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Vocal production learning (VPL) involves the use of auditory experience to guide

the production of novel signals or to modify pre-existing signals. It allows animals

to develop signals that are more complex and/or more flexible than innately

developed signals. It has evolved rarely in vocal animals, widespread only in three

avian and four mammalian taxa. The evolution of VPL was accompanied by

innovations of the vocal motor neural circuitry. VPL is rare because of its various

costs. Ecology, social spacing, and social fluidity can favor the evolution of VPL. It

is striking that most taxa with VPL evolved in visually limited habitats, where

sound is the only effective channel for communicating over distance from sender

to receiver. Selective factors that favor the ability to produce complex and/or

flexible signals would act predominantly on acoustic signals, and favor the

evolution of VPL. Learning may be the only practical way to develop a signal

complex enough to encode different types of information for assessment by

receivers in animals that rely on acoustic communication, or to modify signals as

local social factors dictate.

KEYWORDS

animal communication, bat, birdsong, dolphin, evolution of vocal learning, Humpback
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1 Introduction

Vocal learning is a distinctive phenomenon, inherently interesting to humans given our

unique proficiency with language (Hauser et al., 2002; Beecher, 2021). Other than humans,

the ability to learn to produce species-typical vocalizations has been demonstrated to be

widespread only in three avian taxa (oscine passerines or songbirds, parrots and

hummingbirds), and four mammalian taxa (cetaceans, pinnipeds, bats and elephants). In

most taxa that use acoustic communication, animals develop signals normally without

environmental input such as hearing the vocal signals of conspecific adults. We refer to

such signals, and their underlying developmental program, as “innate.”

There is an extensive literature on the evolution of vocal learning in humans and

animals, which attempts to explain why it has evolved so rarely, and examining whether

there are evolutionary antecedents to vocal learning in nonhuman primates and other

mammalian taxa. Most of this literature focuses on what qualifies as vocal learning
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(e.g., Janik and Slater, 2000; Fischer, 2017; Wirthlin et al., 2019;

Martins and Boeckx, 2020; Tyack, 2020; Janik and Knörnschild,

2021; Vernes et al., 2021), the evolution and taxonomic distribution

of vocal learning (Nottebohm, 1972; Fitch, 2000; Petkov and Jarvis,

2012; Nowicki and Searcy, 2014; Jarvis, 2019; Corballis, 2020;

Vernes and Wilkinson, 2020), and convergent neural and genetic

mechanisms of vocal learning (Gahr, 2000; Jarvis, 2007; White,

2010; Sober and Brainard, 2012; Condro and White, 2014; Chen

et al., 2016; Roberts et al., 2017; Rodenas-Cuadrado et al., 2018;

Jarvis, 2019; Choe and Jarvis, 2021). Surprisingly, however, little

attention has been devoted to the critical roles of environment and

ecology as selective factors and constraints in the evolution of vocal

learning (but see Janik and Slater, 2000; Fischer, 2017; Cheney and

Seyfarth, 2018; Hedwig et al., 2021). Our goal in this paper is to

provide an integrative framework for understanding the evolution

of vocal learning that includes consideration of 1) The neural

substrates that enable animals to modify vocal motor behavior in

response to environmental input; 2) The costs of vocal learning that

constrain its evolution; 3) Ecological factors that select for vocal

learning; and 4) the adaptive behavioral advantages of

vocal learning.
2 Vocal production learning

Vernes et al. (2021) and Tyack (2016) have reviewed the various

forms of vocal learning found in higher vertebrates. We agree with

them that vocal learning is not binary, but varies in expression

within and between taxa. We believe, however, that there are limits

to what should be considered vocal learning. Ambiguity has arisen

in this field from inconsistent standards for what qualifies as

learning, including at one extreme, sources of signal plasticity

such as growth, maturation, and response to immediate sensory

feedback (as in turn-taking and chorusing). Expanding on Vernes

et al., we broadly define vocal learning as modification of an

individual’s vocal signaling behavior in response to experience.

This learning can take one of two forms. In vocal production

learning, an individual develops a novel signal or modifies a pre-

existing one on the basis of input from the vocalizations of other

individuals and auditory feedback from their own vocalizations. In

vocal usage learning, the individual learns to employ a pre-existing

signal (which itself may be learned or innate) in a new context

(Janik and Slater, 2000) (Vernes et al., 2021). In this paper we focus

exclusively on vocal production learning (abbreviated VPL

hereafter) since it has evolved in relatively few acoustically

signaling animals, and its evolution has proven challenging to

explain (Fitch, 2000; Nowicki and Searcy, 2014).

VPL is most clearly demonstrated when animals modify their

vocalizations to match a novel acoustic signal to which they have

not been previously exposed. With captive animals, experimental

studies can be conducted in which subjects are trained to produce

sounds not in their normal species-typical repertoire, such as

heterospecific vocalizations (e.g., Baptista and Petrinovich, 1984;

Stoeger et al., 2012; Stansbury and Janik, 2019), conspecific signal

variants such as different geographic dialects (e.g., Marler and

Tamura, 1964; Mennill et al., 2018), or experimentally
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manipulated conspecific signals (Marler and Peters, 1988; Rose

et al., 2004). In animals where it is not feasible or ethical to bring

them into captivity, VPL can be seen when members of a social

group modify their vocalizations to mimic a novel conspecific signal

to which they have been exposed, or individuals learn to accurately

mimic novel heterospecific signals (as in avian vocal mimics such as

mockingbirds and mynah birds). In this review, we will focus on

cases where vocal learning appears to be common or widespread

within the taxon, i.e., in three avian taxa (songbirds, parrots and

hummingbirds), and four mammalian taxa (cetaceans, pinnipeds,

bats and elephants). Cases that appear to be exceptional within a

larger taxon (e.g., humans within primates, bellbirds within

suboscines (Kroodsma et al., 2013) are ideal cases for testing the

hypotheses we will develop in this paper about special ecological

selection pressures or existing preadaptations that favor the

evolution of VPL, because in such cases one can contrast the

exceptional case with all its close non-VPL relatives. We return to

this point in the Discussion.

In most mammalian taxa with acoustic communication, signals

develop innately (Janik and Slater, 1997; Vernes et al., 2021). Given

our shared evolutionary ancestry with nonhuman primates, there

has long been a teleological presumption that primates must show

some form of VPL (Lameira et al., 2022). There are claims that

observations of developmental plasticity or individual variation in

the calls of some nonhuman primates constitute evidence of VPL

(Lemasson et al., 2011; Wich et al., 2012; Zürcher et al., 2021), but

these reports are not supported by any of the above criteria. Decades

of study have failed to produce convincing evidence of VPL in any

primate species (Hammerschmidt and Fischer, 2008; Fischer, 2017;

Cheney and Seyfarth, 2018). Social nonhuman primates can signal

in the olfactory, visual, auditory, and tactile domains and may thus

be able to engage in complex communication behavior using

innately developed vocalizations (Mitoyen et al., 2019).

