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Introduction: The use of pseudo-absence data constrained by environmental 
conditions can facilitate potential distribution predictions of invasive species. 
However, pseudo-absence data generated by existing methods are usually not 
representative because the relationship between the presence and pseudo-
absence points is either simplistic or neglected. This could under or overestimate 
the potential distribution of invasive species.

Methods: To address this deficiency, this study proposes a new method for 
obtaining pseudo-absence data based on geographic similarities. First, the reliability 
of pseudo-absences was quantified based on the geographic similarity to the 
occurrence of species. Subsequently, a representative pseudo-absence reliability 
threshold interval was determined. Finally, different pseudo-absence acquisition 
methods were assessed by combining virtual species with a real invasive species.

Results: The analysis demonstrated that the geographic similarity method can 
improve model accuracy and achieve a more realistic distribution compared with 
the traditional method of sampling for pseudo-absence data.

Discussion: This result indicates that the pseudo-absence data obtained using 
the geographic similarity approach were more representative. Our study provides 
valuable insights into improving invasive plant distribution predictions by 
considering the geographical relationships between species occurrences and the 
surrounding environments.
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1. Introduction

Invasive plants cause a loss of species habitat and diversity, therefore, studying their 
distribution is important for ecological conservation (Pyšek et al., 2012; Blackburn et al., 2019). 
Species distribution models (SDMs), also known as ecological niche models, use associations 
between the known occurrence (presence) of species and environmental conditions to estimate 
the potential geographic distribution of species, and have become a principal tool for studying 
the distribution of invasive species (Guisan and Thuiller, 2005; Elith et al., 2006; Elith and 
Leathwick, 2009). The quality and representativeness of the distribution data applied to SDMs 
are vital, because samples that infer relationships between variables should be representative of 
the underlying population (Zaniewski et al., 2002; Lobo, 2008; Rocchini et al., 2011; Tessarolo 
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et  al., 2021). Depending on the distribution data of species used, 
SDMs can be  classified into presence-only and presence-absence 
models (Brotons et al., 2004; Elith et al., 2006). Unlike presence-only 
models, presence-absence models require additional species-absence 
information to explore species-environment relationships. Moreover, 
several comparisons of various SDMs have demonstrated that 
presence-absence models tend to perform better than presence-only 
models (Brotons et al., 2004; Engler et al., 2004; Elith et al., 2006; 
Guisan et al., 2006). Presence data can be acquired through in situ 
collections, herbaria, or web-based information databases, such as the 
Global Biodiversity Information Facility (GBIF; Elith et al., 2006; Elith 
and Leathwick, 2007; Wisz et al., 2008). However, these occurrence 
data may suffer from spatial bias (sample selection bias) because some 
sites are more likely to be surveyed or some species under recorded 
(Hortal et al., 2007; Phillips et al., 2009). Obtaining real absence data 
is sometimes challenging; thus, SDMs use random pseudo-absence 
(background or implied absence) data from the study area to reveal 
the environmental information available. Even with the inherent 
spatial bias in the collected data, pseudo-absence data selected 
through presence data is still useful, especially when available data 
records are rare (e.g., managing invasive or endangered species; Engler 
et al., 2004; Peterson et al., 2018). Furthermore, even if the quality of 
the presence data is high, pseudo-absence data should be thoroughly 
selected, as this is critical for the relative accuracy of SDMs (Lobo 
et al., 2010; Smith et al., 2013).

