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agglomeration, China
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and Li-na Dong5

1College of Biology and Environment, Nanjing Forestry University, Nanjing, China, 2School of Earth
Science and Engineering, Nanjing University, Nanjing, China, 3Chengxian College, Southeast
University, Nanjing, China, 4Institute of Botany, Jiangsu Province and Chinese Academy of Sciences,
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Since China’s reform and opening-up period, the southern Jiangsu urban

agglomeration has been one of the fastest urbanizing regions in the country. This

rapid urbanization has led to dramatic changes in land use cover that have been the

primary drivers of carbon stock changes in the terrestrial ecosystem. In this study, we

utilize the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST)model

and a patch-generating land use simulation (PLUS) model to analyze the land use

changes and carbon stocks in the southern Jiangsu urban agglomeration over the

past 30 years. We then simulate the carbon stock changes in the study area in the

year 2050 under natural growth, cultivated land conservation, and ecological

conservation scenarios. The results showed that 1) over the past 30 years, the

urban area has increased by 2.98 times, reaching 7,408.42 km2 by 2020. In contrast,

the area of cultivated and forested land has continued to decrease with rapid

urbanization. 2) Between 1990 and 2020, the carbon stock of the urban

agglomeration in southern Jiangsu decreased by 5.34%. The changes in the

spatial distribution of carbon stocks are consistent with the changes in land use.

3) By 2050, the carbon stock loss was the largest under the natural growth scenario

at 10.49 mt, while the carbon stock loss was the smallest under the cultivated land

protection scenario at 0.97mt. Under the ecological protection scenario, the carbon

stock loss was 9.9 mt. The results indicate that the adoption of cultivated land and

ecological protectionmeasures can effectively control the reduction of carbon stock

in rapidly urbanizing areas. 4) The conversion of cultivated land and forest land to
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urban land was the primary reason for the carbon stock reduction in the study area,

which was primarily located in the urban outward expansion area. This study

provides a reference- and data-based support for the management, decision-

making, and planning in rapidly urbanizing areas.
KEYWORDS

carbon storage, land use, urbanization, InVEST model, Plus model, southern Jiangsu
urban agglomeration
1 Introduction

In recent decades, cities worldwide, and especially in developing

countries, have experienced rapid urbanization. The global

urbanized area increased from 650,000 km2 in 2000 to 1.86

million km2 in 2030 (Yang et al., 2020). Urbanization is a long-

term process that can improve socioeconomic development and

enhance people’s quality of life (Bhatti et al., 2016; Hofmann et al.,

2019). However, it can also cause land use cover changes and

ecological problems in cities (Zhao et al., 2013; Sadiq Khan et al.,

2020; Iserhard et al., 2021; Cao et al., 2022; Tian et al., 2022; Zeng

et al., 2023).

The carbon stock of terrestrial ecosystems is an important

component of the global carbon stock that can effectively absorb

atmospheric CO2 and slow down global warming. It is an important

factor in the global carbon cycle balance (Xiang et al., 2022) and

plays a key role in regulating global climate change (Zhu et al.,

2021). Land use changes alter the structure and function of urban

ecosystems. These changes also affect the carbon sequestration

capacity of vegetation and soils, leading to changes in carbon

stocks in terrestrial ecosystems (Wang et al., 2021). Quantifying

the relationship between land use and carbon storage is important

for studying carbon storage in terrestrial ecosystems (Qu

et al., 2011).

Current studies on changes in carbon stock due to changes in

land use have been conducted primarily in terms of countries and

groups of countries (Zaehle et al., 2007; Janes-Bassett et al., 2021;

Olorunfemi et al., 2021; Whitehead et al., 2021), special geoclimatic

zones (Yang et al., 2009; Yang et al., 2017; Li et al., 2020), watersheds

(Tong et al., 2019; Zhu et al., 2020; Wang J. et al., 2022), provinces

(Liu et al., 2022), and urban clusters and cities (Jiang et al., 2017;

Yang et al., 2020; Wang C. et al., 2022; Wang Z. et al., 2022; Wang

Ao. et al., 2022; Wu et al., 2023). Zaehle et al. (2007) studied the

changes in carbon stocks in Europe under climatic land use changes

from 1990 to 2100 and showed that a decrease in agricultural land

and forest land was the primary reason for carbon stock changes in

Europe. Olorunfemi et al. (2021) studied land use changes and the

carbon stock in sub-Saharan Africa and found that the primary

cause of carbon stock change on the continent was deforestation,

particularly the expansion of agricultural land, which caused 70%

−80% of the total forest loss. Zhu et al. (2021) discussed the decline

in carbon stocks due to land use changes in China’s drylands from

1980 to 2015 and found that grassland degradation was the primary
02
reason for the decrease in the dryland carbon stocks. Zhu et al.

(2022) studied coastal urban agglomerations in China from 1980 to

2050 and found that the more rapidly urbanizing the area was, the

more pronounced the decline in carbon stocks was.

China has experienced rapid urbanization since its reform and

opening-up period. The level of urbanization increased from 17.9%

in 1978 to 56.1% in 2015, and it is expected to reach 66.4% by 2050

(Yuan et al., 2018). The Yangtze River Delta city cluster is one of the

most urbanized regions in China, and super metropolises such as

Shanghai, Nanjing, Hangzhou, and Suzhou have emerged in it. The

southern Jiangsu urban agglomeration is the core urban

agglomeration in the Yangtze River Delta urban agglomeration in

China. It includes the five cities of Nanjing, Zhenjiang, Changzhou,

Wuxi, and Suzhou. Notably, 33.6% of China’s national GDP in

2022 came from the 41 cities in the Yangtze River Delta

urban agglomeration.