Nonhuman primates and other higher vertebrates do exhibit

vocal usage learning in which they learn to associate an innate

signal with a novel social or ecological context (Janik and

Slater, 2000).

The failure to find VPL in nonhuman primates is seen by some

investigators as being inconsistent with our shared evolutionary

history, and has led to suggestions that changes in the frequency

and/or temporal structure of calls observed with growth and

maturation in some primates are examples of production learning

(e.g., Takahashi et al., 2015; Lameira et al., 2022). Other

investigators have suggested that VPL, usage learning, and various

forms of non-learning dependent vocal plasticity such as

ontogenetic changes in call timing or frequency, turn-taking, and

chorusing all fall along a continuum of vocal learning, perhaps

serving as evolutionary and mechanistic antecedents to VPL seen in

humans and songbirds (Petkov and Jarvis, 2012; Jarvis, 2019;

Wirthlin et al., 2019; Martins and Boeckx, 2020; Bruno et al.,

2021). These broad suggestions do not stand up well under close

scrutiny, however (e.g., Martins and Boeckx, 2020). There is no

direct evidence to support the idea that the ability of some

nonhuman primates and other animals to make small changes in

call structure with maturation or experience is dependent on similar

mechanisms as VPL (Fischer et al., 2015). In species where
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individuals coordinate calling, as with turn-taking in Naked Mole

Rats (Heterocephalus glaber) (Yosida et al., 2007; Pika et al., 2018),

overlapping calls in Smilisca tree frogs (Ryan, 1986), and jamming

of competitors’ calls in bats (Corcoran and Conner, 2014), we agree

with Vernes et al. (2021) that “there are some vertebrates where

temporal vocal coordination can clearly be attributed to a central

nervous system oscillator that is responsive to call perception,

rather than a learned mechanism…” These types of coordinated

calling may be regulated by non-learning dependent neural

mechanisms such as acoustically evoked inhibition of vocal motor

output, and timing input from brain regions that integrate auditory

and motor information (Endepols andWalkowiak, 1999; Kelley and

Bass, 2010; Banerjee and Vallentin, 2022). One need not invoke

learning to explain rapid and transient responses to sensory input

from conspecifics, a phenomenon observed in all acoustically

signaling animals, including insects, fish, amphibians, and reptiles.

The nature of the genetic-developmental program underlying

VPL varies within and between taxa. At one extreme are genetic-

developmental programs which guide young humans and chicks in

many songbird species to selectively attend to and memorize

species-typical vocalizations, a process Peter Marler described as

“an instinct to learn” (Marler, 1991; Kuhl, 2004; Vouloumanos and

Werker, 2007). The memorized signals guide subsequent

sensorimotor learning as the youngster gradually translates

auditory memories to a motor program through auditory

feedback from its initially poorly structured vocalizations. If

human infants and songbird chicks are not exposed to conspecific

auditory models during an early sensitive period, then as adults they

typically produce poorly structured vocalizations that bear little

resemblance to normal conspecific signals (Vouloumanos and

Werker, 2007). Among songbirds an example is the White-

crowned Sparrow (Zonotrichia leucophrys), the subject of Marler’s

early studies of song learning (Marler, 1997) (https://youtu.be/

7fCBTMMcyuI). A more elaborate form of learning from external

auditory models is seen in animals that mimic the signals of other

species, such as Superb Lyrebirds (Menura novaehollandiae)

(Dalziell et al., 2022) (https://youtu.be/XUvVskyQTtE). Grey Seals

(Halichoerus grypus) (Stansbury and Janik, 2019) and Asian

Elephants (Elephas maximus) (Stoeger et al., 2012) can copy

human speech sounds.

At the other extreme of developmental programs are taxa where

species-typical vocalizations appear to develop innately, i.e., without

environmental input such as hearing conspecific adults. In these

species, early exposure to and memorization of a conspecific

acoustic model is not required to develop effective species-normal

vocalizations, nor does early social isolation or deafening prevent it.

Innate signals appear to be the typical case in most animal taxa, and

most mammalian taxa in particular, including nonhuman primates

(Cheney and Seyfarth, 2018; Vernes et al., 2021), and in suboscine

antbird and flycatcher species (Kroodsma, 1984; Kroodsma, 1989;

Kroodsma and Konishi, 1991; Touchton et al., 2014).

Between these two extremes are many interesting cases, where

development can be described as partly learned and partly innate.

For example, in some songbird species, a bird deprived of

conspecific song models will develop songs that are still

somewhat species-typical, i.e., that have many but not all of the
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characteristics of good species song. An example is the Song

Sparrow (Melospiza melodia). Young sparrows raised in isolation

from adult conspecific song develop songs with a combination of

normal and abnormal features (Kroodsma, 1977; Marler and

Sherman, 1985; Searcy et al., 1985). When played to wild male

Song Sparrows on territories or to females implanted with estradiol,

isolate song evokes a stronger response than heterospecific song but

a weaker response than natural conspecific song (Searcy et al.,

1985). In other songbird species, a bird raised in isolation will

develop perfectly good species songs, but different songs than if it

had heard model songs. Examples are Grey Catbirds (Dumetella

carolinensis) and Sedge Warblers (Acrocephalus schoenobaenus).

When raised in social and acoustic isolation in captivity, these birds

can invent large repertoires of songs with many species-typical

acoustic features that vary considerably between individuals

(Kroodsma et al., 1997; Leitner et al., 2002).

In another intermediate case, young animals in some species

initially develop species-typical vocalizations innately, but

subsequently use auditory experience to modify these already-

developed signals to converge on those of other individuals in

their group or population (Vernes et al., 2021). For example, pups of

several bat species develop effective isolation calls innately, but

appear to use auditory experience subsequently to modify the

frequency structure of their call to converge with calls of their

mother and siblings (Esser and Schmidt, 1989; Esser, 1994;

Knörnschild et al., 2012). Knörnschild and colleagues showed that

call convergence in Greater Sac-winged Bats (Saccopteryx bilineata)

occurs independently of relatedness among pups, and is not driven

by maturational effects. In contrast to the extreme consequences of

social isolation or deafening seen in humans and most songbirds,

social isolation of Egyptian Fruit Bat (Rousettus aegyptiacus) pups

delays, but does not prevent, development of normal adult calls

(Prat et al., 2017), and early deafening in Pale Spear-nosed Bats

(Phyllostomus discolor) produces only relatively small deficits in

signal structure (Lattenkamp et al., 2021). Taken together, these

observations indicate that the initial development of species-typical

calls of young bats is not dependent on exposure to external

auditory models and auditory feedback, but that these calls

subsequently may converge on the calls of group members

(Knörnschild, 2014).

