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Introduction: With the promulgation of air pollution control policies, there are 
still many cities where the PM2.5 concentration exceeds 35 μg/m3, and O3 pollution 
is increasingly apparent.

Methods: The spatio-temporal evolution and differentiation characteristics of 
PM2.5 and O3 pollution were explored, and then compound pollution hotspot 
urban agglomerations were screened out. A weather normalization technique 
was used to identify the driving amount, the influence of meteorological factors, 
and the anthropogenic emissions quantitatively, on pollution in hotspot urban 
agglomeration. Furthermore, the health and economic losses due to PM2.5 and 
O3 in hot cities in 2015–2020 were quantified. Finally, a natural break-point 
classification method was used to establish the health loss rating systems for 
PM2.5 and O3.

Results and Discussion: The results showed the following: (1) From 2015 to 2020, 
78%, 72%, 69%, 58%, 50%, and 41% of the annual mean PM2.5 concentration had 
exceeded 35 μg/m3, respectively, and 17%, 18%, 31%, 33%, 30%, and 17% of the 
annual mean O3 concentration exceeded 160 μg/m3, respectively, in 337 cities in 
China. (2) From 2015 to 2020, the health losses caused by PM2.5 and O3 were 
ranked as follows: Beijing–Tianjin–Hebei (BTH; 1968, 482 people) > Shandong 
Peninsula (SDP; 1,396, 480 people) > Central Plains (CP; 1,302, 314 people) > Yangtze 
River Delta (YRD; 987, 306 people) > Triangle of Central China (TC; 932, 275 
people) > Guanzhong Plain (GZP; 869, 189 people). (3) The average economic 
losses associated with public health of the PM2.5 and O3 were ranked as follows: 
BTH (2.321 billion, 3.218 billion RMB, 1 RMB = 0.0.1474 USD on 20 January 
2023) > SDP (1.607, 2.962 billion RMB) > YRD (1.075, 1.902 billion RMB) > TC (1.016 
billion, 1.495 billion RMB) > CP (1.095, 1.453 billion RMB) > GZP (0.69, 0.828 billion 
RMB). Therefore, combining hot pollution factors, the regional characteristics 
of the priority control areas, and the national 14th 5-Year Plan, targeted control 
countermeasures were proposed.
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1. Introduction

China has formulated strict air pollution control and pollution 
reduction measures, fundamentally tightening air pollution targets to 
reduce particulate matter pollution since 2013. PM2.5 concentration 
and the number of exceedence days have decreased significantly. 
Based on the 14th 5-Year Plan for Ecological and Environmental 
Protection, 40% of cities have an annual mean PM2.5 concentration 
that exceeds the Grade-II standard (35 μg/m3) of the Chinese Ambient 
Air Quality Standards (GB 3095–2012), indicating that China’s PM2.5 
pollution problem remains challenging. In addition, O3 pollution not 
only fluctuates and rises gradually, but also shows a diffusion trend in 
its pollution range, and the number of medium–high O3-polluted 
cities gradually increases (Li et al., 2019a). PM2.5 and O3 have become 
primary pollutants in many Chinese cities (Xing et  al., 2022). In 
addition, PM2.5 and O3 precursors are similar (NOx and VOCs) and 
interact with each other (Lu et al., 2020). Therefore, it is of significance 
to study the collaborative control of the PM2.5 and O3 pollution 
complex in relation to China’s air pollution control.

The changes in PM2.5 and O3 concentrations have been influenced 
by both anthropogenic emissions and meteorological factors. Previous 
studies have demonstrated that weaker wind speed has aggravated 
regional air pollution (Zhang and Wang, 2020), and high temperatures 
have promoted O3 generation (He et al., 2021). With less precipitation, 
the removal of air pollutants was weakened, which could have further 
increased the concentration of air pollutants (Wang et al., 2018). PM2.5 
and O3 have been predominantly affected by meteorological 
fluctuations and anthropogenic emissions (Zhang et al., 2018; Tao 
et  al., 2020). Therefore, it is of great significance to quantitatively 
analyze the respective contributions of meteorological and 
anthropogenic emission factors for decision-makers to understand the 
driving mechanisms of ambient composite pollution.

At present, studies have applied numerical simulations and 
statistical methods to assess the impact of meteorology on the trend 
of the PM2.5 and O3 in China (Han et al., 2020). Gao et al. (2020) used 
a WRF–Chem model to quantify the amount of the PM2.5 driven by 
meteorological changes in Beijing during winter. However, due to the 
great uncertainty of the emission inventory and the model (Gao et al., 
2018), as well as the large computational resources required by the 
chemical-transmission model, its application was limited by the 
available computing power (Chen et  al., 2019). Statistical model 
analysis was another common method for deducting influence of 
meteorology on air quality, but it usually requires emission and 
meteorological data over a large time span. Zhai et al. (2019) used a 
stepwise multiple-linear-regression (MLR) model to calculate 
meteorological trend driving the PM2.5 concentration in the BTH 
region from 2013 to 2018 as −1.3 μg/m3/year. Currently, new methods 
are being continuously developed to remove meteorological influences 
on air quality, including enhanced-regression-tree (BRT) and 

random-forest (RF) algorithms (Grange and Carslaw, 2019). Machine-
learning-based technologies had better performance than traditional 
models in reducing the variance and errors in high-dimensional data. 
Therefore, this study intended to quantify the influence of meteorology 
on air quality based on a random-forest algorithm and derive the 
meteorological effects on ambient air quality. The quantitative 
identification of the driving mechanism of pollution could not only 
be beneficial to understanding the effectiveness of existing air control 
measures, but it could also be  useful for establishing 
targeted countermeasures.