This rapid urbanization has caused massive changes in land use.

Between 1990 and 2020, the construction land area in the southern

Jiangsu urban agglomeration expanded by 2.98 times. The dramatic

changes in land use have had a significant impact on the ecological

environment and carbon storage of the region (Zhang et al., 2021).

As one of the fastest growing regions in China, the South Jiangsu

urban agglomeration has developed a series of initiatives to cope

with these changes. Each city has promulgated the 14th Five-Year

Plan for Low Carbon Development and the Three-Year Action Plan

for Green Low-Carbon Cycle Development; however, the energy-

saving and carbon reduction situation remains serious.

This study investigates the land use and carbon stock changes in

the southern Jiangsu urban agglomeration during the past 30 years

based on the Integrated Valuation of Ecosystem Services and Trade-

offs (InVEST) model. We also simulate the carbon stock status of

the southern Jiangsu urban agglomeration in 2050 under different

development scenarios using the patch-generating land use

simulation (PLUS) model. We analyze the contribution from the

driving factors of land use changes, with the specific objectives of

1) investigating land use changes in the southern Jiangsu urban

agglomeration from 1990 to 2020, 2) determining the impact of

land use changes on the carbon stock in the southern Jiangsu urban

agglomeration from 1990 to 2020, and 3) simulating the carbon

stock changes in the southern Jiangsu urban agglomeration in 2050

under different scenarios. Land use is an important factor that limits

the carbon stock calculation in terrestrial ecosystems. Although

there are many studies on carbon stock changes due to land use
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change, the driving factors of land use changes in rapidly urbanizing

areas are less studied, and most of the existing studies have studied

the carbon stock or spatial and temporal changes in ecosystems

based on past land use. There have been fewer studies that have

simulated the carbon stock status of future cities under different

development scenarios. This study combines the InVEST model

and the PLUS model to calculate the future carbon stock in the

study area more accurately. The results of this study are intended to

provide scientific data for territorial spatial planning of the southern

Jiangsu urban agglomeration. We also provide a reference for

regional ecological environmental protection, ecosystem carbon

storage, and the protection of the Yangtze River economic

zone ecosystem.
2 Materials and methods

2.1 Study area

The South Jiangsu urban agglomeration (Figure 1) is located in

the lower reaches of the Yangtze River, with geographical

coordinates of 30°47′N–32°37′N, 118°22′E–121°20′E. Its total

land area is 28,085.36 km2, its resident population is 38.318

million, and its urbanization rate is 81.96%. It is one of the most

densely populated areas in China. The 2022 GDP of the South

Jiangsu urban agglomeration was 70,283 trillion, accounting for

57.20% and 5.81% of the total economic output of Jiangsu Province

and the country, respectively. The study area has a subtropical

monsoon climate with an average annual temperature of 17.4°C and

an average annual rainfall of 1,326 mm. The landscape is dominated

by low hills in the west and plains in the east, with abundant water

systems and a dense network of rivers. The land resources in the

region are primarily cultivated land and water areas, while the
Frontiers in Ecology and Evolution 03
amount of woodland and grassland is small and unevenly

distributed. The eastern portion lacks mature woodland. The

rapid expansion of construction land has led to many ecological

problems, such as habitat fragmentation and shrinking lake areas.
2.2 Data acquisition and processing

The land use data in this study were obtained from the Resource

and Environment Science and Data Center of the Chinese Academy of

Sciences (https://www.resdc.cn/). The remote sensing image

interpretation data from 1990, 2000, 2010, and 2020 had a resolution

of 30m. Six categories of land were included: cultivated land, forest land,

grassland, water areas, construction land, and unused land (Table 1).

There were 14 driving factors of land use changes, which were

divided into two categories; specifically, there were five drivers

related to climate and the environment and nine drivers related to

socioeconomic factors (Figure 2). The GDP and population data

were obtained from the Resource and Environment Science and

Data Center of the Chinese Academy of Sciences (https://

www.resdc.cn) with a resolution of 1 km. The digital elevation

model (DEM) elevation data and slope data were obtained from the

Geospatial Data Cloud (http://www.gscloud.cn/home) with a

resolution of 30 m. For the climate and environment data,

the average annual temperature and average annual precipitation

were obtained by interpolating the data from the National

Meteorological Science Database (http://data.cma.cn) with inverse

distance weights. The soil type data were obtained from the

National Earth System Science Data Center Soil Subcenter (http://

soil.geodata.cn). For the socioeconomic data, the distances to roads,

county governments, and rivers and bodies of water were obtained

from OpenStreetMap (https://www.openstreetmap.org), and the

ArcGIS Euclidean distances were calculated (Table 1).
FIGURE 1

Map of the study area.
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2.3 Research methodology

2.3.1 InVEST model carbon module
InVEST is a model that is used to assess ecosystem services and

their economic value, including water conservation, soil and water

conservation, habitat quality, carbon storage, and other modules. It

is currently used in national, regional, and watershed ecological

function zoning; ecological red line delineations; ecological

restoration; and resource and environmental carrying capacity

assessments. The carbon storage module of the InVEST model

consists of four primary modules of carbon storage: aboveground

biochar (carbon in living vegetation on land), belowground biochar

(carbon in living plant roots), soil carbon (carbon contained in soil),

and dead organic carbon (carbon in dead plant litter). The total

carbon stock is calculated using the following equation (Liu et al.,

2019):