VPL is generally regarded as a complex adaptation As a

complex trait, the odds against vocal production arising de novo

from randommutations are high, and so it is not surprising that it is

found in so few animal taxa. Complex traits are more likely to

evolve when there are existing preadaptations of its critical

components. Echolocation in cetaceans and bats may have been a

key preadaptation for VPL in these taxa, when ecological and social

factors favored the ability to develop signals that are more complex

in structure and/or more flexible than can be encoded genetically in

innate signals. Whereas in most mammals, vocalizations function in

innate, reflexive expressions of affective states (Marler, 1980;

Jürgens, 2002; Owren et al., 2011), in echolocation vocalizations

are used instrumentally as environmental situations dictate. As with

VPL, successful echolocation requires voluntary control over the

vocal production mechanism and the ability to modulate

vocalization rapidly in response to auditory feedback (Ulanovsky
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and Moss, 2008). Echolocation is thought to be an ancestral trait in

both cetaceans and bats (Geisler 2014; Churchill et al., 2016; Park

et al., 2016; Jones and Teeling 2006; Wang et al., 2017), and likely to

have evolved before (or along with) VPL in these taxa. Seals also

may echolocate; they are reported to produce click-like sounds

under water and it has been suggested that they use these sounds to

locate prey, though the evidence is largely indirect (Renouf and

Davis, 1982; Cziko et al., 2020).
3 Neural pathways and preadaptations
for vocal production learning

There is a striking evolutionary conservation across acoustically

signaling vertebrate taxa of the organization of the neural circuitry

that regulates the voluntary production of vocalizations at the level

of the caudal hindbrain and rostral spinal cord (Bass et al., 2008).

Bass and colleagues propose that this shared vocal circuitry across

species originates from a common developmental origin in

rhombomere 8. Two evolutionary modifications of this ancestral

circuitry have accompanied the evolution of vocal production

learning (VPL). First, there is a posterior projection from the

forebrain to vocal motor regions in the brainstem. Second, a

novel anterior forebrain pathway has emerged, integrating

auditory input and pre-motor output to regulate VPL (Jarvis,

2019). These neural innovations are observed in the brains of

songbirds, which have been most extensively studied, and in the

few vocal learning species of mammals in which the vocal circuitry

has been investigated (Jürgens, 2009). In songbirds, auditory

information is transmitted from the analogue of the primary

auditory cortex to both the anterior and posterior vocal circuits,

and neurons in each pathway exhibit auditory responses to

conspecific song (reviewed in Brenowitz and Woolley, 2004).

Another distinctive feature found only in songbirds is the

presence of sex steroid receptors in neurons of the forebrain vocal

control nuclei (Brenowitz, 2019). These neural adaptations appear

to be lacking or rudimentary in species with innate vocal

development. However, our confidence in making this statement

is limited by the scarcity of comparative information on vocal

neural circuitry across different groups of mammals. There is a

pressing need for more extensive analysis encompassing a wider

range of mammalian taxa.

Non-human primates and chickens, both of which do not learn

their vocalizations, lack a direct projection from the forebrain to

vocal motor neurons in the brainstem (Roberts et al., 2008;

Cerkevich et al., 2022); voluntary calling in these groups is

regulated by midbrain vocal pre-motor regions (Kuypers, 1958;

Wild, 1997). In non-human primates, lesions of the motor cortex, as

well as of the cerebellum and ventrolateral thalamus, which project

to motor cortex, or of the putamen which receives cortical

projections, have no effect on their vocalizations (reviewed by

Jürgens, 2009). It is clear that there are distinct differences in the

neural pathways that regulate the production of learned vocal

behavior versus innate vocalization (Jürgens, 2002; Petkov and

Jarvis, 2012). The presence of a direct projection from the
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forebrain to brainstem vocal motor neurons may be a necessary

adaptation for using auditory feedback to learn new vocal motor

patterns. Claims of VPL in non-human primates would be bolstered

by demonstrating the existence of such neural projections in their

brains. Conversely, reports of VPL in the absence of this

fundamental brain organization would undermine the suggestion

that vocal plasticity in non-human primates served as an

evolutionary precursor to human language learning (Petkov and

Jarvis, 2012; Petkov and Wilson, 2012).

Jarvis and colleagues (2007; 2012) proposed that there is a

posterior vocal pathway in human brains in which the face motor

cortex projects to nucleus ambiguus and that this circuit is

analagous to the posterior pathway in songbird brains. The

primary auditory cortex projects to Wernicke’s area, which is

essential for language comprehension, as well as to other cortical

regions. Wernicke’s area has a bidirectional connection with Broca’s

area, which is necessary for speech production (Matsumoto et al.,

2004; Jarvis, 2007); this connection provides a neural substrate for

integration between vocal motor production and auditory feedback.

The neural circuits that regulate echolocation in bats and

cetaceans may have served as a preadaptation for the neural

control of VPL. Both echolocation and vocal learning require an

integration between vocal motor production and auditory feedback,

and the ability to voluntarily modify vocal signals in response to

sensory feedback. The neural circuits for echolocation in bats have

been studied intensively, albeit mostly from the perspective of

auditory processing (Rubsamen and Schweizer, 1986; Gooler and

O'Neill, 1987; Fenzl and Schuller, 2005). Neurons in the anterior

cingulate cortex, motor cortex, and pyramidal motor systems

project directly, as well as indirectly by intermediate nuclei, to

vocal motor neurons in nucleus ambiguus in the brainstem

(Huffman and Henson, 1990; Fenzl and Schuller, 2005; Metzner

and Schuller, 2010; Halley et al., 2022). Input from the motor cortex

serves motor coordination of learned vocal patterns, while input

from the anterior cingulate cortex controls the voluntary initiation

and suppression of vocalizations (Jürgens, 2002). In echolocating

mammals, the existence of cortical projections to brainstem vocal

motor neurons may have served as a substrate for the modification

of forebrain circuitry for the regulation of VPL. The auditory system

provides input to the vocal motor pathway for echolocation at

multiple levels of the brain (Huffman and Henson, 1990; Ulanovsky

and Moss, 2008). Exploring similarities between the neural circuits

for echolocation and VPL in a wider range of echolocating

mammals is a productive direction for future research.
4 Costs of vocal production learning

VPL, like any trait, has its costs and benefits. For a trait to

evolve, its benefits must exceed its costs. While the potential benefits

of vocal learning have been discussed often in the literature, the

potential costs of vocal learning have generally not been considered.

