhnk(yh + yk)
(5)

where h and k are two different regions, nh and nk are the

number of provinces in each region, yhi and ykl denote the level of

industrial green transformation of province i in region h and

province l in region k, respectively, yh and yk denote the mean

value of the level of industrial green transformation of all provinces

in the corresponding region. When the two provinces involved in

the calculation are in the same region, the result is the intra-group

Gini coefficient (Ghh).

Further, assuming the existence of n provinces divided into m

regions and defining ph = nh=n, sh = nhyh=ny, the overall Dagum

Gini coefficient is calculated as follows:

G = Gw + Gnb + Gt (6)

Gw =om
h=1Ghhphsh (7)

Gnb =om
h=1ok≠hGhkphskDhk (8)

Gt =om
h=1ok≠hGhkphsk(1 − Dhk) (9)

where Gw is the total contribution of intra-regional variation to

the overall industrial green transition variation, Gnb + Gt is the total

contribution of all inter-regional variation to the overall variation;

Dhk is the relative influence of the level of industrial green transition
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between two different regions, calculated as:

Dhk =
dhk − phk
dhk + phk

(10)

dhk = ∫∞0 dFh(y)∫
y
0(y − x)dFk(x) (11)

phk = ∫∞0 dFk(y)∫
y
0(y − x)dFh(x) (12)

In the Eq.(10)–(12), dhk represents the total influence between

the industrial green transformation of region h and region k. phk is

the hypervariable first order moment between region h and region

k. Fh( · ) and Fk( · ) are the cumulative distribution functions of

industrial green transformation in region h and region k.

3.1.3 Markov chain probability transition matrix
Markov chain is a horizontal space of a stochastic process that

reflects the distribution and evolutionary trends at different types of

time and states by dividing continuous discrete values into N types.

For any period t and possible types i, j, and jk (k=0,1,…, t-2), the

Markov chain satisfies Eq.(13), from which it can be argued that the

probability of an industrial green transition efficiency being of type i

in period t+1 depends only on its type in period t.

P Xt+1 = ijXt = j,Xt−1 = j − 1,…,X0 = j0f g
= P Xt+1 = ijXt = jf g = Pji (13)

Then, the quartile method is used to divide all industrial green

transformation efficiency values in the sample period into four

levels: low, medium-low, medium-high, and high, on average

according to their magnitudes, and a dimensional probability

matrix of industrial green transformation type transfer can be

obtained through Markov chains, as in Eq.(14).

P = Pjt =

P11

P21

P31

P41

P12

P22

P32

P42

P13

P23

P33

P43

P14

P24

P34

P44

�����������

�����������

:(14)

where Pjt represents the probability that a region is of type j in

period t and shifts to type i in period t+1. The shifting probability is

calculated by using a maximum likelihood estimate, calculated as in

Eq.(15):

Pjt = kji=kj (15)

where kji represents the number of times that industrial green

transition efficiency shifted from type j to type i during the

observation period, and kj is the total number of occurrences of

type j.

3.1.4 Quantile model
The quantile regression method is more precise than OLS in

describing the effects of explanatory variables on the range of

variation in the explanatory variable and the shape of the

conditional distribution. Following the cross-sectional quantile,

Koenker (2004) proposed a panel quantile, combining the
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quantile regression method with a panel data model, further

extending the application of the quantile regression method. To

investigate the underlying causes of the spatial and temporal

evolutionary characteristics of China’s industrial green transition,

a fixed effect panel quantile model was used, following Powell

(2022), and an adaptive Monte Carlo method was selected for

estimation, with five representative quantile levels estimated: 10%,

25%, 50%, 75%, and 90%.
3.2 Data and variables

Based on data completeness and comparability, this paper

finally uses data for 30 Chinese provinces for the period 2004-

2020 from the China Industrial Statistics Yearbook, the China

Energy Statistics Yearbook, the China Environment Yearbook, the

CEADs database, the China Statistical Yearbook, and the Foreign

Direct Investment Statistics Bulletin1.