Ci = Ci−above + Ci−below + Ci−soil + Ci−dead Ctotal =o
n

i¼l

Ci � Si

where i is the land use type; Ci is the total carbon density of the

land use type i; Ci-above is the carbon density of aboveground

vegetation of the land use type i; Ci-below is the carbon density of

underground living roots of the land use type i; Ci-soil is the carbon

density in the soil of the land use type i; Ci-dead is the carbon density

of vegetation die-off of the land use type i; the unit of the above

carbon density is t/hm2; Ctotal is the total carbon stock; Si is the total

area of the land use type i, hm2; and n is the total number of land use

types. In this study, n = 6.
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In this study, the carbon density data were obtained from the

existing literature, and the same or similar areas as the study area

were preferred. The carbon densities of these areas were measured,

or the surveyed data were utilized. The aboveground carbon density

was obtained from the 2010 Chinese terrestrial ecosystem soil 0–100

cm carbon density dataset (Xu et al., 2019) and a study of the impact

of land use changes on carbon storage in terrestrial ecosystems in

Jiangsu Province (Chuai et al., 2011). The soil carbon density data

were selected with reference to the values of carbon density studies

by Chuai et al. (2011); Jiang et al. (2005), and others, and these were

combined with the soil types of urban clusters in southern Jiangsu.

The precipitation–carbon density relationship model (Alam et al.,

2013) was used to correct the aboveground carbon density and soil

carbon density data, and the model equation was as follows:

CBP = 6:789� e0:0054�MAP(R2 = 0:70)

CSP = 3:3968�MAP + 3996:1(R2 = 0:11)

KBP =
CBP1

CBP2

KSP =
CSP1

CSP2

where MAP is the average annual rainfall in the study area; CBP

is the aboveground biological carbon density calculated based on

rainfall; CSP is the soil carbon density calculated based on rainfall,

kg/m2; KBP is the rainfall correction factor for the aboveground
TABLE 1 Spatial driving factors of the land use changes in this study.

Category Data Year Original
resolution

Data resource

Land use and land cover data Land use and land cover data 1990, 2000, 2010, 2020 30 m https://www.resdc.cn

Climate and environment-related driving factors Soil types 2018 30 m http://soil.geodata.cn/

DEM 2020 30 m http://www.gscloud.cn/home

Slope 2020 30 m http://www.gscloud.cn/home

Average annual temperature 2020 30 m http://data.cma.cn/

Average annual precipitation 2000–2020 30 m http://data.cma.cn/

Socioeconomic driving factors GDP 2020 1 km https://www.resdc.cn

Population 2020 1 km https://www.resdc.cn

Distance to railroads 2020 30 m https://www.openstreetmap.org

Distance to highways 2020 30 m https://www.openstreetmap.org

Distance to primary roads 2020 30 m https://www.openstreetmap.org

Distance to secondary roads 2020 30 m https://www.openstreetmap.org

Distance to tertiary roads 2020 30 m https://www.openstreetmap.org

Distance to governments 2020 30 m https://www.webmap.cn/main.do

Distance to rivers 2020 30 m
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biological carbon density; KSP is the rainfall correction factor for the

soil biological carbon density; CBP1 and CSP1 are the aboveground

and soil carbon density of Nanjing, respectively; and CBP2 and CSP2

are the aboveground and soil carbon density of Jiangsu Province,

respectively. CBP1 and CSP1 are the aboveground and soil carbon

density in Nanjing, respectively, and CBP2 and CSP2 are the

aboveground and soil carbon density in Jiangsu Province,

respectively. The carbon density data of Jiangsu Province were

multiplied with the KBP and KSP correction coefficients to obtain the

aboveground biological carbon density values and soil carbon

density values in southern Jiangsu, and the above carbon density

units were t/hm2.
Frontiers in Ecology and Evolution 05
For the belowground carbon density values, the biomass factor

conversion method (Fang and Wang, 2001) was used, and the

calculation equation was as follows:

Cibelow = a� b� DWi

whereCibelow is the belowground biological carbon density, t/hm
2; i

is the land use type; DWi is the aboveground biomass of the i, land use

type (t/hm2); a is the conversion coefficient; b is the ratio of the

belowground to aboveground biomass according to the research

results of Fang and Wang (2001) and Huang et al. (2006), and the

value of b is 0.2 for cultivated land, 0.3 for forest land, and 4.3 for

grassland. The dead carbon density was taken according to the
TABLE 2 Carbon density value of each land use type in the study area (t/hm2).

Land use type Aboveground carbon density Underground carbon density Soil carbon density Dead carbon density

Cultivated land 6.37 1.27 99.74 0

Forest land 73.15 21.94 136.67 8.53

Grassland 2.43 10.45 107.04 0.92

Water area 0.69 0 87.07 0

Construction land 0.12 0 78.37 0

Unused land 0.12 0 80.09 0
FIGURE 2

Primary driving factors of land use changes in the southern Jiangsu urban agglomeration.
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research results of Li et al. (2020) and modified by the rainfall model.

Finally, a carbon density table of the land use types in the southern

Jiangsu urban agglomeration was created (Table 2).