Two methods have been proposed for obtaining pseudo-absence 
data. The first involves random sampling of the entire geographic area, 
providing a broad representation of the environmental space 
(Stockwell, 1999; Hirzel et  al., 2001). However, this method may 
generate abundant false absences, leading to erroneous predictions, 
particularly when records of species are scarce (Engler et al., 2004; 
Lobo et al., 2010). The second method samples a specific region rather 
than the entire area and can be delineated in geographic (geographic 
constraint method) or environmental space (environmental constraint 
method; Lobo and Tognelli, 2011; Barbet-Massin et al., 2012). This 
method increases the probability of obtaining absence data in places 
with environmental conditions different from those of the presence 
data, crucial for predicting the potential distribution of species (Lobo 
et  al., 2010). However, spatial distance buffers used to define 
geographic ranges are often arbitrary and subjective (VanDerWal 
et  al., 2009; Barbet-Massin et  al., 2012). An ecological approach 
known as the two-step method has been employed, which selects 
pseudo-absence data from unsuitable areas predicted by the BIOCLIM 
envelope model or ecological niche factor analysis based on presence 
data only (Engler et al., 2004; Wisz and Guisan, 2009). However, this 
method produces overly optimistic forecasts (Engler et  al., 2004). 
Without objective thresholds, pseudo-absence data tends to 
be selected within a “narrow” range, causing overestimated predictions 
with an underrepresented geographic sample and an overly broad 
distribution (Lobo et al., 2010). Subsequently, a three-step pseudo-
absence data selection technique that balances both geographic and 
environmental dimensions has been proposed to avoid such 
overestimations (Senay et al., 2013; Iturbide et al., 2015). This approach 
attempts to determine sampling geographic ranges based on changes 
in the importance of environmental variables, and subsequently 
applies classifiers and clusters to select representative pseudo-absence 
data. However, this approach introduces additional uncertainty when 
determining distances.

The use of pseudo-absence data is crucial for the distribution 
modeling of species, but to ensure accuracy, they must closely 
represent the geographical study area. Current pseudo-absence data-
selection methods either under or overestimate potential distributions, 
both of which are detrimental to the management of invasive species. 
The difficulty in applying existing methods to determine a reasonable 
sampling range is the main driver behind the abovementioned 
underrepresentation. As the existing methods often involve explicit or 
implicit arbitrary assumptions, a “smooth” approach needs to 
be developed to obtain a reliable threshold. To this end, we proposed 
quantifying the environmental similarity between the unknown 
location and the occurrence location, as those with similar 
environmental characteristics are more likely to have similar 
distribution characteristics of species (Broennimann et  al., 2012; 
Tocchio et  al., 2015). This is known as the “geographic similarity 
principle,” namely, the more similar the geographical configuration of 
two points (regions), the more similar the value (process) of the target 
variable at these two points (regions) and has been shown to improve 
the reliability of distribution predictions of geographic phenomena 
(e.g., landslides and soils; Zhu et al., 2018; Xu et al., 2023b). Based on 
this principle, we proposed a method for obtaining pseudo-absence 
data of species that considers geographic similarity to improve the 
pseudo-absence data quality. By exploring the correlation between the 
distribution of species and the geographic environment, we calculated 
the confidence level of a location becoming absent based on the degree 
of similarity to known distribution locations of species. However, 
using pseudo-absences that are too far away (i.e., not similar) from the 
presence data may overestimate the potential distribution (Lobo et al., 
2010). Therefore, we introduced a new metric, the predictive efficiency 
index (PEI)—discussed later—to evaluate prediction overestimation.

The main aim of this study is to use the geographic similarity 
principle to improve the representation of pseudo-absence data, thus 
improving the potential distribution prediction of invasive species. To 
this end, we  tested and compared the performance of traditional 
methods (“random,” “geographic constraints,” and “environmental 
constraints”) and a new geographic similarity-based approach 
(pseudo-absence selection method) in presence-absence models using 
virtual species (Meynard et al., 2019) and a real case of Ageratina 
adenophora (Spreng.) R.M. King and H. Rob (Asterales, Asteraceae) 
distribution in Yunnan, China. Specifically, we applied each of the four 
pseudo-absence selection methods described above to virtual species, 
as well as real A. adenophora SDMs, and tested their performance 
under different biases and presence numbers (30, 50, 100, and 300). 
We validated the new methods by comparing the model results with 
the known (virtual) distribution suitability of species.