The quantified identification of the health losses due to PM2.5 and 
O3 under anthropogenic conditions could be  helpful for accurate 
systems for economic loss assessment. In recent years, the application 
of ambient economic-loss-assessment models has focused on 
evaluating of the PM2.5-related economic losses (Xia et al., 2019), but 
few have considered O3-related economic losses, despite this posing a 
significant threat to the health of organisms in the near-surface 
atmosphere (Yao et  al., 2023). In addition, existing studies have 
generally attributed the improvement of the ambient air quality 
entirely to the implementation of emission-reduction policies. For 
example, the changes in the economic losses associated with public 
health caused by the decrease in the PM2.5 concentration was used to 
evaluate the effect of emission-reduction policies (Xu et al., 2021), but 
the significant influence of meteorological factors had not been taken 
into account, so the evaluation results have been biased to a certain 
extent. In addition, based on the policy implementation in recent 
years, the PM2.5 concentration has continued to decline while the O3 
pollution has fluctuated and shown an increasing trend. However, few 
studies have evaluated the ratio of the composite of the economic 
losses associated with public health as being caused by both. Therefore, 
the value of a statistical life (the value that society is willing to pay to 
reduce the certain risk of death or prevent a member of society from 
an early death; Wang et al., 2020) was used to quantify the PM2.5-
related and O3-related economic losses associated with public health.

The major aims of this study were the following: (1) to analyze the 
spatio-temporal evolution and the differentiation characteristics of 
urban PM2.5 and O3 pollution in 2015–2020 and to screen the urban 
agglomeration using spatial aggregation; (2) to quantitatively identify 
the driving factors of the PM2.5 and O3 pollution caused by 
meteorological factors and anthropogenic emission factors; (3) to 
quantify the health losses of the PM2.5 and O3 driven by anthropogenic 
emissions in hot cities and to calculate the economic losses associated 
with public health based on the empirical analysis of the value of a 
statistical life; and (4) to establish a health-loss rating system of the 
PM2.5 and O3 pollution, based on a natural-breakpoint-classification 
method and to propose targeted pollution-control measures via 
zoning and classification.

2. Materials and methods

2.1. Data sources

The concentration data were sourced from the National Air 
Quality Daily,1 published by the Ministry of Ecology and Environment 

1 http://www.mee.gov.cn/

Abbreviations: DM, Daily mean; MDA8, Maximum daily average 8 h; AM, Annual 

mean; AT, Average temperature; AP, Atmospheric pressure; WS, Wind speed; WD, 

Wind direction; RH, Relative humidity; BTH, Beijing–Tianjin–Hebei urban 

agglomeration; CP, Central Plains urban agglomeration; GZP, Guanzhong Plain 

urban agglomeration; YRD, Yangtze River Delta urban agglomeration; TC, Middle 

reach of Yangtze River urban agglomeration; SDP, Shandong Peninsula urban 

agglomeration; ER, Exceedence rate; NBC, Natural breakpoint classification method.
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of China. The daily mean (DM) PM2.5 concentration and the 
maximum daily average of 8 h (MDA8) O3 in 337 cities above the 
prefecture level (333 prefecture-level cities and 4 municipalities) in 
China from 2015 to 2020, were screened out. Based on the Technical 
Regulation for Ambient Air Quality Assessment (HJ663–2013), the 
arithmetic mean values of the PM2.5 DM and O3 MDA8 were used for 
daily evaluation. The annual mean (AM) PM2.5 concentration and the 
90th percentile of O3 MDA8 concentration were used for annual 
evaluation. According to HJ663–2013, urban stations above the 
prefecture level in the national air quality monitoring network referred 
to the ambient air quality assessment within the scope of urban 
built-up areas, that is, they belonged to Grade-II ambient-air 
functional areas. Therefore, the daily evaluation standards of the PM2.5 
DM and O3 MDA8 were 75 and 160 μg/m3, respectively. Then the 
annual exceedence rates of the PM2.5 and O3 pollution in 337 cities 
were further calculated. Moreover, the average temperature (AT, °C), 
average atmospheric pressure (AP, hPa), average wind speed (WS, 
m/s), average wind direction at maximum wind speed (WD, °), and 
relative humidity (RH, %) were selected as weather normalization 
prediction parameters. The daily mean data of these five parameters 
were from the China Meteorological Administration.2 Permanent 
population and mortality data were obtained from the corresponding 
China statistical yearbooks.

2.2. Spatial autocorrelation analysis

Spatial autocorrelation is often used to test whether air pollutants 
aggregate between regions. The global Moran’s I index was selected to 
analyze the global spatial autocorrelation between PM2.5 and O3. The 
calculation formulas are as follows:
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where n is the number of cities; xa and xb are the values of cells a 
and b, respectively; and W is the weight matrix. The global Moran’s I 
is within the range [−1,1], where I < 0 indicates a negative correlation 

2 https://www.cma.gov.cn/

and I > 0 indicates a positive correlation. I close to or equal to 0 
indicates a random distribution or no correlation between 
observations. The Z variable is used to test whether the correlation is 
significant. E(I) is expectation, and var(I) is variance.

Global spatial autocorrelation cannot reflect the characteristics of 
urban spatial agglomeration in a region. Therefore, this study used 
spatial hotspot-detection analysis to test and characterize the effect of 
spatial local autocorrelation. For i, its corresponding local 
autocorrelation statistic Getisord Gi* is defined as follows:
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where S is the standard deviation. If Gi* is positive and significant, 
it indicates that the value around i is high, belonging to a hotspot 
region (high–high aggregation); otherwise, it indicates a cold-spot 
region (low–low aggregation).

2.3. Exposure risk assessment

The population-weighted PM2.5 and O3 concentrations in a single 
grid were calculated by a grid calculator to reflect the exposure risk of 
the populations in the study area. The formula is as follows:

 
PWEL P C

Pi
i i

i
=

×
∑  

(6)

where PWELi is population-weighted PM2.5 or O3 concentration; 
i is the number of grid cells; Pi is the number of people in the grid; and 
Ci is the PM2.5 or O3 concentration in the grid, μg/m3.