To redress this imbalance, we discuss potential costs here.

Considering these costs may help us understand why VPL has

evolved in so few animal taxa, and will inform our discussion of
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ecological and environmental influences on signal evolution

that follows.

The potential costs of VPL include: 1. Reliance on

memorization to acquire a model for the development of species-

typical vocalizations creates a risk of copy errors; a young animal

might imprint on the signal of a different species in speciose habitats

such as tropical rainforests, or on the vocalization of a different

conspecific geographic dialect near zones of contact (Lachlan and

Slater, 1999). Learning an atypical signal may prevent an individual

from attracting a mate as an adult. 2. The prolonged process of

learning to produce species-typical vocalizations seen in humans

and some bird species increases the risk of adverse effects such as

not finding appropriate tutors, hearing loss, poor nutrition

(Nowicki et al., 1998), or exposure to heterospecific models. 3.

The learning period delays the time until the user can benefit from

producing the learned signals (Lachlan and Slater, 1999). 4. VPL

requires forebrain circuitry that is lacking or rudimentary in

animals with innate signal development, as well as direct

projections from the forebrain to brainstem vocal motor regions,

and integration between auditory and vocal motor neural circuits

(Jarvis, 2019). Developing and maintaining dedicated vocal learning

and production circuitry increases metabolic demand in the brain

(Wennstrom et al., 2001; Von Eugen et al., 2022).

These costs of learning have resulted in the evolution of

constraints on learning to limit those costs: 1. There are crude

innate filters in the brains of juvenile songbirds and humans that

focus attention selectively on conspecific vocalizations and serve to

constrain VPL to reduce the risk of copy errors. 2. In some cases

VPL is even more tightly constrained by being limited to the

modification of innate calls guided by auditory feedback, as in

several bat species (Knörnschild et al., 2012; Prat et al., 2015;

Lattenkamp et al., 2021). 3. In many songbird species, there is

only a limited sensitive period during which young birds can

memorize conspecific song. While the timing varies between

species and taxa, it generally coincides with the life history stage

when juveniles are most likely to be exposed to adult conspecific

tutors (Beecher and Brenowitz, 2005). Extending the period of

learning plasticity beyond puberty in the first year (i.e., open-ended

song learning) seems to occur mostly in birds species that need to

learn large repertoires (Robinson et al., 2019), as well as species that

need to modify their songs in response to unpredictable changes in

the composition of social groups, as will be discussed in a later

section. In species that only need to learn one or a few songs,

extending song plasticity into adulthood may be too costly in time,

energy required to maintain the song learning circuits in a fully

grown state (Wennstrom et al., 2001), and increased risk of copying

inappropriate songs. There is a sensitive period for language

acquisition in young humans too (Kuhl, 2004; Vouloumanos and

Werker, 2007; White et al., 2013). 4. In some songbird clades,

comparative phylogenetic analyses suggest that the number of song

types a bird sings (i.e., its repertoire size) may be smaller in derived

than ancestral species (Irwin, 1988; Cardoso et al., 2007; Byers and

Kroodsma, 2009). Larger repertoires involve more complex

learning, and there may be selection to learn fewer songs to

decrease this demand as new species are derived within a

phylogenetic lineage. In summary, the existence of these various
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innate mechanisms that channel or constrain learning illuminate

the costs of learning to produce signals necessary for socialization

and reproduction.

Birds are under extreme pressure to reduce energetic demands

imposed by the brain, due to factors including small body size,

flight, and maintaining a higher body temperature than mammals

(Von Eugen et al., 2022). Seasonal plasticity of the forebrain song

learning and production circuits in oscine birds may be an

adaptation to reduce the energetic cost of developing and

maintaining these regions (Wennstrom et al., 2001). The song

control circuitry in adult birds dramatically regresses at the end

of each breeding season and regenerates at the start of the next

breeding season (Brenowitz, 2008). This is the most pronounced

form of naturally occurring brain plasticity observed in

any vertebrate.

Given the potential costs discussed above, we should not expect

VPL to be widespread among animals, especially in its most

complex form that requires early memorization of a conspecific

model and a prolonged period of translating the model to a motor

program guided by auditory feedback. The great majority of animal

taxa that communicate acoustically do so successfully with innate

signals, presumably including all calling insects, marine

invertebrates, fish, amphibians, and reptiles as well as the

majority of mammals and many bird species. We believe that

considering these costs helps us understand why VPL has not

evolved in most animal taxa that use acoustic signals. In the next

section we adopt an ecological perspective which helps to explain

why VPL has evolved in some taxa in spite of its costs.
5 The ecology of vocal
communication and learning

Animals can potentially communicate in any sensory modality

in which senders are able to produce a signal and for which

receivers have receptors. The most common sensory channels for

communication in vertebrates are olfactory, visual and auditory.

Each channel has advantages and constraints for communication

(Table 1). Considering these factors in relation to the types of

information conveyed by signals, the behavioral and social contexts

in which they are used, and the habitat in which signaling occurs, is

essential to understanding the evolution of vocal learning. Previous

discussions of vocal learning, however, have largely failed to

consider ecological influences (for exceptions see Nottebohm,

1972; Janik and Slater, 2000; Cheney and Seyfarth, 2018).
5.1 Sensory channels for communication

Chemical signals offer high species specificity, persistence, and

receiver “privacy” due to the need for specialized receptors. They

are constrained by slow transmission and the difficulty of localizing

the sender over distance (Alberts, 1992). Chemical cues are

therefore generally limited to short ranges (Wilson and Bossert,

1963; Wisenden, 2008).
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Visual signals transmit instantaneously, allowing for rapid

modulation of signal structure. They are easily localized when in

the line of sight and can be graded in expression. Visual signals,

however, are limited to daylight conditions (except for

bioluminescent signals), can be obstructed by vegetation or turbid

water, and offer little receiver privacy. Visual signals are therefore

only effective over short to medium distances in forested or turbid

aquatic habitats.