2. Materials and methods

2.1. Research processes

This study consisted of three steps (Figure  1). First, the 
geographical environmental similarity between known presence 
points of species and unknown locations was computed to assess the 
reliability of the unknown locations as pseudo-absences. This 
reliability measure provides guidance for sampling pseudo-absences. 
Second, the impact of pseudo-absences was tested with varying levels 
of reliability on the prediction of invasive distributions of species. The 
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aim was to understand how different levels of reliability influence the 
accuracy and effectiveness of the distribution models. Finally, the 
feasibility and effectiveness of the proposed method were compared 
with those of traditional approaches.

2.2. Ageratina adenophora and 
environmental variables

Yunnan Province (China), located on the border of Southwest 
China and covering a total area of 394,100 km2, was selected as the 
study area (Figure 2). Its mountainous regions account for 84% of the 
total area which has a complex topography including rivers and lakes. 
Although Yunnan features a diverse ecological environment, as a 
border province with frequent foreign exchanges, it is vulnerable to 
biological invasions, which threaten its biodiversity and natural 
environment. A. adenophora is a successfully invasive plant species in 
Yunnan and ranked first among the 16 most important invasive alien 
species identified by China’s State Environmental Protection 

Administration in 2003 (Zhang et al., 2007). Here, we obtained 300 
valid A. adenophora distribution points from the literature (Xian et al., 
2023; Figure  2). Nine environmental variables (Pearson’s |r| < 0.8, 
reducing the effect of multicollinearity) associated with the growth 
and spread of A. adenophora were selected for analysis, including 
bioclimates from WorldClim (Fick and Hijmans, 2017; bio2, bio9, 
bio14, bio15, bio16, and bio19), topsoil organic matter, and acid–base 
conditions (toc, tph). A detailed description of the environmental 
variables is provided in Supplementary material.

2.3. Virtual species

Virtual species were modeled with known true distributions to 
validate the similarity approach. We generated two virtual species 
using the function generateSpFromPCA in the package virtualspecies 
v.1.5.1 (Leroy et al., 2016) in R v.4.2.0 (R Core Team, 2022), which 
creates different principal component axes based on the given 
environmental variables and defines the species response to the 

FIGURE 1

Research flow chart.

https://doi.org/10.3389/fevo.2023.1193602
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Wang et al. 10.3389/fevo.2023.1193602

Frontiers in Ecology and Evolution 04 frontiersin.org

principal component axes. We selected the first two axes (explaining 
80.34% of the environmental variables), set the ecological niche 
breadth of the species to “wide,” and fixed the slope α to −0.1. Two 
virtual species with a prevalence of 0.4 and 0.7 were generated. 
Subsequently, we  performed a binary (presence-absence) 
transformation of the distribution suitability of the virtual species 
using a “logistic” approach. The environmental variables used to 
generate and predict the distribution of virtual species were consistent 
with those used for A. adenophora. To investigate the effect of 
sampling bias and the size of the presence data on the model 
prediction accuracy we performed 10-fold subsampling (30, 50, 100, 
and 300 presences) for the potential distribution with and without 
bias. The bias weights were the spatial kernel densities of plant records 
(GBIF, https://doi.org/10.15468/dl.p3pwxa) from Yunnan Province.

2.4. Modeling and evaluation

We modeled species distributions by a commonly used, presence-
absence based generalized linear model (GLM) using the R package 
flexsdm v.1.3.3 (Velazco et al., 2022). A key advantage of the GLM is 
its flexibility in accommodating different response variables. GLM can 
handle binary data (presence or absence) by using a binomial 
distribution with a logit link function that models the probability of 
occurrence based on environmental predictors. This is well suited for 
the distribution modeling of species, where the goal is to predict the 

presence or absence of a species in relation to environmental variables. 
Here, GLMs were developed using a 10-fold cross-validation 
approach, with the data randomly divided for each iteration into a 
training and test set (70% and 30% of the data, respectively).