For the calculation of the industrial green transition indicator,

the industrial sectors of each Chinese province from 2003 to 2020

are used as the production decision unit. The input factors are labor,

capital, and energy. And labor input is measured using the average

number of workers employed by industrial enterprises above the

scale, capital input is measured using the average annual balance of

net fixed assets, and energy input is measured using industrial end-

use consumption. Desired output is measured using industrial sales

output. Undesired outputs include industrial emissions of sulfur

dioxide, chemical oxygen demand in wastewater, solid waste, and

carbon dioxide. Using 2003 as the base period, capital input is

deflated using the fixed asset investment price index and the desired

output is deflated using the ex-factory industrial price index, in

order to exclude price factors.

For the analysis of the factors influencing the spatial and

temporal evolution of the industrial green transition, two types of

indicators are selected. The first category is domestic factors,

including economic growth, industrial structure, and

technological progress. The second category is international

factors, including foreign trade, foreign direct investment, and

outward foreign direct investment. Specific definitions are listed

in Table 1.
4 Measurement results and
trend evolution of industrial
green transformation

4.1 Measurement results of industrial
green transformation

The results of the industrial green transition efficiency

calculations for each province in China are shown in Table 2,
1 Since the statistical caliber of Hong Kong, Macao, and Taiwan Province is

inconsistent, and the data of Xizang Province is seriously missing, this paper

selects 30 provinces in mainland China as research samples.
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based on matlab2021. From an overall perspective, the efficiency of

China’s industrial green transformation shows a steady upward

growth trend, with the national average rising from 1.0107 in 2004

to 1.2922 in 2020, an average annual increase of 1.65%, indicating

that China’s industrial green transformation has steadily advanced

and made some progress. In terms of regional comparisons, the

Northwest region has the highest industrial green transition

efficiency with an in-sample mean of 1.2559, followed by the

Northeast, Central, Eastern, and Southwest, and the Southwest

region with a mean of 1.08062. In terms of comparison of

transformation among provinces, the top three industrial green

transformation efficiency rankings in 2004 are Tianjin, Hebei, and

Guangdong, distributed in the eastern region; by 2020, the top three

are Qinghai, Beijing, and Jilin, distributed in the northwest, east and

northeast regions respectively; furthermore, Qinghai, Gansu, and

Inner Mongolia ranked the top three in terms of the annual average

of industrial green transformation efficiency, distributed in the

northwest region. The change in the ranking of the

transformation indicates that China ’s industrial green

transformation is characterized by a “geese formation” with the

eastern part leading the way and other regions following, that is, a

gradient transformation.
4.2 Trend evolution of industrial
green transformation

To further investigate more precisely the dynamic evolution of

the distribution of industrial green transformation, a kernel density

map is drawn to portray the overall shape of the efficiency of

China’s industrial green transformation. According to Figure 1, the

dynamic evolution of the distribution is characterized by three

aspects. Firstly, the distribution of industrial green transition

efficiency shifted to the right overall, indicating that industrial

green transition efficiency in each region has gradually improved.

Secondly, the height of the wave decreases, becomes flatter, and

becomes wider, indicating a gradual widening of the gap in

industrial green transformation efficiency across regions. Thirdly,

the distribution of industrial green transition efficiency extends and

widens, meaning that the gap between the extremes and the mean

within the region does not gradually narrow, with some provinces

and municipalities maintaining higher or lower industrial green

transition efficiency. The task of China’s industrial green

transformation has remained arduous, possibly because China is

in the mid-to-late stages of industrialization, with higher levels of

energy consumption due to greater resource dependence on the one

hand, and lower value added due to a lower industrial chain on

the other.