2.4. Weather normalization analysis

Weather normalization technology can use randomly selected 
meteorological conditions to predict air pollutant concentration at a 
specific measurement time point, that is, to remove the influence of 
meteorological conditions on pollutant concentration. This method 
was presented by Grange and Carslaw (2019) for the first time. The 
input dataset was first randomly generated from the original 
observation dataset and divided into a training dataset (70% of the 
input dataset) and a test dataset (30% of the input dataset). For a 
particular day, the model randomly selected time variables and 
weather parameters for any day from the feature dataset, and this was 
repeated 1,000 times to provide a new input dataset. The input dataset 
was then fed into RF model to predict pollutant concentration on a 
given day, resulting in 1000 predicted concentrations for that day. The 
final pollutant concentration, known as the weather-normalization 
concentration, was the arithmetic average of 1,000 predicted 
concentrations. The weather normalization R language code for a 
single city is shown in Supplementary material.
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2.5. The economic losses associated with 
public health

According to the technical specifications for health risk assessment 
of ambient air pollution (WS/T666–2019), the health risk assessment 
procedure was divided into four steps: risk identification, risk-
response assessment, risk assessment, and risk characteristic 
description. In this study, the objects of risk identification were PM2.5 
and O3. All-cause death was selected as the health end-point for PM2.5 
and O3 pollution in this study (Zeng et al., 2019; Qu et al., 2020). The 
health losses (ΔMort, excess deaths) caused by PM2.5 and O3 pollution 
were assessed as follows:

 ∆Mort y AF Pop= 0· ·  (7)

where y0 is the baseline mortality of all-cause death; Pop is the 
annual exposed population from 2015 to 2020; AF is the attributable 

proportion (AF
RR
RR

=
−1

); RR is relative risk; and the calculation 

formula is as follows:

 RR C C= −( ) exp β 0  (8)

where C is the concentrations of PM2.5 and O3; and C0 is the 
minimum risk exposure concentrations of PM2.5 and O3. MDA8 O3 is 
also a scientific representative of the impact of O3 pollution on human 
health (Yan et al., 2012). Therefore, C was chosen as PM2.5 AM and 
MDA8 O3 for the calculated concentrations. For C0, based on existing 
studies, the highest concentration of PM2.5 without health damage is 
5.8–8.8 μg/m3 (Lim et al., 2012), and the average value is 7.3 μg/m3. 
According to the study of Turner et al. (2016), the lowest risk exposure 
level of the annual mean MDA8 O3 is 26.7 ppb (57.3 μg/m3). Therefore, 
C0 was set at 7.3 μg/m3 for PM2.5 and 57.3 μg/m3 for O3. β is the 
concentration-response coefficient, which was obtained according to 
the existing studies (Yin et al., 2017; Zeng and Ruan, 2020), as shown 
in Table 1.

The evaluation method of the economic losses associated with 
public health is as follows:

 HL Mort VSL= ×∆  (9)

where ΔMort is the health loss corresponding to PM2.5 and O3. HL 
is the economic losses associated with public health.

At present, the value of statistical life (VSL) has often been used to 
quantify the economic losses associated with public health (Qu et al., 
2020; Wang et  al., 2020; Xu et  al., 2021). This study selected the 
combination of questionnaire research and a result-transfer method 

to reduce uncertainty in the VSL calculations. Taking Wuhan as the 
research object, we conducted an empirical study and conducted a 
questionnaire survey of the willingness to pay across 13 administrative 
regions of Wuhan. Questionnaire design was shown in 
Supplementary material. Based on the survey, the average level of 
willingness to pay (WTP) for reducing the excess mortality risk of 
PM2.5 per 1,000 people in Wuhan over the next 10 years was RMB 
146.25 (RMB 1 = USD 0.1485 on 18 July 2022)/year/person. The 
corresponding VSL value was RMB 1,462,500 in 2020.

3. Results and discussion

3.1. Dynamic evolution of PM2.5 and O3 
pollution

Figure 1 shows the spatio-temporal distribution of PM2.5 AM, 
and the corresponding exceedence rates (ERs) in 337 prefecture-level 
cities in China. Generally, the PM2.5 AMs of the total 337 cities from 
2015 to 2020 were 10–118 μg/m3, 11–157 μg/m3, 10–100 μg/m3, 
8–116 μg/m3, 7–110 μg/m3, and 6–113 μg/m3, respectively. The 
highest values were concentrated in Hotan and Kashgar of Xinjiang, 
while the lowest values were in Nyingchi, Shannan, and Ngari of 
Tibet. The high PM2.5 in Xinjiang was due to natural factors, such as 
sand and dust. In addition, the PM2.5 AMs in 337 cities from 2015 to 
2020 were 50 ± 19, 46 ± 18, 44 ± 16, 39 ± 15, 37 ± 14, 33 ± 13 μg/m3, 
respectively. A total of 78%, 72%, 69%, 58%, 50%, and 41% of the 
cities were exposed to AMs > 35 μg/m3, respectively, which initially 
showed the heavy pollution and the relative exposure risk to PM2.5 in 
China. The annual mean ERs of PM2.5 were 56% (20%–95%), 50% 
(22%–94%), 48% (4%–93%), 41% (0%–90%), 36% (0%–91%), and 
31% (0%–95%), respectively, which also showed a downward trend, 
year over year. Spatially, the cities with PM2.5 AMs exceeding the 
standard (AM > 35 μg/m3) in 2015 were all located in the eastern, 
northern, and western regions of China, and the pollution was very 
serious. From 2016 to 2020, the PM2.5 pollution level in the central 
and northern regions gradually decreased, and the high pollution 
areas became gradually concentrated in the northwest and eastern 
regions of the contiguous distribution. The degree of pollution in the 
southern region also gradually weakened, and the high-value area 
gradually shifted to the northeast. By 2020, the areas with high PM2.5 
values were concentrated in the northwest, north, and central urban 
areas of China.

Figure 2 shows the spatio-temporal evolution and distribution of 
O3 MDA8–90% and the corresponding ERs in 337 cities in China. The 
range of O3 MDA8–90% from 2015 to 2020 were 62–202, 74–200, 
78–220, 74–215, 82–209, and 82–194 μg/m3, respectively. The highest 
values were concentrated in Beijing and Baoding in North China as 
well as Liaocheng and Zibo in Shandong Peninsula. The lowest values 
were primarily distributed across Hami, Naqu, and Turpan, in 
Xinjiang from 2015 to 2018. From 2019 to 2020, the lowest values 
were transferred to Jixi and Mudanjiang in northeast China. In 
addition, the O3 MDA8–90% AMs in China from 2015 to 2020 were 
135 ± 26, 138 ± 25, 149 ± 28, 150 ± 26, 148 ± 27, and 138 ± 23 μg/m3, 
respectively. A total of 17%, 18%, 31%, 33%, 30%, and 17% of the cities 
were exposed to O3 MDA8–90% > 160 μg/m3, respectively, indicating 
that the O3 pollution trend first increased and then decreased. The O3 
MDA8–90% ERs were 5% (0%–25%), 5% (0%–28%), 8% (0%–31%), 

TABLE 1 Exposure-response coefficient of the PM2.5 and O3.