Several evaluation metrics were employed to assess the 
performance of the model. Sensitivity, representing the proportion of 
correctly predicted presences, and specificity, indicating the 
proportion of correctly predicted absences, were calculated. True skill 
statistics (TSS) were computed using the formula: TSS = sensitivity + 
specificity − 1 (Allouche et al., 2006; Jiménez-Valverde and Lobo, 
2007). The TSS provides an advantageous assessment of the model 
accuracy and was utilized to classify the presence or absence of 
prediction results, considering the maximum TSS value as the 
threshold. We also employed the area under the receiver operating 
characteristic (ROC) curve (AUC) as a summary measure of model 
performance (Allouche et al., 2006). The AUC quantifies the overall 
fit of the model by plotting sensitivity against 1—specificity over 
various thresholds. It ranges from 0.5 (representing a random model) 
to 1 (indicating a perfect fit). Schoener’s D (D) was used to evaluate 
niche overlap or similarity, ranging from 0 (completely dissimilar 
ecological niche) to 1 (identical ecological niche; Schoener, 1968). 
Higher values of D indicate a better prediction performance. To 
ensure the reliability of our evaluations, these indicators were 
calculated based on the known potential distribution of virtual species 
(but note that for the real species A. adenophora, the AUC and TSS 
were calculated based on pseudo-absence). We utilized the R packages 

FIGURE 2

Map of the study area in Yunnan, China.
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ENMTools v.2.0.0 (Warren et al., 2021) and PresenceAbsence v.1.1.11 
(Freeman and Moisen, 2008) to compute D and TSS, respectively.

2.5. True absence and pseudo-absence

We considered all points outside the potential distribution of 
the species as true absences. The methods below were used to 
generate 10,000 pseudo-absences for the GLM (Barbet-Massin 
et al., 2012).

2.5.1. Similarity-based pseudo-absence method
Similarity-based pseudo-absence was performed in three steps 

(Figure 3). First, the similarity of the geographic environment was 
calculated for all unknown locations and presence points in the study 
area. Second, the reliability of the pseudo-absence was calculated 
based on the similarity. Finally, the optimal reliability was determined 
and pseudo-absences were obtained.

Previous studies have used the Mahalanobis distance to measure 
similarity; however, this requires a priori prediction of the “best 
observed value” (Farber and Kadmon, 2003). Here, the Kernel density 
was used to calculate the geographic environmental similarity between 
each unknown location and all presences (Zhu et al., 2015, 2018, 2019; 
Xu et  al., 2021, 2023a). The environmental variables must 
be normalized prior to unifying their magnitudes.

First, using Equation (1), we calculated the similarity Si
v between 

each unknown location i (i = 1, 2, 3, …, k; k is the total number of all 

locations) and all presences j (j = 1, 2, 3, …, n; n is the number of 
presences) based on the vth (v = 1, 2, 3, …, l; l is the total number of 
environmental variables) environmental variable, where ei

v and ej
v are 

the values of the unknown points i and j, respectively. The bandwidth 
h was determined using an empirical rule (Liu et  al., 2021) with 
Equation (2), where σv is the standard deviation of the vth 
environmental variable. Subsequently, we  combined all l 
environmental variables to compute the comprehensive similarity Si 
of each unknown location to the presence data using Equation (3). 
Where f denotes the integrated similarity calculation function, and 
we used the average function.
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The reliability of pseudo-absence and similarity of presence data 
are complementary concepts used to measure the reliability of 

FIGURE 3

The three steps used to create the similarity-based pseudo-absence data. Step 1: calculate the similarity. Step 2: calculate the reliability of pseudo-
absence. Step 3: determine the optimal reliability threshold R.
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pseudo-absence data based on the results of similarity calculations, as 
shown in Equation (4):

  R Si i= −1  (4)

where Ri is the reliability of unknown location i as a pseudo-
absence. Similar to Si, the value domain of Ri is [0, 1]. To test the 
prediction of the distribution of invasive species under different 
threshold constraints step by step, we tested k reliability intervals 
(i.e., reliability falling in [t × s, 1], t = 0, 1, …, k-1, k. k = 1/s), where 
s is the step size (set as 0.05) and R (R = t × s) is the 
reliability threshold.