To predict the trend characteristics of China’s industrial green

transformation, the quartile method is first used to classify
2 Based on the natural, economic, and social development characteristics

of China, this paper divides China's 30 provinces into five regions, namely the

Eastern, Central, Northeast, Southwest, and Northwest. The provinces

included in each region are shown in Table 2.

frontiersin.org

https://doi.org/10.3389/fevo.2023.1203075
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Liu et al. 10.3389/fevo.2023.1203075
TABLE 2 Measurement results of China’s industrial green transformation.

Region Province 2004 Rank 2012 Rank 2020 Rank Annual average Rank Average growth rate

Nationwide — 1.0107 — 1.2297 — 1.2922 — 1.1775 — 1.65%

Eastern

Beijing 1.0109 17 1.1993 19 1.4239 2 1.2266 8 2.31%

Tianjin 1.0583 1 1.2310 15 1.2437 22 1.2080 11 1.08%

Hebei 1.0556 2 1.1840 22 1.2668 20 1.1458 23 1.22%

Shanghai 1.0151 15 1.1958 21 1.3288 13 1.1689 19 1.81%

Jiangsu 1.0003 22 1.1314 27 1.1520 27 1.1000 27 0.95%

Zhejiang 0.9881 25 1.0899 29 1.1115 29 1.0680 29 0.79%

Fujian 1.0408 4 1.2378 14 1.3445 9 1.2094 10 1.72%

Shandong 1.0234 12 1.2410 12 1.2052 24 1.1587 21 1.10%

Guangdong 1.0411 3 1.1584 24 1.2733 18 1.1687 20 1.35%

Hainan 1.0070 21 1.2463 11 1.3684 6 1.2001 12 2.07%

mean 1.0240 — 1.1915 — 1.2718 — 1.1654 — 1.46%

Central

Shanxi 1.0104 18 1.1619 23 1.1884 25 1.0967 28 1.09%

Anhui 1.0220 13 1.2270 16 1.2672 19 1.1835 16 1.44%

Jiangxi 1.0290 7 1.3077 6 1.3281 14 1.2354 6 1.72%

Henan 1.0083 20 1.2047 17 1.1349 28 1.1524 22 0.79%

Hubei 0.9653 29 1.2410 13 1.3133 16 1.1755 18 2.07%

Hunan 1.0400 5 1.2494 10 1.3390 10 1.2248 9 1.70%

mean 1.0125 — 1.2319 — 1.2618 — 1.1780 — 1.48%

Northeast

Liaoning 1.0307 6 1.3902 3 1.3894 4 1.2588 4 2.01%

Jilin 0.9960 24 1.3001 7 1.3941 3 1.2282 7 2.27%

Heilongjiang 1.0289 8 1.1993 20 1.3381 11 1.1782 17 1.77%

mean 1.0185 — 1.2965 — 1.3739 — 1.2217 — 2.02%

Southwest

Guangxi 0.8978 30 0.8453 30 0.8798 30 0.8540 30 -0.13%

Chongqing 1.0149 16 1.1370 26 1.1797 26 1.1001 26 1.01%

Sichuan 0.9978 23 1.1565 25 1.2744 17 1.1413 24 1.64%

Guizhou 0.9771 27 1.1055 28 1.2326 23 1.1117 25 1.56%

Yunnan 1.0250 10 1.2646 9 1.3591 8 1.1961 13 1.90%

(Continued)
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TABLE 1 Explanatory variables definitions.

Variables Symbol Definition References

economic growth lnpgdp logarithm of GDP per capita Chen et al. (2022a); Gao and Yuan (2022a)

industrial structure stru value added tertiary sector/value added secondary sector Gao and Yuan (2022b); Sun et al. (2022)

technological progress tech logarithm of the number of patent applications granted Li et al. (2021); Chen et al. (2022b)

foreign trade trade exports and imports of goods/GDP Ren et al. (2022b); Ran et al. (2023)

foreign direct investment lnfdi logarithm of foreign direct investment Gao et al. (2022b); Zhang and Wu (2021)

outward foreign direct investment lnofdi logarithm of outward foreign direct investment Mahadevan and Sun (2020); Ren et al. (2022a)
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industrial green transformation efficiency into four levels, low (L),

medium-low (ML), medium-high (MH), and high (H). And the five

regions are similarly graded. The Markov chain method is then used

to obtain a probability transfer matrix as shown in Table 3. The

results show that:

There is a general club convergence effect in China’s industrial

green transformation efficiency across the country and the five

regions, and a “low-level trap” and “high-level monopoly”

phenomenon. In the national probability transfer matrix, the

probability values on the main diagonal are greater than the

values on the non-main diagonal, and the probabilities of low,

medium-low, medium-high, and high-level provinces maintaining

their status one year after industrial green transformation are

88.31%, 63.54%, 42.86% and 75.61% respectively, indicating that

the different levels of industrial green transformation efficiency are

more stable and there is a club convergence effect. The eastern,

northeast, and northwest show club convergence in all four

categories. The central region shows club convergence in three

categories except for the high-level group. And the southwest region

only has the characteristic of club convergence in the low and

middle-low levels. In addition, the probabilities of the low-level

industrial green transformation group maintaining its status in the
Frontiers in Ecology and Evolution 08
whole country and five regions are 88.31%, 90.27%, 89.66%, 76.00%,

93.94%, and 80.43%, respectively, all of which are much higher than

the probability of upward shift, indicating the existence of a “low-

level trap”. The probabilities of high-level industrial green

transformation group maintaining their status are 75.61%,

85.71%, and 81.48% for the whole country, eastern and

northwestern regions respectively, while the central, northeastern,

and southwestern regions have a lower number of high-level

industrial green transformation efficiency and a lower transfer

probability. This indicates that industrial green transformation on

the whole is characterized by a “high-level monopoly”, which

originates from the higher level of green transformation in some

provinces in the eastern and northwestern regions.

The level of industrial green transformation is characterized by

a “leapfrog” shift and a long-term growth trend, but care needs to be

taken to prevent a regression in industrial green transformation.

From the whole nation, the transfer not only occurs between

adjacent levels, but also exists a “leapfrog” transfer from low level

to medium-high level or even high level. This transfer comes from

the leap in the north-western provinces, such as Qinghai, Gansu,

and Xinjiang, which have jumped from medium to high levels

nationally. At the same time, the probabilities of shifting to the right
FIGURE 1

Kernel density map of China’s industrial green transformation.
TABLE 2 Continued

Region Province 2004 Rank 2012 Rank 2020 Rank Annual average Rank Average growth rate

mean 0.9825 — 1.1018 — 1.1851 — 1.0806 — 1.26%

Northwest

Inner Mongolia 0.9723 28 1.3629 5 1.3885 5 1.2683 3 2.40%

Shaanxi 1.0088 19 1.2037 18 1.3160 15 1.1862 14 1.79%

Gansu 1.0188 14 1.4048 2 1.3602 7 1.2693 2 1.95%

Qinghai 1.0238 11 1.5406 1 1.7785 1 1.3803 1 3.75%

Ningxia 0.9864 26 1.2869 8 1.2558 21 1.1838 15 1.62%

Xinjiang 1.0277 9 1.3866 4 1.3310 12 1.2476 5 1.74%

mean 1.0063 — 1.3642 — 1.4050 — 1.2559 — 2.25%
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of the main diagonal are greater than the probability of shifting to

the left, implying a long-term growth trend in industrial green

transformation. Further, the probabilities of upward transfer after

one year are 11.69%, 22.92%, and 31.43% for low, medium-low and

medium-high levels respectively, which shows that the probability

of upward transfer of China’s industrial green transformation

increases after crossing the low level. While the probabilities of

downward transfer after one year are 13.54%, 25.71%, and 24.39%

for medium-low, medium-high, and high levels respectively. This

indicates that there is a certain risk that the level of China’s

industrial green transformation will fall and may drop from a

high level to a medium-low level in a “precipitous” manner.