Acoustic signals have several advantages over the other

modalities. They can be effective over long ranges, can be used in

different environments and day and night, and allow rapid variation

in spectral and temporal structure. The wide range of frequencies

that can be produced by avian and mammalian sound production

structures, along with the ability to rapidly modulate both frequency

and amplitude, make acoustic signals flexible and potentially rich in

information content. There are several constraints on the auditory

channel. Sound intensity decreases by half for every doubling of

distance from the sender due to geometrical spreading of wave

fronts, limiting the effective range over which the signal can be

detected above background noise (i.e., active space). Additionally,

signal structure can suffer non-linear degradation over distance due

to factors such as atmospheric absorption, refraction, turbulence,

and reverberations off vegetation (Morton, 1975; Marten et al.,

1977; Richards and Wiley, 1980; Brenowitz, 1986). In water, sound

transmission is less affected by frequency attenuation and temporal

degradation. Ambient noise can mask signals, making detection less

reliable (Brenowitz, 1982; Wiley, 2017). Animals can mitigate noise

masking by emphasizing frequencies with lower ambient noise

levels and “tuning” their peripheral auditory system to signal

frequencies (Wilczynski and Capranica, 1984; Ryan and

Brenowitz, 1985). Localization of the sender in vertebrates

requires complex neural computational processing of binaural

auditory information (Konishi, 1986). Acoustic signals are

susceptible to eavesdropping by competitors, predators, and

parasites that are sensitive to the signal frequencies (White et al.,

2022). Auditory signals may be more vulnerable to eavesdropping

than olfactory or visual signals since sound detection does not rely

on specialized receptors like chemical signals, and sound

transmission is generally less directional than light transmission.

Despite these constraints, acoustic communication has distinct
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advantages in terms of long-distance transmission, usability in

visually obstructed habitats at anytime of day, and suitability for

rapid signaling interactions in dynamic social environments

(Table 1). The wide range of frequencies producible by avian and

mammalian sound production structures, along with rapid

modulation of frequency and amplitude, allows acoustic signals to

be flexible in structure and therefore have the potential for high-

information content.
5.2 Habitat, spacing, and communication

Habitat and typical spacing patterns are important factors in the

evolution of vocal learning. It is striking that most of the taxa in

which individuals are known to learn to produce vocalizations (i.e.,

songbirds, parrots, hummingbirds, pinnipeds, cetaceans and bats)

evolved in visually limited habitats with turbulent media, where

sound is the only effective channel for communicating over the

typical long distances between senders and receivers. Selective

factors that favor the ability to modify the structure of signals

used to communicate with conspecifics over distance in these

habitats would therefore necessarily act predominantly or

exclusively on acoustic signals, and favor the evolution of VPL.

The greatest species diversity of songbirds, hummingbirds, and

parrots occurs in forested habitats, especially in the tropics

(Macarthur and Macarthur, 1961). Songbirds and hummingbirds

both evolved during the Eocene (55–40 MYA), in Australia and

Eurasia, respectively (Barker et al., 2004; McGuire et al., 2014).

Eocene-era Australia was wetter and supported “a luxurious

forested biome” (Reichgelt et al., 2022), and much of Eurasia was

covered with subtropical evergreen forest (Utescher and

Mosbrugger, 2007). Parrots evolved about 74 MYA (late

Cretaceous) in Australasia when it was part of the Gondawanan

land mass (Wright et al., 2008). During this period Australia had a

cool, wet climate and was heavily vegetated with coniferous forests

(Huber et al., 2018). It is therefore likely that songbirds,

hummingbirds, and parrots all first evolved in densely vegetated

habitats in which visual communication was limited except at close

quarters. Subsequent evolutionary radiation led to exploitation of

forested habitats with high species diversity in all three taxa.
TABLE 1 Communication in different sensory channels.

Chemical Visual Auditory

Persistence Yes Limited No

Ability to modulate signal structure or
amplitude rapidly

No Yes Yes

Transmission range Short to medium Short to medium,
habitat-dependent

Long

Sender locatability Difficult Easy Medium

Private channel Yes Limited No, except with narrow frequency
band signal and peripheral auditory
filtering by receiver

Time constraint on use None Daylight only except for bioluminescent
signals

None
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Themajor taxa with VPL rely on acoustic signals to communicate

over distances in visually limited habitats. Songbirds produce songs

for territorial advertisement and mate attraction over 100 m or more

(Brenowitz, 1982; Stouffer, 2007; Catchpole and Slater, 2008). It has

been estimated that the songs of male Greater Sac-winged Bat

choruses have an effective range of 100 m or more (Smotherman

et al., 2016; Knörnschild et al., 2017). Hummingbird neighbors may

be separated by distances on the order of tens of meters (Hixon et al.,

1983). Vocalizations in parrots are often used for mate recognition

and group cohesion over kilometres (Berg et al., 2011; Berg et al.,

2012; Rühmann et al., 2019). Marine mammals use sounds to

communicate over considerable distances (Janik, 2005). The ocean

is well suited to transmitting sounds over the long distances that may

separate senders and receivers. Refraction of sound waves from layers

of water that differ in temperature can lead to sound transmission

with little attenuation within a channel over thousands of kilometres

(Munk et al., 1994). Individual Humpback Whales (Megaptera

novaeangliae) that belong to a local breeding population may be

separated by tens of kilometres, and Blue whales (Balaenoptera

musculus) by hundreds of kilometres (Sirović et al., 2007; Dunlop,

2018). Members of social cohorts of Common Bottle-nosed Dolphins

(Tursiops truncatus) may be separated by tens of meters (Chereskin

et al., 2022), and different groups by tens of kilometres. Dolphin

signature whistles may be detectable up to 25 km from the sender

(Janik, 2000).

Over these distances, chemical and visual signals will not

reliably reach intended receivers in birds and marine mammals

(e.g., King et al., 2013). Air and water are turbulent media which can

complicate or eliminate directional information for chemical

signals, and this limits their effective range in these environments

to a few body lengths from the sender at best. Vegetation in avian

habitats can obstruct a receiver’s view of the sender. Cetaceans and

seals occupy aquatic habitats in which light is absorbed by water;

long wavelengths of light are completely absorbed by 20 m in clear

water, more rapidly in turbid ocean water (Adolfson and Berghage,

1974), less than the distances typically separating senders and

receivers. Echolocating bats forage at night and many species

roost in dark caves during the day. The acoustic channel is

therefore best suited to communicating over distance to receivers

in these environments and conditions (Brenowitz, 1986).