Pollutants Health 
end-
point

Variation of 
exposure 

concentration 
(μg/m3)

β (%) 95% CI 
(%)

PM2.5

all-cause 

death
10 0.070 0.050–0.090

MDA8 O3

all-cause 

death
10 0.024 0.013–0.035
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8% (0%–30%), 8% (0%–28%), and 5% (0%–23%), respectively, which 
also indicated a trend of first increasing and then decreasing. Spatially, 
the O3 pollution in 2015 was relatively low, and the cities with O3 
MDA8–90% > 160 μg/m3 were distributed across North China, the 
Shandong Peninsula, and the eastern coastal areas. From 2016 to 2018, 
the high-value areas of O3 pollution spread to the central region, and 
the overall pollution level increased. From 2018 to 2020, the high-
value areas of O3 pollution were concentrated in North China, and the 
pollution appeared to be decreasing.

Based on the analysis of Figures 1, 2, it showed that the PM2.5 
pollution in China had a continuous downward trend from 2015 
to 2020, while the corresponding O3 pollution trend first 
increased (2015–2018) and then decreased (2018–2020). The Air 
Pollution Prevention and Control Plan (hereinafter, Plan) issued 
in 2013 focused on particulate matter, which greatly reduced the 
emission of particulate matter, thus explaining the continuous 
decline of the PM2.5 from 2015 to 2018. Li et al. (2019b) used the 
Goddard Earth Observation System Chemical Transport Model 

FIGURE 1

Spatiotemporal distribution of annual mean values and exceedence rates of PM2.5 from 2015 to 2020.
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(GEOS-Chem) for sensitivity simulation and proved the 
inhibitory effect of the PM2.5 on O3 generation. The results 
showed that PM2.5 could absorb HO2 free radicals and NOx as raw 
materials for O3 generation (Eqs. 10–12) and further inhibited O3 
generation. Therefore, from 2015 to 2018, when PM2.5 pollution 
had decreased significantly with the implementation of the air 
pollution-control policies, the surface O3 pollution increased to 
varying degrees. In addition, the Ministry of Ecology and 
Environment of China suggested that the high pollution of O3 
was also due to the high emission of precursors and the more 

favorable meteorological conditions (high temperature and 
less rain).

 NO NO NOx ≡ + 2 (10)

 HO OH HO Organic peroxyl radical ROx ≡ + + ( )2 2   (11)

 NO HO Catalytic VOCsx x+ → → O3 (12)

FIGURE 2

Spatiotemporal distribution of O3 MDA8–90% and exceedence rates from 2015 to 2020.
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3.2. Spatial aggregation of the PM2.5 and O3

3.2.1. Global spatial autocorrelation in China
ArcGIS 10 software was used to test the global spatial 

autocorrelation. First, the effects of spatial aggregation of the PM2.5 
and O3 MDA8–90% AMs in 337 cities were tested. The test results 
were shown in Table 2, which indicated that the Moran’s I values of the 
PM2.5 and O3 in 2015–2020 were both greater than 0, indicating that 
there were positive spatial autocorrelations between the PM2.5 and O3 
concentrations in 337 cities. In addition, at the significance level below 
1%, the Z values of the PM2.5 and O3 pollution from 2015 to 2020 were 
greater than 2.58, indicating significant positive spatial 
autocorrelations and significant spatial effects from pollution. 
Spatially, the high pollution areas and low pollution areas 
often clustered.

3.2.2. Local spatial autocorrelation in China
The effect of local spatial autocorrelation of the PM2.5 and O3 

pollution in 337 cities was further explored. ArcGIS 10 was used to 
analyze cold and hotspots. Combined with the spatial distribution of 
the PM2.5 and O3 cold spots and hotspots in Figures 3, 4, it showed that 
PM2.5 and O3 AMs presented spatial clustering states during 2015–
2020, and the distributions of the cold spots and the hotspots were 
roughly the same. From 2015 to 2020, the hotspots were predominantly 
concentrated in Beijing, Tianjin, Henan, Hebei, Shandong, Anhui, 
Jiangsu, Shanxi, Hubei, and Shaanxi, covering 82 cities. In 2015, the 
common hotspots also included Huludao in Liaoning Province. Since 
the beginning of 2016, the hot cities migrated into the southwest, 
including Hubei Province in the South and Shaanxi Province in 
the West.

3.3. Population-weighted PM2.5 and O3 
concentrations in China

PM2.5 and O3 risk levels of exposure under population-weighted 
conditions were shown in Supplementary Figures S3, S4. The 0.5 
standard deviation classification method was used to divide the 
population-weighted concentration values into six levels: the higher 
the level, the higher the exposure risk to PM2.5 and O3. The low risk of 
exposure was classified as levels 1 and 2; the medium risk of exposure 
was classified as levels 3 and 4; and the high risk of exposure was 
classified as levels 5 and 6. From 2015 to 2020, the regions with the 
highest exposure risks of the PM2.5 and O3 pollution were similar and 

concentrated in the central and eastern regions of China, such as 
Beijing, Tianjin, Hebei, Henan, Anhui, Beijing–Tianjin–Hebei, 
Yangtze River Delta, and Central Plains urban agglomeration. In 
addition, the low-exposure risk was distributed across Xinjiang, 
Qinghai, and other western regions.

In order to control hotspot cities methodically based on the spatial 
aggregation of hotspot cities, the distribution of the population-
weighted PM2.5 and O3 concentrations, and referring to the existing 
division of the country, the common hotspot cities of the PM2.5 and O3 
pollution were divided into six urban agglomerations by zone 
clustering: Beijing–Tianjin–Hebei (BTH), Central Plains (CP), 
Guanzhong Plains (GZP), Yangtze River Delta (YRD), middle reach 
of Yangtze River urban (Triangle of Central China, or TC), and the 
Shandong Peninsula (SDP). Six hot urban agglomerations are shown 
in Figure 5.