2.3.2 PLUS model
The PLUS model is a new land use simulation model based on

cellular automata. It is utilized for studying the causes of land use

change and dynamically simulating a variety of land use change

patches, especially for forest land and grassland. By extracting

samples of the intertransformation of various types of land use

between two periods of land use data for training, future land use is

simulated based on the probability of transformation. The random

forest algorithm is used to calculate the factors and drivers of land

use expansion for each type. The probability of each land use type

being developed and the contribution of the drivers to the

expansion of each land use type can then be obtained. This is

then combined with the generation of random patches and the

establishment of a transfer transition matrix used to determine the

future land use situation. Two primary modules are included.The

land expansion analysis strategy (LEAS) is used to analyze the land

use data of two dates and to obtain the change pattern of land use

types using the growth patches of each changing land use type. This

is utilized to describe the characteristics of land use changes in a

specific time interval. In addition, the random forest classification

(RFC) algorithm is utilized to explore the relationship between the

growth of different land use types and multiple drivers. The

probability of development is obtained and calculated using Eq. 1

(Liang et al., 2021) as follows:

Pd
i,k(X) =

o
M

n=1
I½hn(X) = d�

M

where X is a vector consisting of the driving factors; M is the

number of decision trees; d takes the value of 0 or 1, where 1 means

other land use types that can be transformed to land use type k and

0 means other land types that cannot be transformed to land type k;

hn(X) is the simulated land use type calculated at the decision tree of

n; I[hn(X) = d] is the exponential function of the decision number;

and is the type k at spatial unit i the probability of land use type

growth at spatial cell i.

Cellular automata based on multiple random seeds (CARS) is a

scenario-driven land use simulation model based on meta-cellular

automata that primarily simulates the subsequent land use

distribution pattern by obtaining the development probability of

each type of land use. The total probability of conversion of a land

use type k in Eq. 2 (Liang et al., 2021) is as follows:

OPd=1,t
i,k = Pd=1

i,k �W t
i,k � Dt

k

where Pd=1
i,k denotes the probability of the growth of land use

type k on cell i, W t
i,k is the domain effect of cell i, and Dt

k denotes the

effect of future demand for land use k. These are calculated using

Eqs. 3 and 4 (Liang et al., 2021) as follows:
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Wt
i,k =

con(ct−1i = k)
n� n − 1

� wk Dt
k =

Dt−1
k ( Gt−1

k

�� �� ≤ Gt−2
k

�� ��)
Dt−1
k � Gt−2

k
Gt−1
k
(0 〉Gt−2

k 〉Gt−1
k )

Dt−1
k � Gt−1

k
Gt−2
k
(Gt−1

k 〉Gt−2
k 〉 0)

8>>>><
>>>>:

where con denotes the total number of grid cells occupied by the

kth land use type in the last iteration in the n × n window, wk is the

weight between different land use types with a default value of 1,

and Gt−1
k Gt−2

k is the difference between the current demand and

future demand of land use type k at the t−1st and t−2nd iterations.
2.3.2.1 Parameter setting

The LEAS parameters were set as follows: the value of the

decision tree was set to 20, the sampling rate was 0.01 by default,

mTry did not exceed the number of driving factors and was set to

14, and the number of parallel threads was set to 1. The CARS

parameters were set as follows: the neighborhood range was set to

the default value of 3, the thread was set to 1, the decreasing

threshold factor was 0.5, the diffusion factor was 0.1, and the

random patch seed probability was 0.0001.
2.3.2.2 Accuracy verification

Using land use data from 2000 and 2010, a Markov simulation

of land use in 2020 was obtained using the PLUS model, the actual

land use data in 2020 were entered in the validation module, and the

kappa coefficient was obtained as 0.85. When the kappa coefficient

was greater than 0.75, this indicated that the land use results

simulated by the model were more accurate.
2.3.2.3 Scenario setting

Three development scenarios were established in this study: the

natural development scenario (NDS), where the development of

each land use type continued the current development trend

without adjustment; the ecological protection scenario (EPS),

which is a scenario that restricts the conversion of ecological

land, such as forest land, grassland, and water areas, to other

land; and the cultivated land protection scenario (CPS), which

protects cultivated land and restricts the conversion of cultivated

land to other land. The multiscenario transfer matrix is established

in Table 3, where 1 means that the conversion of land types can

occur and 0 means that the conversion of land types cannot occur.

a, b, c, d, e, and f represent the six land types: cultivated land, forest

land, grassland, water areas, construction land, and unused land,

respectively. The research framework is shown in Figure 3.

In this study, the InVEST model and the PLUS model were

combined to calculate the carbon stock in the study area. First,

based on the four periods of LULC classification data in the

study area in 1990, 2000, 2010, and 2020, the InVEST model was

used to calculate the carbon stocks of different land use types.

Then, the total carbon stock was aggregated. After that, the

LULC data from 2010 were used as the base period data, and the
frontiersin.org
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changing trend from 2010 to 2020 was used to forecast the LULC in

2020 using the PLUS model. Then, the simulation accuracy was

verified with the actual LULC data from 2020 to ensure that the

simulation accuracy met the research requirements. Finally, the

LULC in 2050 was simulated by the PLUS model using the 1990–

2020 change trend with the LULC data in 2020 as the base

period data.