Therefore, all provinces should be alert to the risk of a downward

transfer, prevent a reversal of industrial green transformation, keep

the existing development results solid and strive to achieve an

upward transfer. From the perspective of the five regions, the

eastern, central, and southwestern regions do not have

the characteristics of “leapfrog” transfer. In the northeast, the

probability of downward transfer is higher than the probability of

upward transfer, while the opposite is true in the northwest.
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5 Regional difference analysis of
industrial green transformation

5.1 Overall variation

In order to more intuitively grasp the regional differences, the

Dagum Gini coefficient analysis method is used to calculate and

decompose the overall variation of China’s industrial green

transformation from 2004 to 2020. As can be seen from the line

graph presented in Figure 2, the overall variation in China’s

industrial green transformation over the sample period shows an

upward trend. Specifically, the overall variation of the industrial

green transformation is only 0.0155 in 2004, and after reaching its

first peak in 2011, it has remained high, showing a fluctuating and

rising “W”-shaped trend. By 2020, the overall variation is 0.0538, an

increase of 2.47 times, indicating that the gap in China’s industrial

green transformation among the provinces is widening. The bar

chart shows the decomposition of the overall difference in China’s

industrial green transformation. It can be seen from the changing

trend that the between-group variation accounts for a relatively
TABLE 3 Markov probability transfer matrix of China’s industrial green transformation.

Region t/t+1 L LM MH H

Nationwide

L 0.8831 0.1006 0.0032 0.0130

ML 0.1354 0.6354 0.1979 0.0313

MH 0.0000 0.2571 0.4286 0.3143

H 0.0000 0.0488 0.1951 0.7561

Eastern

L 0.9027 0.0973 0.0000 0.0000

ML 0.1212 0.7273 0.1515 0.0000

MH 0.0000 0.1429 0.4286 0.4286

H 0.0000 0.0000 0.1429 0.8571

Central

L 0.8966 0.1034 0.0000 0.0000

ML 0.0800 0.6800 0.2400 0.0000

MH 0.0000 0.2727 0.5455 0.1818

H 0.0000 0.0000 1.0000 0.0000

Northeast

L 0.7600 0.2400 0.0000 0.0000

ML 0.2727 0.2727 0.3636 0.0909

MH 0.0000 0.2500 0.3750 0.3750

H 0.0000 0.0000 0.5000 0.5000

Southwest

L 0.9394 0.0606 0.0000 0.0000

ML 0.0833 0.8333 0.0833 0.0000

MH 0.0000 0.0000 0.0000 1.0000

H 0.0000 0.0000 0.0000 1.0000

Northwest

L 0.8043 0.0870 0.0217 0.0870

ML 0.2000 0.4667 0.2000 0.1333

MH 0.0000 0.3750 0.3750 0.2500

H 0.0000 0.0741 0.1111 0.8148
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high proportion, suggesting that the change of the overall variation

may depend more on between-group variation. The intra-group

variation remained essentially at the same level, indicating a small

variation within the region. And the supervariable density function

tends to decline after a “W” pattern of “gentle decline–rapid upward

movement–gentle downward movement”, indicating that the

overlap between regions has less impact on the overall variation.

Comparing the development of the contribution rates of the three

variations, although the percentages of the three have shown a

tendency to change over the sample period, the contribution rate of

between-group variation to the overall variation has always

remained around 60%, except for a few years, which exceeds the

total contribution rate of within-group variation and supervariable

density, thus indicating that the spatial differences in the level of

China’s industrial green transformation mainly come from the

differences among the five regions, and how to narrow the

transformation gap among regions is a key direction for future

efforts. This result is similar to the findings of Zhang et al. (2022).

They concluded that the key to improving industrial

competitiveness in China is also to reduce inter-regional differences.
5.2 Within-group variation

There is regional heterogeneity in the upward trend of variation

within the five regions. As shown in Table 4, in general, the within-

group differences all exhibit a fluctuating upward trend of variation.