The model discrimination (AUC or TSS score) can be high 
when overpredicting, that is, when the area occupied by the 
predicted species is high with regard to the total study area. 
However, this does not imply the applicability and accuracy of 
the predictions because the model results should precisely predict 
most species to occur in the smallest area (“parsimony rule”; 
Engler et al., 2004; Lobo et al., 2008; García-Roselló et al., 2019). 
Inspired by this idea, we used the predicted efficiency index (PEI) 
to determine the optimal reliability threshold R. Similar to the 
AUC, the predicted efficiency index was obtained by computing 
the area under the curve, which is composed of the coordinates 
xi and yi, based on Equation (5):
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Analogous to the reliability class classification, but with a 
smaller step of 0.01, the model-predicted values were classified into 
i classes (i = 1, 2, … m). The vertical axis yi represents the ratio of 
the known presence number Ni within rank i to the total number 
of presences, and the horizontal axis xi represents the ratio of area 
Ai predicted as a presence within rank i to the total study area 
(equivalent to the number of raster cells). The area under the curve 
was calculated as the PEI and its value was within the interval [0, 
1]. Higher values indicated higher applicability or accuracy of the 
prediction results. Therefore, it is important to ensure high PEI 
values and model accuracy (sensitivity). We considered R to be the 
best pseudo-absence reliability threshold when the mean of the 
two was maximum.

2.5.2. Traditional pseudo-absence sampling 
methods

Three traditional types of pseudo-absence data sampling were 
performed using the R package “flexsdm” (Velazco et al., 2022). (1) 
The random method—random selection from all the points in the 
geospatial background of the study area, excluding known presence 
points; (2) geographical constraint method—sampling of the areas 
located 20 km away from known presence points; and (3) 
environmental constraint method—sampling of the results 
generated based on the envelope model BIOCLIM (Booth 
et al., 2014).

3. Results

3.1. Ageratina adenophora distribution 
model

The A. adenophora distribution model showed different 
responses to pseudo-absences, with different levels of reliability 
(Figure 4). As the reliability threshold R increased, the extent of 
highly suitable areas expanded, as represented by an increase in 
green areas. Relatively low thresholds (Figure 4A) were generally 
associated with low suitability. When the threshold was moderate 
(Figure 4B), a relatively “smooth” trend of high and low values was 
discerned. However, as the threshold continued to increase 
(Figure 4C), the suitability exhibited a “bipolar” (0 and maximum 
predicted value) distribution pattern. In terms of the model 
discrimination (Figure  5A), we  found that the AUC and TSS 
increased as the threshold value increased. The PEI remained 
relatively flat at high values with low thresholds (R = 0.0 ~ 0.2) but 
then decreased as the reliability threshold increased. Notably, the 
TSS (and sensitivity) exhibited significant instability at high 
thresholds (R = 0.9). The mean values of predictive efficiency and 
sensitivity were greatest when the reliability threshold (R) = 0.6; 
therefore, this was set as the optimal reliability threshold.

The selection of different pseudo-absence methods influenced 
the accuracy of the A. adenophora distribution model 
(Figures  5B,C). The environmental constraint and similarity 
methods substantially improved the modeling accuracy of TSS 
compared to the random and geographical constraint methods; 
however, these approaches resulted in a decrease in the PEI. The 
similarity method achieved a higher PEI than the environment-
constrained method. Overall, the similarity method produced 
models with higher prediction accuracy and efficiency. The 
pseudo-absence sampling method, based on geographic similarity, 
has demonstrated notable advantages in terms of both model 
performance and accuracy. It exhibits greater stability in striking a 
balance between avoiding overestimation and making 
accurate predictions.