3 Results

3.1 Analysis of land use changes and the
driver contributions from 1990 to 2050

3.1.1 Analysis of land use changes from 1990
to 2020

From 1900 to 2020, the areas of cultivated land and forest land

in the southern Jiangsu urban agglomeration decreased by 5,292.48

and 115.11 km2, respectively. The proportion of cultivated land

decreased from 64.01% to 45.18%. The percentage of forest land

decreased from 7.23% to 6.82%. The areas of grassland, water areas,

construction land, and unused land increased by 46.24, 377.09,

4,921.32, and 61.77 km2, respectively, and the proportions increased

by 0.22%, 1.99%, 13.47%, and 0.17%. Across all land types, the

proportion of cultivated land decreased the most, whereas that of

construction land increased the most. The specific conversion of

land use changes in the study area from 1990 to 2020 is shown in
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Table 3, The distribution of new land and land use from 1990 to

2020 is shown in Figure 4.

From 1990 to 2020, land use changes in the study area could be

divided into approximately three stages (Table 4). 1) In the slow

development stage (1990−2000), the study area’s economy and

urbanization were in the early development stage. During this

period, cultivated land area decreased by 5.42% and the

construction land area increased by 5.1%. 2) The rapid

development stage (2000−2010) was a decade of rapid economic

development in the study area, and the expansion of land use caused

by urbanization was the most significant in this phase, with the area

of cultivated land decreasing by 11.17% and that of construction

land increasing by 9.63%. 3) In the stable development phase (2010

−2020), economic development and urban construction in the

study area entered a relatively stable phase, and the rate of change

of various land types gradually slowed down. During this decade,

the area of cultivated land in the study area decreased by 2.24%,

while that of the construction land increased by 2.79%. The new

construction land caused by rapid urbanization in the study area

was primarily converted from cultivated land, and this part of the

conversion was primarily located in the area where the original

built-up area of the city expanded outward, as shown in Figure 4

and Table 4.

The conversion of cultivated land area to construction land

area and water area was the largest, at 4,777.78 and 651.21 km2,

respectively, from 1990 to 2020 (Table 5). With an increase in the
TABLE 3 Multiscene transfer matrix setting.

NDS (natural development scenario) EPS (ecological protection scenario) CPS (cultivated land protection scenario)

a b c d e f a b C D e f a b c d e f

a 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0

b 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 0 0 1

c 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1 1 1 1

d 1 0 1 1 0 1 0 0 0 1 0 0 1 0 1 1 0 1

e 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0

f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
f
rontiers
FIGURE 3
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people’s awareness of environmental protection, under ecological

protection policies such as returning polder fields to their lakes,

cultivated land area was converted to water area. In addition, the

demand for aquatic products has increased, and the aquaculture

area also increased. The increase in water areas was primarily

located in the Gaochun District of Nanjing, Zhenjiang Danyang

City in Nanjing, Liyang City in Changzhou, and Yangcheng Lake

in Suzhou.

The conversion of forest land to construction land, cultivated

land, and unused land was high, at 123.50, 35.02, and 34.10 km2,

respectively, from 1990 to 2020 (Table 5). This was because the

expansion of urban construction land caused encroachments into
Frontiers in Ecology and Evolution 08
forest land, while indiscriminate deforestation caused the

conversion of forest land to cultivated land and unused land.

The proportion of grassland in the study area from 1990 to 2020

was relatively small, accounting for only approximately 0.7% of the

total land area. It was primarily located on the riverbanks and

islands along the Yangtze River, as well as Ge Lake, Taihu Lake,

Tianmu Lake, and other lakes. Most of the converted grassland

became construction land and water areas. This was attributed to

urban development and fish farming along rivers and lakes

encroaching on the original grasslands. To some extent, the

ecological environment along the Yangtze River and lakes,

especially the habitats of plants and animals, has been destroyed.
TABLE 4 Area and percentage of land use in the study area from 1990 to 2020.

Land use
type

1990 2000 2010 2020 Area change
(km2)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Area
(km2)

Percentage
(%)

Cultivated
land

17,986.75 64.01 16,462.52 58.59 13,323.93 47.42 12,694.26 45.18 −5,292.48

Forest land 2,031.98 7.23 1,996.99 7.11 1,940.51 6.91 1,916.87 6.82 −115.11

Grassland 153.69 0.55 151.25 0.54 137.51 0.49 199.94 0.71 46.24

Water area 5,427.28 19.31 5,557.20 19.78 5,994.41 21.33 5,804.37 20.66 377.09

Construction
land

2,487.10 8.85 3,918.51 13.95 6,25.46 23.58 7,408.42 26.37 4,921.32

Unused land 12.54 0.04 12.94 0.05 77.67 0.28 74.31 0.26 61.77
B

C D

E F

A

FIGURE 4

Land use and change from 1990 to 2020 and land use in the 2050 scenarios.
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Water areas were primarily converted to construction land and

cultivated land, with 161.17 and 79.47 km2 of water converted to

these land types, respectively. This was due to the expansion of

urban and rural areas causing some water areas to be filled and

turned into construction land.

Construction land was primarily converted to cultivated land

and water, with 121.68 and 15.20 km2 of construction land being

converted to these land types, respectively, because urbanization led

to a large amount of unused construction land in the countryside.

This land has since been reclaimed into farmland. In addition,

urban and rural original construction land was also converted to

water areas due to water conservancy and flood storage.

The percentage of unused land was relatively small, accounting

for only 0.26% of the land use area in 2020, and its conversion was

not significant.

3.1.2 2020−2050 land use change analysis
Based on the PLUS model, this study simulated the land use

distribution under three development scenarios in 2050 using 2020

as the base period (Figure 4).