In summary, in habitats where chemical or visual signals cannot

be reliably transmitted to distant receivers, vocal signaling will be

favored. But some additional factors are required to explain the

advantage of learning these vocal signals. After all, many taxa that

occupy the same habitats as vocal learners are able to communicate

successfully using innately developed acoustic signals. We discuss

factors favoring the evolution of VPL in the next section.
5.3 Information content of signals

Animals communicate information about multiple states and

events (Table 2), including about identity (individual, group,

species), the external world (predators, food sources), their

motivational state, and their individual quality in assessment

(mating and agonistic) contexts. For animals such as songbirds
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and cetaceans that can only use the sound channel to communicate

over long distances in visually limited habitats, acoustic signals may

have to include multiple types of information. For example, the

song of a male White-crowned Sparrow conveys information on

individual, dialect (local group), and species identity as well as being

a territorial keep-out signal and potentially a mate advertisement

signal (see Figure 1 and https://youtu.be/7fCBTMMcyuI) (Nelson

and Poesel, 2007). In the many species where both males and

females sing, song can also convey the sender’s sex.

When the acoustic channel is the only one available to

communicate critical information over the distances that typically

separate sender and receiver, VPL may be the only practical means

of developing acoustic signals complex enough to encode multiple

types of information (Marler, 1960). This hypothesis can be

evaluated by comparing the songs of birds in the two Passeriform

suborders, the oscines and suboscines. As discussed above, songs in

most (likely all) oscine species are learned, while song is thought to

develop innately in most suboscine antbird and flycatcher species

(Kroodsma, 1984; Seddon, 2005; Touchton et al., 2014). Individual

song variation, individual recognition via song, precise copying of

auditory models, song repertoires, and geographic variation in

songs are the rule in oscines, but are absent or rare in suboscine

antbird and flycatcher species (Lindell, 1998; Bard et al., 2002;

Seddon, 2005; Kroodsma, 2011). In general suboscine species

produce songs with relatively simple structure, consisting of a

small number of whistled notes, with little evidence of the

pronounced frequency modulations and “two-voiced” syllables

produced independently by the two sides of the syrinx that are

characteristic of oscine songs (Suthers and Zollinger, 2004; Goller,

2022) (see Figure 2). Suboscine birds do not have repertoires of

songs, unlike most oscines (Beecher and Brenowitz, 2005; Touchton

et al., 2014). Mimicry of heterospecific vocalizations does not occur

in suboscines but is widespread among oscine birds (Touchton
TABLE 2 Types of signals in intraspecific animal communication systems.

1. Information about the external world a. Food signals

b. Predator (warning/alarm)

2. Information about identity a. Species

b. Individual

c. Group

d. Kinship

e. Status

3. Signals that indicate motivational
state and/or synchronize social

interactions

a. Agonistic contexts

b. Courtship & mating contexts

c. Parent–offspring communication

d. Intra-group (cohesion) signals

e. Inter-group (spacing) signal

4. Assessment [overlaps with all else] a. Mate attraction context

b. Agonistic context

c. Predation context
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et al., 2014; Dalziell et al., 2015). Sufficient individual variation in

song structure to allow reliable discrimination between neighbors

and strangers is uncommon among suboscines (Stoddard et al.,

1991; Bard et al., 2002; Kroodsma, 2011). Suboscine flycatcher and

antbird songs generally show little geographic variation, even over

thousands of kilometres in species with wide geographic

distributions (Johnson, 1980; Lindell, 1998; Sedgwick, 2001;

Kroodsma, 2011), unlike the songs of oscines which can show

distinct geographic dialects even other short distances (Marler and

Tamura, 1962). This lack of variation precludes most suboscines

from using song to convey membership in a local group.
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Assessment is one of the key features of an animal

communication system (Table 2). Well-studied examples are

signals that convey an animal’s health and vigour and persuade

an opponent to withdraw from a confrontation or a potential

partner to mate, or dissuade a predator from pursuit. The more

detectable quality levels that a sender can encode in a display signal,

the more informative the signal is to receivers. In cases like these,

there is strong selection for increasing the levels of variation in the

signal. In many songbirds, the variation contained in a bird’s song

repertoire goes far beyond what is needed to indicate species and

individual identity or membership in a particular group, and is used
FIGURE 1

Sound spectrogram of White-crowned Sparrow song showing the segregation of different types of information to different song components, based
on Soha and Marler (2000) and Nelson and Poesel (2007). (Spectrogram modified with permission from Nelson and Poesel, 2007).
FIGURE 2

Innately developed songs are less complex than learned songs. Sound spectrograms for innate songs of five suboscine species and photographs of
each species are shown in the two left columns, and spectrograms of learned songs of five oscine species and species photographs are shown in
the right two columns. Signal frequency in kHz is shown at the left, and elapsed time in sec is shown at the top of each spectrogram. Each of the
five suboscine species has been shown to develop normal conspecific song when young birds were raised in acoustic isolation, deafened, or tutored
only with heterospecific song (Kroodsma, 1984; Kroodsma, 1989; Kroodsma and Konishi, 1991; Touchton et al., 2014). Each of the five oscine
species was shown to fail to develop normal conspecific song when young were raised in acoustic isolation (Thorpe, 1958; Rice and Thompson,
1968; Immelmann, 1969; Marler et al., 1972; Kroodsma and Canady, 1985; Brenowitz et al., 1994). Note that suboscine songs consist of at most two
syllable types, often repeated. Oscine songs consist of several different syllable types arranged with complex syntactical structure. Spectrograms and
photographs were obtained with permission at https://ebird.org/home. Readers may listen to these songs at the website. (Spectrogram images were
lightly edited in Adobe Photoshop to enhance the visual contrast between song traces and background noise.)
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instead to impress potential mates or opponents. Several non-

exclusive hypotheses have been offered to explain how this

variation might benefit the sender, including facilitating female

choice and male–male competition (also see Searcy and Nowicki,

2019). For example, female Satin Bowerbirds (Ptilonorhynchus

violaceus) choose mates in part based on the number and

accuracy of their mimicry of the songs and calls of other species

(Coleman et al., 2007). Neighboring territorial male Song Sparrows

use shared and unshared song types in vocal exchanges to mediate

graded agonistic interactions in a complex manner (Beecher et al.,

2000). Although the status of several competing functional

hypotheses has not been fully resolved, they all agree on one

point: what is assessed is the sender’s ability to learn to produce

complex vocal signals.

Adequate variation to encompass these different types of

messages in vocalizations is possible only when learning through

auditory experience plays a large role in the normal development of

signals. It is thus not surprising that complex vocal signaling is

widespread in the oscine passerines but absent (or rare) in the

innate songs of most suboscine flycatchers and antbirds. Similar

considerations apply to learned and innate signals in other taxa.
5.4 Sociality and communication

In animals that rely on acoustic signals to communicate

membership in a local breeding population or social group, and/or

individual identity within a group, the fluidity of groupmembership, of

coalitions within groups, and the spatial distribution of extended

groups, can be important factors favoring the ability to modify signal

structure and thus select for VPL (Nottebohm, 1972; Poole et al., 2005).