3.2. Virtual species distribution simulation

For the virtual SDMs (Figure 6), the pseudo-absence selection 
based on similarity achieved the best accuracy (TSS) and ecological 
realism (D) across different sample sizes (Figure 6A). The similarity 
method achieved the highest accuracy and most realistic 
representation of ecological niches, even for species with different 
distributions and prevalence rates (Figure 6B). For species with a 
higher prevalence, the environmentally constrained methods 
performed slightly higher in accuracy (TSS) but lower in ecological 
veracity than the similarity methods. Notably, although the 
ecological realism (D) attained by the similarity method was 
slightly lower than that of the random method under unbiased 
conditions, bias did not significantly affect the high accuracy (TSS) 
achieved by the similarity method (Figure 6C). Overall, compared 
with traditional approaches, pseudo-absence based on the 
similarity method yielded better model performance under 
various conditions.
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4. Discussion

4.1. The significance of quantifying 
pseudo-absence reliability and its 
implications in the distribution modeling of 
species

The results of the A. adenophora distribution model highlight 
the significant influence of the reliability threshold for pseudo-
absence data on model quality. Increasing the reliability threshold 
improved both model discrimination (AUC) and prediction 
accuracy (TSS or sensitivity). However, it is important to exercise 
caution, as excessively high thresholds can lead to overprediction 
and confusion, reminiscent of the “no elephants in Antarctica” 
scenario (Figure 4C).

When the reliability of the pseudo-absence data was relatively 
low, the resulting geographic representation was extensive but 
resulted in a significant number of false absences, leading to lower 
model accuracy, particularly in terms of sensitivity. The model 

predictions resembled those of the random method and were 
restricted to a narrow range in the presence of known species. 
Consequently, the identification of potential species distribution 
areas was ineffective, despite the relatively high PEI values. 
Moderate reliability thresholds strike a balance by considering 
geographic representations, while filtering out false absences. This 
improved the modeling accuracy and alleviated underestimation, 
while maintaining high prediction efficiency. High reliability 
thresholds restricted pseudo-absence sampling to areas that were 
highly unfavorable for species survival. Consequently, the model 
can accurately distinguish between presence and absence, yielding 
high accuracy. However, such data only represent a limited 
geographic environment within non-invasive areas (extremely 
unfavorable places for the survival of a species), failing to capture 
the full complexity of the environment in those areas. 
Consequently, more spatial areas were classified as potential 
distribution areas for the invasive species, resulting in a lower 
PEI. Therefore, it is crucial to determine an appropriate reliability 
threshold to achieve optimal prediction effectiveness and accuracy.

FIGURE 4

The A. adenophora distribution model showed different responses to pseudo-absences with different levels of reliability. (A) When low threshold, the 
pseudo-absence data may contain a large number of false absences, predicting with high efficiency but underestimating the species distribution; 
(B) When medium threshold, some false absences are excluded and over- or underestimation is mitigated; (C) When high threshold, pseudo-absences 
are restricted to a tight range, with low prediction efficiency and overestimation of species distribution.
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The above process demonstrates that quantifying the reliability 
of pseudo-absence data using similarity represents a data-driven 
guideline for sampling reasonable pseudo-absence data. This 
approach provides valuable insight for future studies aimed at 
collecting reliable pseudo-absence data. To identify the optimal 
sampling threshold, we  focused on the principle of accurately 
predicting species presence within smaller areas where possible. 
Our goal was to maximize both the sensitivity and PEI; therefore, 
we employed the concept of environmental similarity to species 
presence, interpreted as a measure of the uncertainty associated 
with pseudo-absences (Buisson et al., 2010). This concept guided 
the selection of pseudo-absences, ensuring the reliability of the 
sampling approach.

4.2. The effectiveness of pseudo-absence 
data obtained via the geographic similarity 
method

Validation of the virtual SDM demonstrated the effectiveness 
of pseudo-absences based on similarity, which yielded significant 
improvements. The random method underestimates the 
distribution of species, especially with small sample sizes, 
resulting in low sensitivity. The environmental constraint 
approach sacrifices specificity to enhance sensitivity, as such 

method need to occupy more realistic absence sites to correctly 
predict presence sites (low PEI). The geographic constraint 
approach lies between the two, behaving like the random method 
when using short distances and resembling the environmental 
constraint method when using long distances.