The largest increase in intra-group variation is observed in the

northwest, followed by the eastern, southwest, and central regions,

with the smallest increase in the northeast. In terms of values, the
Frontiers in Ecology and Evolution 10
intra-group variation in the southwest is consistently the largest

among the five regions, indicating a high degree of imbalance in

Southwest provinces’ industrial green transformation. For example,

Yunnan’s industrial green transformation efficiency in 2020 is

1.3591, while Guangxi in the same year is only 0.8798, a large gap

between the two. The northwest ranks second, but unlike the

southwest, the intra-group variation in the northwest has

undergone an upward trend from low to high, especially since

2018, evolving in a “sharp upward” trend. Besides, the differences

within the northeast region are relatively small, compared with the

eastern and central regions. It may be that the provinces and cities

in the eastern and central regions show a “wild goose mode” of

industrial development, with both “star” provinces and relatively

“mediocre” provinces. While the three provinces in the northeast

have the same industrial base, are closely linked and have a faster

technology transfer. This comparison shows that attention should

be paid to the coordinated development within the eastern and

central regions.
5.3 Between-group variation

Figure 3 plots the Between-group variation in industrial green

transformation among the five regions. In terms of the overall trend,

the gradual increase in the shaded area in the figure indicates that

the level of industrial green transformation among China’s five

regions is differentiated, with some provinces able to rapidly

advance their industrial green transformation in terms of both

optimizing industrial structure and fostering or introducing new

technologies for green production, while other regions are

constrained by the historical baggage of slow progress. In terms

of differences between regions, the differences between the eastern,

central, and northeast are small, with the difference between the

eastern and central is the lowest in the full sample, with a mean

value of 0.0300. Large values of differences are all derived from the

southwest and other regions. For example, the difference between

the southwest and northwest has the largest value in the sample

period, with a mean of 0.0758, twice as large as the difference

between the eastern and central. In terms of time-varying trends in

inter-regional differences, the most significant increases in

differences between the northwest and other regions, such as

10.28%, 9.92%, and 9.64% between central and northwest,

southwest and northwest, and eastern and northwest, respectively,

ranked among the top three increases in differences

between regions.
TABLE 4 Estimations of within-group variation.

Region Mean Gini coefficient 2004 2008 2012 2016 2020 Average growth rate

eastern 0.0268 0.0126 0.0228 0.0228 0.0318 0.0415 7.76%

central 0.0271 0.0123 0.0284 0.0198 0.0366 0.0327 6.32%

northeast 0.0206 0.0076 0.0129 0.0327 0.0332 0.0091 1.12%

southwest 0.0556 0.0238 0.0581 0.0646 0.0541 0.0711 7.08%

northwest 0.0311 0.0110 0.0188 0.0420 0.0365 0.0566 10.77%
FIGURE 2

Evolution of the overall Gini coefficient and its decomposition.
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6 Analysis of factors affecting
industrial green transformation

For investigating the deep-seated reasons for the spatial-

temporal evolution characteristics of China’s industrial green

transformation, the results were examined with the help of a

quantile model, as shown in Table 5.
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In terms of domestic factors, the estimated coefficients of

lnpgdp, stru, and tech are significantly positive in all quartiles,

indicating that economic development, industrial structure

optimization, and technological progress significantly improve

industrial green transformation efficiency. However, the

manifestations of the improving effect are different. The

coefficient of lnpgdp is positive at all quantile levels and shows an
TABLE 5 Estimations of quantile models.