Mobile animals (e.g., birds, bats, seals, cetaceans) that are not restricted

to their natal area by kin relationships or communal breeding may

disperse over distance and join groups of unfamiliar conspecifics that

use novel signals to convey membership. Other animals, like African

Savannah Elephants (Loxodonta africana africana), live in social

groups that change in size and composition over time depending on

seasonal patterns of food availability and other environmental and

social factors (Hedwig et al., 2021). The composition of social groups in

these taxa may be fluid, with changes in membership due to

immigration, emigration, and fission/fusion patterns (Aureli et al.,

2008). If individuals benefit from producing signals that communicate

membership in a new group or coalition, innate signals would not be

flexible enough to modify these signals over relatively short time

periods to allow convergence with a shared group vocalization, as in

Savannah Elephants (Poole et al., 2005), Bottle-nosed dolphins

(Watwood et al., 2004), and Greater Spear-nosed Bats (Phyllostomus

hastatus) (Boughman, 1998), or to diverge from the calls of other

individuals in the local area to facilitate individual recognition as in

Green-rumped Parrotlets (Forpus passerinus) (Berg et al., 2012). VPL

may be selected for in these circumstances, especially whenmembers of

groups are typically spaced over distances where olfactory and visual

cues are not reliable.

There are numerous examples of learned signal convergence.

Black-capped Chickadees (Parus atricapillus) in experimentally
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combined flocks converge on shared call notes, with a significant

decrease in variance among birds in the frequency of a key note

within seven days (Mammen and Nowicki, 1981; Nowicki, 1989).

Male Village Indigobirds (Vidua chalybeata) in a communal display

area (i.e., a lek) converge on the songs of the male with the highest

breeding success (Payne, 1985). The song types shared by local

males change from year to year, and some song types regularly go

extinct due to turnover in group membership and changes in social

status. Innate signals would not allow modification of song

structure to match local social conditions. Greater Sac-winged Bat

pups learn adult territorial song by imitating their harem male

(Knörnschild et al., 2010). In Humpback Whales in the Southern

Hemisphere there is population-wide conformity to one song

pattern and every few years each member of the population

completely replaces their song in so-called cultural “revolutions”;

it has been suggested that these changes are due to social or cultural

learning (Allen et al., 2018, but see Mercado, 2022). Developing and

changing these complex songs would not be possible with innate

signals. Similar considerations apply to animals like Green-rumped

Parrotlets (Berg et al., 2012) that learn to produce signals that

diverge from those of others in the local area.

Vocalizations in nonhuman primates that live in social groups

evolved to serve different behavioral functions than those of avian and

mammalian vocal production learners. Calls in social primates are

used to “facilitate social interactions by reducing uncertainty about

the signaller’s intentions and likely behavior” (Cheney and Seyfarth,

2018). Species identity seems to be conveyed primarily by visual cues

in diurnally active primates (Pokorny and Waal, 2009; Dahl et al.,

2010; Hirata et al., 2010), and individual and kin identity at close

range can be determined from the combination of visual, acoustic,

and chemical cues (Sliwa et al., 2011; Henkel and Setchell, 2018). A

small repertoire of innate call types that can be graded in rate,

duration and amplitude, and combined with other call types, provides

sufficient flexibility and information content for individuals to assess

each other’s likely behavior during social interactions, especially when

combined with chemical and graded visual displays. The identity of

the caller, the context in which it calls, the history of interactions with

that individual, and its decision to call all convey more useful

information to the receiver than the structure of the call itself.

Under these conditions, the potential costs of VPL may outweigh

the benefits. Selective pressures might thus center on increasing the

cognitive capacity to keep track of the complex history of interactions

with the different members of a social group, and to associate the

current context of calling with this history. Nonhuman primates have

therefore been selected to learn to use innate vocal signals in novel

social or environmental contexts (i.e., vocal usage learning) (Fischer,

2017; Cheney and Seyfarth, 2018; Vernes et al., 2021).
5.5 Summary

The discussion above can be summarized as follows.
1. In visually limited habitats, the auditory channel is the only

effective channel for communication over long distances.
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2. Innate acoustic signals are limited in variety and structural

complexity which limits the number of different types of

messages and the amount of information that can be

conveyed in a signal.

3. Species that can use only the auditory channel to

communicate over distances that typically separate sender

and receiver, and that gain from the ability to modify

signals to converge with or diverge from those of other

group members (dolphins, seals, bats, elephants), or benefit

from increasing signal complexity (songbirds, whales), will

be under selection to evolve VPL. Innate signals do not

allow a sender the flexibility to modify signals as local social

factors dictate, nor do they permit expanding the variation

in the signal set in contexts where it is adaptive for senders

to signal their quality to receivers.
6 Functional explanations of vocal
production learning

Much attention has been devoted to understanding the adaptive

value of VPL (reviewed byNottebohm, 1972; Lachlan and Slater,

1999; Slater and Janik, 2010). Various functional hypotheses have

been proposed, but few have been rigorously tested. Nowicki and

Searcy (2014) evaluated five major hypotheses and concluded that

comparative analyses most strongly support the proposal that VPL

evolved to increase the number and complexity of vocalizations in

response to either sexual selection driven by female mating

preferences or kin selection to share information with relatives.

While these hypotheses might explain VPL in some taxa of

songbirds (but see Soma and Garamszegi, 2011), whales, and

singing bats (Knörnschild et al., 2010) that learn complex signals,

they do not account for other taxa that learn relatively simple calls

used for group and/or individual recognition. These hypotheses also

likely do not explain the evolution of language in hominids (Cheney

and Seyfarth, 2018).