In contrast to these approaches, the PEI enables a better 
balance between sensitivity and specificity within the similarity 
method. Similar to the trend observed for specificity, the PEI 
decreased as reliability increased. Because true absences are 
lacking, and true specificity cannot be calculated, maximizing the 
PEI and sensitivity can be viewed as a variation of maximizing 
specificity and sensitivity, namely, maximizing TSS, which has 
been shown to generate the most accurate distribution predictions. 
Thus, the similarity method achieved the highest precision in the 
virtual SDM.

Our findings confirm those of previous studies that obtained 
a reliable representation of the potential distribution of a species 
using pseudo-absences located near the external boundaries of the 
environmental niche occupied by that species (Chefaoui and 
Lobo, 2008; Lobo et al., 2010). Compared to traditional methods, 
the similarity method provides a more reasonable determination 
of this range. By considering the implications of quantifying 
pseudo-absence reliability and the effectiveness of the geographic 
similarity method, we gain valuable insights into improving the 
distribution modeling of species. These findings have important 

FIGURE 5

The selection of different pseudo-absence methods influenced the modeling accuracy of the A. adenophora distribution model. (A) Model accuracy 
(discrimination, calculated based on pseudo-absences and 300 presences) varies with the reliability threshold in the A. adenophora distribution model; 
(B) Comparison of the accuracy (TSS) of different pseudo-absence selection methods in the A. adenophora distribution model; (C) Comparison of the 
prediction efficiency (PEI) of different pseudo-absence selection methods in the A. adenophora distribution model. Differences in means were tested using 
T-test and ANOVA, respectively. The symbols “*”, “**”, “***”, and “****” represent significant p-values less than 0.05, 0.01, 0.001, and 0.0001, respectively.
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implications for conservation, invasive species management, and 
ecological research. Understanding the impact of pseudo-absence 
data reliability on model performance allows informed decisions 
when selecting appropriate thresholds and sampling methods.

4.3. Conclusion and further efforts

Our study introduced a novel method that utilizes geographic 
similarity to obtain representative pseudo-absence data for the 
distribution modeling of invasive species. By considering the 
relationship between species distribution and the geographic 
environment, we quantified the reliability of pseudo-absence data 
and predicted the distribution of the invasive plant A. adenophora 
in Yunnan Province, China. This approach was further validated 
using virtual species. Our analysis demonstrates that the similarity-
based method enhances the representativeness of pseudo-absence 

data and improves predictive accuracy. This has important 
implications for conservation management, ensuring effective 
protection of rare species and management of invasive species. By 
quantifying the pseudo-absence reliability and incorporating 
geographic constraints, our approach improves the accuracy and 
reliability of SDMs, providing valuable information for conservation 
planning and biodiversity assessments. However, addressing the 
potential spatial bias in the sample data remains a challenge that 
requires further consideration and ongoing efforts to improve 
spatial representation. In conclusion, our research highlights the 
importance of quantifying pseudo-absence reliability and 
demonstrates the effectiveness of the geographic similarity method 
in the distribution modeling of species, offering insights for 
biodiversity conservation and management strategies. Future 
studies should validate and explore these approaches in different 
ecological contexts to advance our understanding of species-
environment relationships and conservation efforts.

FIGURE 6

Performance (calculated based on known potential distributions) of different pseudo-absence methods in virtual species distribution models. Model 
accuracy (TSS) and ecological realism (D) for different pseudo-absence methods with different sample sizes (A), prevalences (B), and biases (C); 
differences in means were tested using T-test and ANOVA, respectively. The symbols “*”, “**”, “***”, and “****” represent significant p-values less than 
0.05, 0.01, 0.001, and 0.0001, respectively.
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