Under the natural development scenario, the changes in land

use continued according to the trend from 1990 to 2020. Cultivated

land, forest land, and water areas decreased by 3,365.53, 11.64,

46.56, and 14.87 km2, respectively. Grassland, construction land,

and unused land increased by 7.03, 3,363.22, and 52.88 km2,

respectively (Table 6). In terms of the direction of land use area

transfer (Figure 5), cultivated land was mainly converted to
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construction land. Forest land was mainly shifted to unused land.

Grassland was primarily shifted to watershed and construction

land. The largest changes were in construction land. The

contribution of other land use types was smaller and was mainly

attributed to the large transfer of cultivated land (NDS in Figure 5).

Under the ecological protection scenario, the highest reduction

in cultivated land was 3,559.53 km2, and the areas of forest land and

water area increased by 11.91 and 206.15 km2, respectively, due to

water source protection and returning farmland to forest and grass

policies (Table 6). As shown in Figure 5, cultivated land was mainly

converted to construction land and water areas. Forest land was

primarily converted to unused land. The amount of converted land

under this scenario was comparatively small because ecological

lands such as grassland and watershed were protected.

Under the cultivated land protection scenario, construction

land expansion was controlled due to the restriction on

converting cultivated land to other lands, which only increased by

20.79 km2 compared with 2020. Forest land also decreased by

62.91 km2, all converted to cultivated land. Cultivated land

increased by 75.97 km2, according to the direction of land use

area transfer (Figure 5). Cultivated land was protected in this

scenario, and conversion to construction land was restricted. The

forest land was mainly converted to cultivated land and unused

land. Grassland was primarily converted into water areas, and water

areas were mainly converted into cultivated land.

In summary, under the three development scenarios, except for

the cultivated land protection scenario, the expansion of
TABLE 6 Land use structure and carbon storage of the study area in 2050 (mt).

Land
use
type

Cultivated land Forest land Grassland Water area Construction land Unused land

Year Area
(km2)

Carbon
storage

Area
(km2)

Carbon
storage

Area
(km2)

Carbon
storage

Area
(km2)

Carbon
storage

Area
(km2)

Carbon
storage

Area
(km2)

Carbon
storage

2020 12,694.26 136.31 1,916.87 46.06 199.94 2.42 5,804.37 50.94 7,408.42 58.15 74.31 0.60

2050NDS 9,328.73 100.17 1,870.31 44.94 206.96 2.50 5,789.50 50.81 10,771.63 84.55 126.59 1.02

2050EPS 9,134.73 98.07 1,928.78 44.83 200.04 2.42 6,010.52 52.74 10,758.75 84.44 65.34 1.02

2050CPS 12,770.23 137.13 1,853.96 44.55 170.15 2.06 5,785.85 50.78 7,429.20 58.31 84.33 0.68
fro
a. NDS (Natural development scenario) b. EPS (Ecological protection scenario) c. CPS(Cultivated land protection scenario).
TABLE 5 Land use transfer matrix from 1990 to 2020.

1990 2020

Cultivated land Forest land Grassland Water area Construction land Unused land Total

Cultivated land 12,464.81 73.51 16.25 651.21 4,777.78 20.62 18,004.18

Forest land 35.02 1,828.71 0.62 9.20 123.50 34.10 2,031.15

Grassland 5.98 1.55 118.60 11.24 14.93 1.20 153.50

Water area 79.47 2.72 63.97 5,114.29 161.17 2.58 5,424.20

Construction land 121.68 8.63 0.32 15.20 2,317.93 6.49 2,470.25

Unused land 0.08 1.30 0.01 0.76 1.15 9.21 12.51

Total 12,707.03 1,916.42 199.78 5,801.90 7,396.45 74.20 28,095.79
n
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construction land was obviously controlled. However, the

expansion of construction land in the other two scenarios still

maintained the previous trend and speed. In the ecological

protection scenario, the reduction of cultivated land was higher,

while the areas of forest land and water areas with higher
Frontiers in Ecology and Evolution 10
ecological values increased. Therefore, under the scenario of

simultaneous cultivated land protection and ecological protection,

the expansion of construction land was effectively controlled.

This is beneficial to the protection of the regional ecological

environment (Table 6).
FIGURE 5

Chord diagram of the land use transfer.
FIGURE 6

Ranking of land use probabilities and their driving factors.
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3.1.3 Driving factor contribution analysis
The probability of land use development and the contribution

of driving factors in 2050 were simulated according to the

development trend of land use in the study area from 1990 to

2020 (Figure 6). The GDP was the factor with the greatest influence

on the conversion of cultivated land, which indicates that the better

the economic development of a region, the greater the chance of

cultivated land being encroached upon. The DEM was the factor

with the greatest influence on the probability of the development of

forest land and unused land. The other driving factors were not

significant, indicating that natural factors had a more obvious

influence on these two land use types. For grassland, DEM and

rainfall were the most influential factors, and this was related to the

distribution of grassland in low elevations near water areas such as

riverbanks and islands. For construction land and water areas,

population was the factor with the greatest influence on the

development probability. Construction land expanded more

quickly in the more densely populated places.
3.2 1990−2020 carbon stock
change analysis

The carbon module of the InVEST model was used to calculate

the carbon storage in the southern Jiangsu urban agglomeration

from 1990 to 2020 (Table 7). The carbon storage showed a

decreasing trend, with an overall decrease of 5.34% from 1990 to

2020. Specifically, carbon storage decreased by 1.56% from 1990 to

2000, 3.09% from 2000 to 2010, and 0.68% from 2010 to 2020. In

terms of land use types, the carbon stocks in 2020 from the largest to

the smallest were as follows: cultivated land > construction land >

water > forest land > grassland > unused land. The southern Jiangsu

urban agglomeration is located in the Yangtze River Delta region.