3.4. Weather normalization of the PM2.5 and 
O3 pollution in China

In order to further quantitatively analyze the pollution drivers in 
high-pollution cities, accumulation maps were drawn for the average 
annual observed values of PM2.5 and O3, from 2015 to 2020. The 
overall PM2.5 pollution levels, from 2015 to 2020, were as follows: 
BTH > CP > SDP > TC > YRD > GZP. The PM2.5 AMs in the six hotspot 
urban agglomerations showed a decreasing trend. PM2.5 AM values 
were 78 μg/m3 (BTH), 72 μg/m3 (CP), 73 μg/m3 (SDP), 67 μg/m3 (TC), 
58 μg/m3 (YRD), and 53 μg/m3 (GZP), in 2015, and in 2020, these 
decreased by 32 μg/m3, 25 μg/m3, 29 μg/m3, 27 μg/m3, 20 μg/m3, and 
14 μg/m3, respectively, accounting for 41.5, 34.3, 39.7, 41.0, 34.8, and 
25.8%, respectively, as compared to 2015. The reduction in the 
anthropogenic emission contribution was the main reason for the 
improvement in the urban PM2.5 pollution, accounting for 75.4%, 
77.8%, 75.5%, 75.8%, 72.4%, and 64.5% of the observed decreased 
PM2.5, respectively, showing the importance of air pollution-reduction 
measures in 2015–2020. Meteorology had a minor effect on the PM2.5 
pollution in six hotspots, and it showed a decreasing effect or a slightly 
increasing effect over a single year.

The overall O3 pollution levels from 2015 to 2020 were as follows: 
BTH > SDP > CP > YRD > GZP > TC. The annual mean value (MDA8–
90%) of O3 in six hot urban agglomerations showed an increasing, and 
then decreasing, trend, and the peak value was found in 2017–2018, 
which was consistent with the national trend. The O3 observed values 
fluctuated with the meteorological factors, and the meteorological 
factors were the controlling factors of the changes in O3 pollution, as 
compared to anthropogenic sources, and the driving force of the O3 
pollution was positive, which positive led the generation of O3 
pollution and aggravated the pollution (Kumar et al., 2014).

From the perspective of urban agglomeration, both observed 
values of the PM2.5 and anthropogenic-driven AM concentrations 
decreased in six urban hotspots in 2015–2020, indicating that with the 
effective implementation of air pollution-control programs in recent 
years, the PM2.5 pollution at the urban agglomeration level had 
decreased. However, there remained a gap, as compared to the 
national standard (35 μg/m3). The O3 ERs were improved. Except for 
the highly polluted BTH, all of which exceeded the O3 limit 
(160 μg/m3) during 2015–2020, the remaining five urban 
agglomerations only exceeded the O3 limit in the peak years (2017, 

TABLE 2 Spatial autocorrelation test of the PM2.5 and O3 pollution in 337 
cities.

Year PM2.5 O3

Moran’s I Z(I) Moran’s I Z(I)

2015 0.67 46.23 0.29 20.03

2016 0.58 40.46 0.44 30.76

2017 0.56 38.92 0.67 46.64

2018 0.59 40.77 0.72 49.89

2019 0.61 42.16 0.73 50.18

2020 0.43 30.04 0.51 35.69
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2018, and 2019). In addition, BTH, CP, and SDP ranked as the top 
three in terms of O3 and PM2.5 pollution, which should be the focus 
for strict control (Figures 6, 7).

3.5. PM2.5-/O3-related health economic 
losses with anthropogenic emissions

The health losses caused by PM2.5 and O3 pollution, as driven by 
anthropogenic emissions in hot urban agglomerations from 2015 to 
2020, were shown in Supplementary Tables S2, S3. Spatially, the 

average levels of the PM2.5-related health losses in each urban 
agglomeration were as follows: BTH (1968 people) > SDP (1,396 
people) > CP (1,302 people) > YRD (987 people) > TC (932 
people) > GZP (869 people). The average level of the O3-related health 
losses in each urban agglomeration were as follows: BTH (482 
people) > SDP (480 people) > CP (314 people) > YRD (306 people) > TC 
(275 people) > GZP (189 people).

Supplementary Figures S1, S2 show the distribution of the 
PM2.5-related and O3-related health losses in hot urban 
agglomerations from 2015 to 2020. The PM2.5-related health losses 
in hot cities showed a fluctuating downward trend from 2015 to 

FIGURE 3

Spatial distribution of cold spots and hotspots of PM2.5 pollution.
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2020. High PM2.5-related health losses were distributed across 
Baoding, Beijing, Handan, Shijiazhuang, and Tianjin in BTH; 
Fuyang, Zhoukou, and Nanyang in CP; Linyi, Jining, and Yantai in 
SDP; Xuzhou in YRD; Weinan in GZP; and Wuhan in TC, in 2015–
2017. However, health losses increased in cities in the northern part 
of CP, especially in Zhengzhou. In addition, from 2018 to 2020, 
Beijing, Shijiazhuang, Handan, and Tianjin in BTH; Zhengzhou, 
and Nanyang in CP; Linyi and Weifang in SDP; Xuzhou in YRD; 
and Weinan in GZP still had high levels of health losses (more than 
2,000 people).