Variable Q10 Q25 Q50 Q75 Q90

lnpgdp 0.0703*** 0.0747*** 0.0735*** 0.1038*** 0.1369***

(0.0016) (0.0131) (0.0027) (0.0004) (0.0127)

stru 0.0074*** 0.0148*** 0.0294*** 0.0105*** 0.0196**

(0.0021) (0.0016) (0.0005) (0.0004) (0.0097)

tech 0.0214*** 0.0312*** 0.0352*** 0.0310*** 0.0084**

(0.0011) (0.0011) (0.0003) (0.0005) (0.0039)

trade -0.0303*** -0.0228*** -0.0442*** -0.0491*** -0.0816***

(0.0045) (0.0018) (0.0006) (0.0007) (0.0080)

lnfdi -0.0581*** -0.0574*** -0.0498*** -0.0571*** -0.0424***

(0.0013) (0.0030) (0.0002) (0.0004) (0.0063)

lnodis 0.0266*** 0.0160*** 0.0102*** 0.0163*** 0.0161***

(0.0008) (0.0017) (0.0004) (0.0003) (0.0032)

fixed effect Y Y Y Y Y

obs 510 510 510 510 510
*p<0.1, **p<0.05, and ***p<0.01.
B C

D E

A

FIGURE 3

Between-group variation in the year 2004 (A), 2008 (B), 2012 (C), 2016 (D) and 2020 (E).
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increasing trend as the quantile level increases, implying that

economic development contributes more significantly to

provinces with more efficient industrial green transformation.

The coefficient of stru undergoes an “inverted U-shaped” process

of change, which means that there is an optimal interval for the

promotion of industrial green transformation by adjusting the ratio

of the third sector to the second sector. And the promotion of

industrial green transformation by industrial structure is more

obvious when the efficiency of industrial green transformation is

at an intermediate level. The magnitude of the coefficient of tech is

second only to lnpgdp, indicating that technological progress is an

important driver of industrial green transformation, but the value of

the coefficient falls back at the 90 percentiles, probably because the

contribution of science and technology carried by the number of

patents granted gradually falls back when the green transformation

of industry is more efficient. At this time, more attention should be

paid to the development and application of green technology. As

found by Qing et al. (2022), proactive green innovation, including

process innovation and product innovation, has a significant

positive effect on improving corporate earnings.

In terms of international factors, the estimated coefficients of

trade and lnfdi are significantly negative at all quartiles, and the

coefficient of lnofdi is significantly positive, indicating that foreign

trade and foreign direct investment inhibit China’s industrial green

transformation, while outward foreign direct investment promotes

it. Specifically, the coefficient of trade is at a low level until the 75

percentiles, but the inhibiting effect increases significantly at the 90

percentiles. The possible reason is that China used to be in a low

position in the international division of labor system, which to some

extent led to the restructuring of import and export trade inhibiting

the green transformation of industry. The magnitude of the

coefficient of lnfdi gradually decreases with the quantile, probably

because foreign investors have transferred some highly polluting

enterprises to China, but as the efficiency of China’s industrial green

transformation continues to increase, such enterprises gradually

increase their green output under the influence of competitive

effects, reducing the inhibiting effect on industrial green

transformation. Unlike the other two factors, the estimated

coefficient of lnofdi is positive at all quartiles, contributing to the

industrial green transformation and showing a “U-shaped” change

characteristic of first decreasing and then increasing.
7 Conclusion and policy implications

Industrial green transformation is an important element in

achieving Chinese-style modernization and has attracted extensive

attention from scholars, but a review of the literature reveals a

relative lack of research on the evolution of trends, regional

differences, and causes. Therefore, this paper uses China’s provincial

panel data from 2004-2020 to measure the efficiency of industrial green

transformation adopting the directional distance function and the

GML index and carries out systematic verification and analysis based

on kernel density estimation, Markov chain analysis, the Dagum Gini

coefficient, and the quantile model. The following main findings are

obtained: (1) From the measurement results, the efficiency of China’s
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industrial green transformation has steadily increased over the sample