This region has a developed economy, a high urbanization level, a

high population density, and a high degree of land development and

utilization. The urban expansion occupies a large area of land with

high carbon storage, such as cultivated land and forest land. This
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was the primary reason for the carbon storage decrease in the

study area.

As shown in Figure 6, there was no large difference in the

carbon storage spatial distribution in the southern Jiangsu urban

agglomeration from 1990 to 2020. In addition, the areas with lower

carbon storage were primarily water and construction land areas,

whereas the areas with higher carbon storage were primarily forest

land and grassland areas. The carbon storage decrease was primarily

due to the construction land expansion and water area increases. In

addition, the areas where carbon storage increased were mainly

where other land types were converted to forest, grassland, or

cultivated land, and the distribution had a sporadic tendency.
3.3 Multiscenario carbon stock change
analysis from 2020 to 2050

The carbon stock of the southern Jiangsu Province urban

agglomeration decreased from 1990 to 2020. Based on this trend,

the land use data for 2050 were simulated under three scenarios

(Figure 7). The carbon stock for the three scenarios was calculated

using the InVEST model. Compared with the carbon stock in 2020,

the total carbon stock decreased for each of the three scenarios.

Under the cultivated land protection scenario, the carbon stock

decreased the least, and this was only due to the decrease in forest

land. Under the natural development scenario, the carbon stock

decreased, and the decrease was more significant than under the

ecological land protection model. Under the ecological protection

scenario, the carbon stock decreased much more than under the

cropland protection model. Although in this scenario, ecological

protection measures were utilized to limit the reduction in

ecological land, a large amount of cropland continued to be

converted to construction land. In addition, the decrease in

carbon stock was primarily caused by a reduction in cropland.

The largest decrease in carbon stock was under the natural

development scenario, and the total carbon stock in the natural

development scenario decreased by 1.62 × 106 t, maintaining the
TABLE 7 Carbon storage by land use type in the study area from 1990 to 2020 (mt).

Land use
type

1990 2000 2010 2020

Carbon
storage

Percentage
(%)

Carbon
storage

Percentage
(%)

Carbon
storage

Percentage
(%)

Carbon
storage

Percentage
(%)

Cultivated
land

193.14 62.09 176.77 57.73 143.07 48.24 136.31 46.29

Forest land 48.83 15.70 47.99 15.67 46.63 15.72 46.06 15.64

Grassland 1.86 0.60 1.83 0.60 1.66 0.56 2.42 0.82

Water area 47.63 15.31 48.77 15.93 52.61 17.74 50.94 17.30

Construction
land

19.52 6.28 30.76 10.04 52.00 17.53 58.15 19.75

Unused land 0.10 0.03 0.10 0.03 0.62 0.21 0.60 0.20

Total 311.08 100.00 306.22 100.00 296.60 100.00 294.47 100.00
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declining trend of the past 20 years. Additionally, the decline was

primarily caused by a decrease in cultivated land and forest land. In

summary, the carbon stock decline was significantly controlled

under the cropland protection scenario and somewhat controlled

under the ecological protection scenario, whereas the largest

decrease was seen under the natural development scenario.

Therefore, by 2050, cultivated land protection and ecological

protection measures should be taken to effectively limit the

expansion of construction land and therefore limit the carbon

stock decrease.
4 Discussion

4.1 Impact of urbanization on land
use change

The southern Jiangsu urban agglomeration is located in the

coastal and the Yangtze River Delta economic zone, which is one

of the most dynamic and economically powerful regions in China (Li

et al., 2023). As of 2020, the proportion of cultivated land and

construction land in this region was much higher than the national

average, and the proportion of forest land, grassland, and unused land

was much lower than the lowest national level (Zong et al., 2021). In

terms of land use changes, the study area has experienced dramatic

changes in land use over the past 30 years, especially for cultivated

land and construction land, which accounted for a relatively large

proportion of all types of land use changes. This was consistent with

previous findings (Zhu et al., 2022). In the future projection, in

comparison with the natural development scenario, under the

ecological conservation scenario, the area of ecological lands, such

as woodland, grassland, and water, increased, and the area of

cultivated land continued to decrease. In addition, the expansion of

construction land area was primarily at the expense of cultivated land

area, but since the proportion of ecological land, such as woodland, in
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the study area was relatively low, the ecological conservation scenario

did not effectively curb the expansion of construction land in the city.

Under the cropland protection scenario, the area of cropland

increased and there was a certain degree of reduction in forest

land, grassland, and water. Additionally, the expansion of

construction land was effectively curbed due to the restriction on

the conversion of cropland to construction land.
4.2 Loss of carbon storage due to land
use change

Land use change is considered to be one of the most important

factors that contribute to global carbon stock changes in terrestrial

ecosystems (Thompson, 2018). Studies have shown that carbon

emissions due to land use change have become the second largest

source of carbon emissions globally (Houghton et al., 2012; Xia and

Yang, 2022), and over 95% of the decline in soil carbon stocks in the

United Kingdom from 1990 to 2006 was caused by land use change

(Ostle et al., 2009). In addition, land use change affects the carbon

cycle and flow of terrestrial ecosystems. Therefore, assessing the

impact of land use on carbon stocks can guide the development of

future land use and carbon management policies (Zeng et al., 2022).