The O3-related health losses in hot cities showed a fluctuating 
trend from 2015 to 2020, and it gradually increased from 2015 to 
2017. The pollution in SDP, the southeastern part of CP, and the 
eastern part of YRD increased, and the health losses affected more 
than 675 people. From 2018, due to the implementation of the Blue 
Sky Protection Campaign, the emissions of O3 precursors were 
limited, to a certain extent, and the health losses decreased in Yantai, 
Qingdao, Tai’an, and Linyi in SDP, as well as in Xuzhou in 
YRD. However, there remained a large number of cities with high 
levels of health losses (> 675 people), such as Baoding, Beijing, 

FIGURE 4

Spatial distribution of cold spots and hotspots of O3 pollution.
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Handan, Shijiazhuang, and Tianjin in BTH; Fuyang, Heze, Nanyang, 
Zhengzhou, and Zhoukou in CP; Nanjing, Xuzhou, and Yancheng in 
YRD; Jinan, Jining, Linyi, and Weifang in SDP; and Wuhan in 
TC. Although pollution levels of PM2.5 and O3 were high in hot cities, 
the levels and the trends in health losses driven by anthropogenic 
emissions were different. Therefore, for the composite pollution 
control of PM2.5 and O3 in hot cities, different types of control areas 
should be  further determined based on the assessments of the 
health effects.

Based on Equation 8, PM2.5-related health economic losses in hot 
urban agglomerations during 2015–2020 could be evaluated, as shown 
in Supplementary Table S4. The average PM2.5-related health economic 
losses in the six hot urban agglomerations were ranked as follows: 
BTH (2.321 billion) > SDP (1.607 billion) > YRD (1.075 billion) > TC 
(1.016 billion) > CP (1.095 billion) > GZP (0.690 billion). The average 
levels of the health and health economic losses in BTH and SDP were 
at the forefront. Although the PM2.5-related health losses in CP were 
high, the health economic losses low. The reason could have been that 
the per capita disposable income in CP was relatively low, so the VSL 

obtained was low; thus, the health economic losses were low. The 
health economic losses not only depended on the PM2.5-related health 
losses, but it also was affected by the level of urban economic 
development. Therefore, the proportion of the health economic losses 
to the GDP was further calculated. The proportion of health economic 
losses in six urban agglomerations were CP (0.47%) > GZP 
(0.46%) > BTH (0.40%) > SDP (0.35%) > YRD (0.31%) > TC (0.28%).

The O3-related health economic losses in hot urban agglomeration 
from 2015 to 2020 were shown in Supplementary Table S5. The average 
O3-related health economic losses in six hot urban agglomeration were 
ranked as follows: BTH (3.218 billion) > SDP (2.962 billion) > YRD 
(1.902 billion) > TC (1.495 billion) > CP (1.453 billion) > GZP (0.828 
billion). The average health and health economic losses in BTH and SDP 
were at the forefront, and the pollution was serious. Furthermore, the 
proportion of health economic losses to the GDP in six hot urban 
agglomeration was calculated. The average sizes were SDP (0.64%) > CP 
(0.61%) > GZP (0.55%) > BTH (0.54%) > YRD (0.53%) > TC (0.40%).

Figure  8 shows the distribution of the PM2.5-related health 
economic losses in hot urban agglomerations from 2015 to 2020. The 

FIGURE 5

Location distribution of hotspot urban agglomeration.

FIGURE 6

Observed variations of the PM2.5 concentrations under anthropogenic and meteorological driving.
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range of the PM2.5-related economic losses from 2015 to 2020 were 0.1 
billion RMB (Tongchuan)–9.1 billion RMB (Beijing), 0.1 billion RMB 
(Tongchuan)–9.7 billion RMB (Beijing), 0.3 billion RMB 
(Tongchuan)–9.6 billion RMB (Beijing), 0.3 billion RMB 
(Tongchuan)–9.2 billion RMB (Beijing), and 0.2 billion RMB 
(Tongchuan)–10.5 billion RMB (Beijing). The health economic losses 
in Beijing in BTH reached its highest levels from 2015 to 2020. The 
lowest health losses were found in Tongchuan in GZP. Considering the 
high per-capita disposable income and rapid urban development in 
Beijing, the residents had a high willingness to pay for pollution and a 
high VSL, which was matched with the high health economic losses. In 
addition, from 2015 to 2020, the average levels of the PM2.5-related 
health economic losses in a single hotspot city were 1.1 ± 1.1 billion 
RMB, 1.1 ± 1.2 billion RMB, 1.4 ± 1.3 billion RMB, 1.4 ± 1.2 billion 
RMB, 1.4 ± 1.1 billion RMB, and 1.4 ± 1.3 billion RMB, respectively, 
showing a fluctuating upward trend. The PM2.5-related health economic 
losses in 2015–2016 were generally low but showed increasing trends. 
The high value was in Beijing and Tianjin in BTH in 2015–2016. In 
2017, the health economic losses in Beijing and Tianjin in BTH; Jinan 
and Yantai in SDP; and Wuhan in TC were higher, reaching more than 
4 billion RMB. As compared to 2017, the high-value area of health 
economic losses decreased in 2018 and continued to decrease from 
2018 to 2019. However, health economic losses in Zhengzhou, Linyi, 
and Nanjing, in 2020, were higher than those in 2019.

Figure 9 shows the distribution of the O3-related health economic 
losses in hotspot urban agglomerations from 2015 to 2020. The O3-
related health economic losses in a single hotspot city from 2015 to 
2020 were 0 billion RMB (Chuzhou)–10 billion RMB (Beijing), 0.1 
billion RMB (Luliang)–11 billion RMB (Beijing), 0.2 billion RMB 
(Tongchuan)–12.5 billion RMB (Beijing), 0.2 billion RMB 
(Tongchuan)–14.8 billion RMB (Beijing), 0.2 billion RMB 
(Tongchuan)–16.1 billion RMB (Beijing), and 0.3 billion RMB 
(Tongchuan)–21.3 billion RMB (Beijing). In addition, from 2015 to 
2020, the average O3-related health economic losses in a single hotspot 
city were 1.1 ± 1.2 billion RMB, 1.4 ± 1.4 billion RMB, 2.1 ± 1.9 billion 
RMB, 2.1 ± 1.8 billion RMB, 2.3 ± 2 billion RMB, and 2.8 ± 2.7 billion 
RMB, respectively, showing a fluctuating upward trend. The O3-related 
health economic losses during 2015 to 2016 were generally low but 
showed an upward trend. In 2017, the health economic losses in 
Beijing and Wuhan reached more than 7 billion RMB. As compared 
to 2017, the high-value areas of the health economic losses in 2018 
decreased but continued to show an upward trend from 2018 to 2019. 
Therefore, Beijing, Tianjin, Handan, and Shijiazhuang in BTH; Yantai, 

Qingdao, Weifang, Linyi, and Jinan in SDP; Nanjing and Xuzhou in 
YRD; and Wuhan in TC had higher health economic losses in 2020.