period, showing a decreasing distribution of the northwest, northeast,

central, eastern, and southwest in that order. The northwestern and

northeastern provinces have the highest annual average value increase,

making the top three provinces shift from being exclusively shared by

the east to being shared by the northwest, east and northeast. (2) From

the distribution characteristics, the industrial green transformation

efficiency shows the characteristics of “ transformation efficiency

increasing and absolute difference expanding”. In addition, there is a

“low-level trap” and a “high-level monopoly” in China’s industrial

green transformation, and it is most likely to remain in its original state,

but it also has the characteristic of “jumping” transfer. There is also a

certain risk that the industrial green transition will fall in rank,

especially if the medium-high rank is reduced to a medium-low

rank. (3) From the regional differences, the overall Gini coefficient

shows a fluctuating upward “W” trend, highlighting the widening gap

in industrial green transformation efficiency among provinces. The

decomposed results show that the differences are mainly between

groups that is, the differences between the five regions, and the intra-

group differences are also increasing. (4) From the influencing factors,

the absolute values of the estimated coefficients of economic growth,

technological progress, foreign trade, and FDI expand as the quantile

point increases, suggesting that the factors above may pull the

industrial green transformation efficiency to achieve rapid

improvement (reduction) in higher level provinces, while relatively

slow improvement (reduction) in lower level provinces, thus leading to

the expansion of overall spatial differences to a certain extent. The

estimated coefficients of industrial structure and OFDI help to narrow

the spatial differences.

According to the research conclusion, we obtain the following

policy implications: (1) we should face up to the shortcomings in

the process of industrial green transformation and prevent the

efficiency of industrial green transformation from “backtracking”.

Provinces should focus on the relationship between “quantity” and

“quality” in the process of promoting industrial green

transformation, as the two are not separate. In particular, for

provinces locked in low levels of transformation efficiency and at

risk of declining grades, it is all the more important to achieve a

significant improvement in quality while maintaining quantitative

growth. (2) Pay attention to regional differences in the process of

industrial green transformation, especially the development

differences among the five major regions. In the process of

building a unified domestic market, exchanges and cooperation

between regions should be further strengthened, resources should

be rationally allocated, a synergy of industrial green transformation

should be formed, and regional development imbalances should be

prevented from further widening. Although the efficiency of

industrial green transformation has increased fastest in the

northwest, the eastern provinces have strong economic strength

and always have a leading edge, so the eastern region needs to take

on more tasks of tackling cutting-edge technologies and the cost of

pilot tolerance. The southwest region, on the other hand, has the

lowest efficiency of transformation, so the priority is to improve the

efficiency of transformation by learning from successful

transformation experiences. (3) Make full use of both domestic

and international markets and resources to promote industrial
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green transformation. Based on the identification of key influencing

factors at different sub-levels of industrial green transformation, will

help provinces to introduce policies to promote industrial green

transformation according to the characteristics of the region. For

provinces with a higher industrial green transformation efficiency,

they can increase investment in green technology research and

development and adjust their industrial structure, which will not

only help them realize their industrial green transformation, but

also generate spillover effects and play a leading role. For provinces

and cities with a lower efficiency rating, they can develop their

economies and raise their GDP per capita, and in addition, they can

increase OFDI, which will help accelerate the industrial green

transformation to a higher value.

Although this paper discusses the evolutionary characteristics

and influencing factors of China’s industrial green transformation,

there are still some limitations that deserve further study. Firstly, this

paper uses kernel density estimation, Markov chain method and

Dagum Gini coefficient to demonstrate the evolution trend, transfer

probability and regional differences of China’s industrial green

transformation, but neglects the convergence analysis between

regions, which is worthy of further discussion. And in the future, it

can be combined with the measure of spatial convergence to examine

the convergence of industrial green transformation under the

condition of spatial interconnection. In addition, this paper

analyzes China’s industrial green transformation only at the

regional level, however, China has many industrial sub-divisions,

which can be classified as labor-intensive, capital-intensive, and

technology-intensive, so further attention can be paid to the green

transformation of different types of industrial sectors in the future.
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