From 1990 to 2020, the proportion of converted land area to the

total land area in the study area was 22.21%, which is consistent

with previous findings (Zhang et al., 2015), and this conversion was

primarily due to the conversion of other lands to construction land.

Additionally, large land areas were converted from high-carbon

density land to low-carbon density land, resulting in a decrease in

total carbon stocks. The areas with more pronounced carbon stock

changes overlapped highly with areas of land use conversion, which

was consistent with previous findings (Feng et al., 2020), suggesting

that land use change has an important impact on carbon stock

reduction. Therefore, land control policies should be designated to

control urban land expansion in future urban planning. This study
FIGURE 7

Carbon storage and change from 1990 to 2020 and carbon storage in the 2050 scenarios.
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also simulated three future land use change scenarios and found

that the dynamics of carbon stock changes were closely related to

the dynamics of land use changes. Under the ecological protection

scenario, the decline in carbon stock was slowed, and the carbon

stock of woodland and grassland was larger than that under other

scenarios. However, the decline in the total carbon stock was

effectively curbed due to the low percentage of woodland and

grassland in the study area. Under the cropland protection

scenario, the carbon stock in the study area was the highest.
4.3 Implications of the study results for
future planning

According to the land use change trend in the study area and

the 2050 simulation of the carbon stock, an ecological protection

policy and cultivated land protection policy will have a significant

influence on the future carbon stock of the southern Jiangsu urban

agglomeration. The calculation results for carbon stock in previous

years showed that the largest carbon pool by the land use type in the

study area was cultivated land, followed by forest land and water.

Therefore, protecting the carbon pools of cultivated land, forests,

and water is of great significance. This is consistent with the current

planning policy of the Chinese government, especially the idea of

delineating permanent basic agricultural land protection and

ecological protection lines. In future planning, the specific

method of delineating the protection line and its impact on the

regional carbon pool needs to be studied in more depth.
4.4 Advantages and limitations

This study has certain advantages. In this study, the InVESTmodel

was used to calculate the carbon stock of the study area by assigning

corresponding carbon density to different land use types. Furthermore,

the combination of the InVEST model and the PLUS model can

calculate the carbon stock more accurately. However, the InVEST

model has some limitations regarding carbon stock calculations.

Specifically, it is a static model that does not consider dynamic

spatial and temporal changes in carbon density. For example, studies

have shown that urbanization makes cities warmer, causing an urban

heat island effect (Oke, 1982), which in turn causes physical changes

(Qiu et al., 2020) that promote the growth of urban vegetation (Jia et al.,

2018; Jiang et al., 2021). This leads to an increase in urban carbon

stocks, and this effect compensates for the decrease in carbon stocks

due to land use change (the replacement of original surface

vegetation by impervious surfaces) by approximately 30%–40%

(Zhao et al., 2016; Jia et al., 2018). The influence of the heat island

effect on the carbon stock is not considered in this study, and only the

influence of land use change on the carbon stock is calculated.

Furthermore, the carbon density values in the current study

referred to the research results of previous scholars to select the

carbon density values appropriate to the study area, and the rainfall

model was used to correct the carbon density so that the carbon density
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values are close to the actual values. However, this did not take into

account the differences in the carbon sequestration functions of

different vegetation types, ages, and structures. Follow-up studies will

be supplemented with field measurements of different vegetation types

to improve the accuracy of carbon density measurements. In the future,

we will pay more attention to the heat island effect, climate change, and

ecological feedback in such studies.

Finally, although the PLUS model has obvious advantages over

previous simulation models in terms of the simulation accuracy and

the exploration of driving factors, it has certain limitations. In

addition, national policies and future plans have an important

influence on land use. Therefore, these aspects will be discussed

in depth in a subsequent study to obtain more accurate and reliable

simulation results.
5 Conclusion

Based on the PLUS and InVEST models, this study assessed the

carbon stock of the southern Jiangsu urban agglomeration from

1990 to 2020. The land use and carbon stock of the study area in

2050 were simulated and analyzed under multiple scenarios. We

drew the following conclusions.

1) The areas of cultivated land and forest land in the southern

Jiangsu urban agglomeration decreased from 1990 to 2020, and the

area of cultivated land decreased the most, by 5,292.48 km2. The areas

of grassland, water area, construction land, and unused land increased.

The primary conversion trend was from cultivated and forest land to

construction land and water areas. From 2020 to 2050, under the

natural development scenario, the construction land area increased

the most. However, under the cultivated land protection scenario, the

construction land expansion was controlled. Under the ecological

protection scenario, the areas of forest land, grassland, and water areas

increased, but the area of cultivated land decreased more significantly.

2) The GDP was the factor that had the greatest impact on the

development probability of the cultivated land. The DEM had the

greatest impact on the development probability of forest land, grassland,

and unused development land. Population was the driving factor that

most significantly affected construction land and water areas.

3) The carbon stock of the southern Jiangsu urban

agglomeration decreased from 1990 to 2020. In a comparison of

three different scenarios, by 2050, the carbon stock decreased the

least under the arable land protection scenario, indicating that

arable land protection can effectively control carbon stock

decrease. Under the ecological protection scenario, which only

protects ecological land such as forest land, grassland, and water

areas, the carbon stock decreases moderately compared with the

other two plans, and the expansion of construction land mainly

occupies arable land. Under the natural development scenario, the

carbon stock decreases the most. Therefore, the combination of

arable land protection and ecological protection measures should be

considered, and to protect arable land, simultaneous ecological and

environmental protection should be considered to restrict the

conversion of arable and ecological land to construction land.
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