3.6. Hierarchical collaborative control of 
the PM2.5 and O3

Based on the distribution of the health losses, a rating system for 
PM2.5-related and O3-related health losses was established by using the 
natural-breakpoint-classification method (NBC). The core concept of 
NBC was to maximize the similarity within each group, the difference 
between the external groups, and the range and the number of 
elements between each group, as closely as possible. Based on these 
characteristics and the distribution of health losses, NBC was suitable 
for classifying risk levels (Costa and Kahn, 2004). In this study, NBC 
was used to classify the PM2.5-related and O3-related health losses in 
hot cities from 2015 to 2020, which were each divided into six Grades 
as shown in Table 3.

Based on the classification of the PM2.5-related and O3-related 
health losses, the degrees of pollution, and the pollution trends in 
PM2.5 and O3 in six urban agglomerations were analyzed, and the 
pollution factors in hotspot cities were determined by further 
integrating their pollution characteristics.

 1. Beijing–Tianjin–Hebei: From 2015 to 2020, health losses 
associated with the PM2.5 and O3 pollution, as driven by 
anthropogenic emissions in Baoding, Beijing, Handan, 
Shijiazhuang, and Tianjin, were all level V and above, 
indicating serious pollution, and both PM2.5 and O3 were 
high pollution factors. PM2.5-related and O3-related health 
losses in Anyang, Cangzhou, Tangshan, Hengshui, and 
Xingtai were also at high levels (Grade III and above), and 
the O3 pollution showed a fluctuating upward trend. 
Therefore, PM2.5 + O3 should also be taken as high pollution 
factor and coordinated corresponding countermeasures 
should be formulated. In 2015–2020, PM2.5-related health 
losses in Langfang showed a downward trend, and the level 
of decline was relatively high. The PM2.5-related economic 
losses associated with public health in Zhangjiakou had been 
at a low level (Grade I) in 2015–2020. However, the levels of 
the O3-related health losses in Zhangjiakou and Langfang 
were relatively high (Grade III and above) and showed 
increasing trends in 2018–2020. Therefore, O3 pollution was 

FIGURE 7

Observed variations of O3 concentrations under anthropogenic and meteorological driving.
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a hot pollution factor in Zhangjiakou and Langfang. The 
overall pollution levels of Chengde and Qinhuangdao were 
relatively low (Grade II and below), so they were not listed 
as priority control areas.

 2. Shandong Peninsula: From 2015 to 2020, the PM2.5-related and 
O3-related health losses in Jinan, Jining, Linyi, and Weifang were 
at high levels (Grade IV and above), and both PM2.5 and O3 were 
high pollution factors. In addition, PM2.5-related and O3-related 
health losses in Dezhou, Qingdao, Tai’an, and Zibo in 2015–
2020 were also at high levels (Grade III and above), and the O3 
pollution showed a fluctuating upward trend, so PM2.5 + O3 

should also be taken as a high pollution factor. In Binzhou, 
Rizhao, Weihai, and Yantai, PM2.5-related health losses had been 
fluctuating and declining in recent years and had fallen to a low 
level (Grade II and below), but the corresponding O3-related 
health losses had been increasing and had reached Grade III 
and above in 2020. Therefore, Weihai, Rizhao, Binzhou and 
Yantai were listed as O3 high pollution areas. The overall level of 
health loss in Dongying in recent years was at a relatively low 
level, so it was not listed as a priority control area.

 3. The Central Plains: From 2015 to 2020, Fuyang, Heze, 
Liaocheng, Luoyang, Nanyang, Shangqiu, Zhoukou, and 

FIGURE 8

Distribution of the PM2.5-related economic losses associated with public health in hot cities from 2015 to 2020.
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Zhumadian all had high levels of PM2.5-related and O3-related 
health losses (Grade IV and above) and had reached Grade V 
and above in 2020. The pollution was serious, and it was listed 
as priority control area for PM2.5 and O3 coordination. From 

2015 to 2020, the PM2.5-related and O3-related health losses in 
Bozhou, Jiaozuo, Jinzhong, Kaifeng, Linfen, Pingdingshan, 
Puyang, Suzhou, Xinxiang, Xinyang, Xuchang, Yuncheng, and 
Changzhi were also high (Grade III and above), and 

FIGURE 9

Distribution of O3-related economic losses associated with public health in hot cities from 2015 to 2020.

TABLE 3 Health loss risk levels of PM2.5 and O3.

Grade I II III IV V VI

PM2.5 [157, 550) [550, 900) [900, 1,300) [1,300, 1,900) [1,900, 2,600) ≥2,600

O3 [15, 145) [145, 226) [226, 330) [330, 465) [465, 675) ≥675

https://doi.org/10.3389/fevo.2023.1192847
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Guo et al. 10.3389/fevo.2023.1192847

Frontiers in Ecology and Evolution 14 frontiersin.org

PM2.5-related and O3-related health losses had fluctuated in 
2019–2020. Therefore, it was also listed as a priority control 
area for PM2.5 and O3 coordination. In addition, although the 
O3-related health losses in Datong, Luliang, Taiyuan, and 
Xinzhou were low (Grade II and below), the PM2.5-related 
health losses showed a fluctuating upward trend and had 
reached Grade IV in 2019–2020, indicating that the 
anthropogenic PM2.5 pollution in these cities remained very 
high. Priority should be  given to PM2.5 as a hot pollution 
factor. Bengbu, Hebi, Huaibei, Jincheng, Luohe, Sanmenxia, 
Shuozhou, and Yangquan had low levels of overall health 
losses (Grade II or below) and were not included in the 
priority control area.