It is not surprising that no one or even two hypotheses can explain

the evolution of VPL in all taxa. Phylogenetic analyses indicate that it is

most parsimonious to conclude that VPL evolved independently in the

different mammalian clades, and also likely independently in

hummingbirds, and parrots and songbirds. Songbirds and parrots

are sister clades and it is not yet clear whether their common

ancestor learned to vocalize while the suboscine antbirds and

flycatchers lost this ability, as opposed to independent evolution of

learning in songbirds and parrots (Nowicki and Searcy, 2014). Each

independent evolution of VPL by a species was the response to a suite

of selective factors unique to that species, potentially including its

mating and social systems, the presence or absence of extra-pair

mating, female mate choice behavior, habitat, spacing behavior, life

history patterns, phylogenetic history, and the presence or absence of

preadaptations. Once VPL has evolved in a species, there can be

modification of one or more aspects of learning within a species as

populations disperse to new locations, and with rapid speciation

following radiation to new habitats as occurred in Passeriform birds
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(Barker et al., 2004).Within themonophyletic songbird lineage, there is

extensive diversity in how many songs are learned, when they are

learned, from whom they are learned, and their behavioral function

(Beecher and Brenowitz, 2005; Brenowitz and Beecher, 2005). This

diversification can make it difficult to identify a single adaptive

explanation for the original evolution of VPL in the root ancestral

species of a clade, especially if that species no longer exists.

While there may not be any single unitary function that can

explain the evolution of all VPL, it is possible to propose general

advantages that will favor its evolution. Vocal production learning

allows animals to develop signals that are more complex in

structure and/or more flexible than can be encoded genetically in

innate signals. Increased signal complexity may be adaptive when

ecological constraints limit animals to the auditory channel for

encoding different types of information in signals used over

distances that separate senders and receivers, as in songbirds,

parrots, and whales. Complex signals are also beneficial in

behavioral contexts where receivers use signals to assess the

quality of senders as in Satin Bowerbirds and Superb Lyrebirds.

The ability to modify signals with reference to environmental

information can be adaptive when they are used to convey

membership in a social system with unpredictable membership,

as in Savannah Elephants. Plasticity can also be advantageous when

individuals benefit from altering signals to match those of adjacent

conspecifics as in bats and dolphins, or to diverge from the signals

of neighbors as in Green-rumped Parrotlets. VPL may evolve

independently in all of these contexts, complicating any attempt

at a unitary evolutionary synthesis.
7 Discussion

Animals that communicate with acoustic signals begin life with

some genetic specification of the direction that development of the

acoustic signaling system will take. In most species, development of

species-typical vocalizations occurs without the need for exposure to

such vocalizations or other appropriate experience; we have referred to

the signal and its development in these cases as “innate”. In other

species, signal development proceeds similarly, but subsequently the

signal can bemodified by experience with appropriate auditorymodels.

In still other species, the genetic-developmental program serves to

guide the choice of an appropriate auditory model, or to channel

auditory learning in some way towards species-appropriate signals. The

balance between innate and learned contributions to vocal

development varies within and between taxa, and reflects the relative

costs and benefits of learning for a given species, as well as the

ecological and social constraints that it faces when signaling.

In taxa that learn to produce complex signals, like songbirds,

juveniles typically memorize external models of conspecific sounds

and use auditory feedback to guide the sensorimotor process of

matching their vocal motor production to the external models. In

taxa that learn to produce relatively simple contact calls, such as in

young bats, individuals may modify their vocal production to

resemble (and in some cases, to diverge from) the calls of other

individuals that they hear on an ongoing basis. (It is not yet known

whether any mammals that can modify calls as adults need to
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memorize external species-typical auditory models as juveniles in

order to produce those calls.) Once evolved within a clade, the form

and function of learned signals can be modified in response to the

specific ecological factors encountered by different species.

VPL seems most likely to evolve in taxa that meet one or more of

the following conditions. 1. The species occupies a habitat where

individuals must rely predominantly or exclusively on the acoustic

channel to communicate over distances that typically separate senders

and receivers. 2. Individuals gain from using auditory input to modify

the structure of their signals to converge with or diverge from those of

conspecifics in the same area, as in the contexts of signaling group

membership (convergence) or individual identity (divergence).

3. Individuals live in social groups where membership is fluid over

time, requiring the ongoing ability to modify vocal identity signals, as

seems to occur in Savannah Elephants (Poole et al., 2005; Stoeger and

Manger, 2014), Village Indigobirds (Payne, 1985), and southern

Humpback Whales (Allen et al., 2018). Individuals in these species

are relatively long-lived (i.e., 10+ years), which may increase the

selective pressure to be able to update acoustic identity signals as

group membership changes over their lifespans. 4. Individuals gain

from developing signals that allow receivers to accurately assess the

sender’s health and vigour to attract a mate and/or deter a rival

(Table 2). VPL will evolve when these benefits outweigh the potential

costs of this complex sensorimotor process. We expect VPL to evolve

only rarely, when one or more of the selective advantages is present.

Language development in humans is a sui generis example of

VPL. It involves a sensorimotor process analogous to other forms of

VPL, but also includes a considerable cognitive component.

Children learn grammatical and syntactical correctness rules by

listening to mature speakers, and generalize them to novel phrases.

Their vocabulary expands rapidly through fast-mapping

(Nicolaidis, 2006). Gestural languages such as American Sign

Language include a large cognitive component (Supalla et al.,

2014). In general, human language learning is so much more

complex than even the most impressive animal examples of VPL,

including even the large song repertories of some songbirds, that

trying to lump them together as instances of template-based “vocal

production learning” is of questionable value.

The burden of evidence does not support the suggestion that

human language arose from simpler VPL in nonhuman primates.

An alternative hypothesis is that limitations on the maximum

potential information content of visual gestural signals favored

the evolution of vocal learning (Prieur et al., 2020). It has been

widely speculated that early hominids relied primarily on these

visual displays for social communication. As social complexity

rapidly increased with hominid cultural evolution, the selection

for increased complexity of communication may have favored the

elaboration of acoustic signaling, given the greater flexibility of

vocal production mechanisms compared with gestural signals

(Cheney and Seyfarth, 2018). Genetic programming of acoustic

signals may not have been able to keep pace with cultural evolution

of social interactions, coordinated foraging, and tool use, and this

might have favored the evolution of VPL in humans. Learned

spoken language complements visual gestures to produce a

multimodal communication system of considerable complexity

and high potential information content in modern humans.
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There are many unanswered questions and grey areas in the

study of the evolution of vocal learning (Vernes et al., 2021).

Carefully controlled developmental studies in a wider range of

animals are urgently needed. Training studies should be used where

feasible and ethical. We believe that such studies may well

demonstrate VPL in species in taxa outside those in which it has

been found thus far, where ecological and social factors favoring its

evolution occur. If a given newly-demonstrated VPL species is an

exception for its larger taxon, then it provides an excellent test of

our hypotheses about ecological selection pressures or existing

preadaptations favoring VPL. In searching for new examples of

VPL, anecdotal just-so stories should be avoided. Proposed neural

and genetic mechanisms of vocal learning should be examined and

experimentally tested more widely. We look forward to seeing

continued research on the evolution of vocal learning.
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