 4. Yangtze River Delta: From 2015 to 2020, the PM2.5-related and 
O3-related health losses in Hefei, Nanjing, Suqian, Taizhou, 
Xuzhou, Yancheng, and Yangzhou were all high (Grade III and 
above), and the O3-related health losses showed an increasing 
trend, so it was listed as a priority area for the coordinated 
control of PM2.5 and O3. Anqing, Chuzhou, Huai’an, 
Lianyungang, Lu’an, Wuhu, and Zhenjiang all had PM2.5-related 
health losses of Grade II or below and showed a downward 
trend. However, the corresponding O3-related health losses were 
rising, and the levels were relatively high (Grade III and above), 
so it was listed as a priority control area for O3 pollution. 
Huainan, Ma’anshan, and Tongling had low levels of health 
losses and were not included in the priority control area.

 5. The middle reaches of the Yangtze River: From 2015 to 2020, 
the PM2.5-related and O3-related health losses in Wuhan were 
high (Grade IV and above), so it was listed as a priority area 
for the coordinated control of PM2.5 and O3. Although the 
overall health losses of PM2.5 and O3 in Xiangyang was not 
very high, it had shown an increasing trend in recent years, 
and the health losses reached Grade III or above, from 2019 to 
2020. Therefore, Xiangyang was also listed as a priority control 
area for PM2.5 and O3 coordination. The overall O3-related 
health losses in Huanggang was high, reaching Grades III and 
IV. However, the PM2.5-related health losses showed a gradual 

decline, falling to Grade II in 2019–2020. Therefore, 
Huanggang was listed as an O3 priority control area. Jingmen, 
Shiyan, Suizhou, and Xiaogan had low levels of health losses 
and were not included in the priority control area, but they 
were still under control as hotspots of high pollution in China.

 6. Guanzhong Plains: From 2015 to 2020, the PM2.5-related 
health losses in Linfen, Weinan, and Yuncheng were at a high 
level (Grade III and above). In addition, the O3-related health 
losses in cities were in a fluctuating upward trend, and the 
health losses also reached a high level of Grade III and above, 
from 2019 to 2020. Therefore, Linfen, Weinan, and Yuncheng 
were listed as priority control areas for PM2.5 and O3 
coordination. In addition, the PM2.5-related health losses in 
Yulin were low (Grade I), but the O3-related health losses 
showed a fluctuating upward trend. Since 2017, the health 
losses reached Grade III, which was worthy of attention. 
Therefore, Yulin was listed as an O3 priority control area. 
Shangluo, Tongchuan, and Yan’an belonged to a low grade of 
health loss (Grade II and below) among hotspot cities, so they 
were not listed as a priority control area of hotspot cities.

 7. In summary, the pollution types in each city in hot urban 
agglomerations were further divided, and the priority pollution 
factors were screened out. The hot cities in the six hot urban 
agglomeration were divided into the following three Grades: 
PM2.5 and O3 collaborative priority control zone, O3 priority 
control zone and PM2.5 priority control zone, as shown in Table 4.

4. Conclusion

From 2015 to 2020, the overall concentrated levels of PM2.5 
pollution not only showed a trend of continuous decline, but in 
addition, the exceedence rates decreased year over year. Both the 
overall concentrated levels of O3 pollution and the exceedence rates 
showed trends of first increasing (2015–2018) and then decreasing 
(2018–2020). The driving factors had different distribution 

TABLE 4 Priority control types of hotspot cities.

Priority control 
type

Urban 
agglomeration

Specific city

PM2.5 and O3 collaborative 

priority control zone

BTH Baoding, Beijing, Handan, Shijiazhuang, Tianjin, Anyang, Cangzhou, Tangshan, Hengshui, Xingtai

SP Jinan, Jining, Linyi, Weifang, Dezhou, Qingdao, Tai’an, Zibo

CP Fuyang, Heze, Liaocheng, Luoyang, Nanyang, Shangqiu, Zhoukou, Zhumadian, Bozhou, Jiaozuo, Jinzhong, 

Kaifeng, Linfen, Pingdingshan, Puyang, Suzhou, Xinxiang, Xinyang, Xuchang, Changzhi

YRD Hefei, Nanjing, Suqian, Taizhou, Xuzhou, Yancheng, Yangzhou

MRYR Wuhan, Xiangyang

GP Linfen, Weinan, Yuncheng

O3 priority control zone BTH Zhangjiakou, Langfang

SP Binzhou, Rizhao, Weihai and Yantai

YRD Anqing, Chuzhou, Huai’an, Lianyungang, Lu’an, Wuhu, Zhenjiang

MRYR Huanggang

GP Yulin

PM2.5 priority control zone CP Datong, Luliang, Taiyuan, Xinzhou
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characteristics in China. The PM2.5 pollution was primarily driven 
by anthropogenic emissions. The fluctuations in the O3 pollution 
were influenced by meteorological fluctuations. The PM2.5-related 
health losses in CP from 2015 to 2020 were relatively high. The 
overall O3-related health loss showed an upward trend from 2015 
to 2020. Targeted control countermeasures were proposed for 
different priority control areas, by type: (1) to establish refined 
pollution control indicators, develop differentiated air quality 
standards, and add O3 pollution control indicators; (2) to make 
overall plans for key areas for PM2.5 and O3 pollution prevention 
and control, such as in cities with high O3-related health losses due 
to anthropogenic emissions (Zhangjiakou, Rizhao, Weihai, Yantai, 
Huanggang, Yulin), which should also be included in key regions; 
(3) to promote emission reductions in NOx and VOCs in key 
industries and optimize their emission reduction ratios, and the 
study showed that the decrease in the PM2.5 reduced the 
heterogeneous absorption of the O3 precursors (HO2 free radicals, 
NOx, etc.), which required emission reduction as much as possible, 
from the perspective of the VOCs; (4) to establish a fine emission 
inventory of pollution sources and establish “grid supervision,” as 
well as to carry out information-based management and control in 
enterprise parks, establish a pollution early-warning mechanism, 
and the further curb and reduce air pollution at its source; and (5) 
to strengthen public education on the environment and health, as 
well as to raise public awareness of health protection. Based on the 
national policies for carbon neutrality and “carbon peaking,” it 
would be  necessary to take carbon as the focus and promote 
coordinated carbon reduction. Future research should build a 
technical system of combined pollution prevention and control 
focused on PM2.5, O3, and greenhouse gasses, as well as promote 
collaborative management and control mechanisms.
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