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Soil erosion is a major problem in arid regions, including the Abha-Khamis watershed 
in Saudi Arabia. This research aimed to identify the soil erosional probability using 
various soil erodibility indices, including clay ratio (CR), modified clay ratio (MCR), 
Critical Level of Soil Organic Matter (CLOM), and principle component analysis 
based soil erodibility index (SEI). To achieve these objectives, the study used t-tests 
and an artificial neural network (ANN) model to identify the best SEI model for soil 
erosion management. The performance of the models were then evaluated using 
R2, Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute 
Error (MAE), with CLOM identified as the best model for predicting soil erodibility. 
Additionally, the study used Shapley additive explanations (SHAP) values to identify 
influential parameters for soil erosion, including sand, clay, silt, soil organic carbon 
(SOC), moisture, and void ratio. This information can help to develop management 
strategies oriented to these parameters, which will help prevent soil erosion. The 
research showed notable distinctions between CR and CLOM, where the 25–27% 
contribution explained over 89% of the overall diversity. The MCR indicated that 
70% of the study area had low erodibility, while 20% had moderate and 10% had 
high erodibility. CLOM showed a range from low to high erodibility, with 40% of soil 
showing low CLOM, 40% moderate, and 20% high. Based on the T-test results, CR 
is significantly different from CLOM, MCR, and principal component analysis (PCA), 
while CLOM is significantly different from MCR and PCA, and MCR is significantly 
different from PCA. The ANN implementation demonstrated that the CLOM model 
had the highest accuracy (R2 of 0.95 for training and 0.92 for testing) for predicting 
soil erodibility, with SOC, sand, moisture, and void ratio being the most important 
variables. The SHAP analysis confirmed the importance of these variables for 
each of the four ANN models. This research provides valuable information for soil 
erosion management in arid regions. The identification of soil erosional probability 
and influential parameters will help to develop effective management strategies 
to prevent soil erosion and promote agricultural production. This research can 
be used by policymakers and stakeholders to make informed decisions to manage 
and prevent soil erosion.
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1. Introduction

Soil erosion is aggravated by abrupt climate variability, exploitation 
of natural resources, land degradation, etc. As a result, soil erosion and 
its environmental consequences are growing concerns worldwide 
(Gilani et al., 2022; Tsesmelis et al., 2022). Over the last few decades, it 
has become increasingly clear that soil erosion poses a significant risk 
to long-term soil sustainability, leading to soil management scenarios 
and practical conservation practices to preserve soil against erosive 
forces (Telak et al., 2021; Tesfahunegn et al., 2021; Khalil and Aslam, 
2022). As a deterministic factor in soil erosion, vegetation cover can 
protect soil from erosive agents. The presence of vegetation in an area 
contributes significantly to the management of soil and water resources 
through interception of rainfall and regulation of surface run-off 
(Zhang et al., 2014). The leaves, stems, and root systems of plants 
collectively act as a control mechanism for surface water, effectively 
reducing erosion and conserving soil and water resources (Stagnari 
et al., 2010; Jiang et al., 2017).

However, in recent decades soils have become increasingly 
susceptible to water because of the rapid changes in the land use 
pattern and land composition, mainly due to intense agricultural 
practices and deforestation. Furthermore, human activities such as 
urbanization and characteristics such as population growth have 
accelerated vegetation eradication from the surface and the 
acceleration of soil displacement (Esa et al., 2018; Gong et al., 2022). 
Therefore, long-term strategic plans and efficient management are the 
only ways to protect the environment from rapid decline and keep the 
soil productive indefinitely. In addition, land degradation directly 
affects sediment formation and leads to accelerated sedimentation in 
watersheds. Globally, about 1964.4 million hectares (Mha) of soil were 
degraded due to anthropogenic activities, with 1903 M ha enhanced 
by water erosion (Pal, 2016). India is classified as humid subtropical, 
and one of the most significant threats to the country’s fertile topsoil 
is soil erosion. According to the National Bureau of Soil Survey and 
Land Use Planning (NBSS&LUP), nearly 146.8 million ha (45%) of 
land in the country is at risk of soil erosion, most of which is due to 
surface run-off (Bhattacharyya et al., 2015; Pal et al., 2022; Saha et al., 
2022). As a result, appropriate soil management practices must 
be  implemented to prevent accelerated soil erosion through a 
comprehensive study of area-specific original data sets.

Several empirical and physical models for predicting soil erosion, 
soil loss, and sediment yield have been used by various researchers, 
such as the Morgan and Finney (MMF) model (Kumar and Pani, 
2022), the European Soil Erosion Model (EUROSEM; Bora et al., 
2022), Griffith University Erosion System Template (GUEST; Raza 
et al., 2021), the Water Erosion Prediction Project (WEPP; Meinen 
and Robinson, 2021; Mirzaee and Ghorbani-Dashtaki, 2021), 
Chemicals, Run-off, and Erosion from Agricultural Management 
System (CREAMS; Shi et  al., 2022), Kinematic Runoff and Soil 
Erosion Model (KINEROS; Duarte et  al., 2022), Soil & Water 
Assessment Tool (SWAT; Naseri et al., 2021), Agricultural Non-Point 
Source Pollution (AGNPS; Shrestha et al., 2021), Areal Nonpoint 
Source Watershed Environment Response Simulation (ANSWERS; 
Pandey et al., 2021), and others. However, insufficient spatial data 
makes these models ill-suited for fitting with small- to medium-sized 
watersheds, particularly in developing nations such as India. Hence, a 
model such as USLE (Universal Soil Loss Equation) was developed to 
forecast soil losses on agricultural land by Wischmeier and Smith in 

1978. Later Revised Universal Soil Loss Equation (RUSLE) model was 
developed by Renard in 1997. It employs a framework similar to USLE 
but is more streamlined to best use the available data sources. Since 
1990, it has been extensively employed in predicting soil water erosion 
(Millward and Mersey, 1999; Toy et al., 1999; Nyakatawa et al., 2001; 
Dissanayake et al., 2019; Kebede et al., 2021). RUSLE employs the 
same empirical principles as USLE but with more accurate factor 
calculation (McCool et al., 1987; Nearing et al., 2005; Das et al., 2020).

However, the mentioned methods are mostly qualitative methods 
based on remote sensing databases, which lack the ground validation 
and measurement. In the present study, we have planned to use an 
empirical model. The empirical models consider several elements such 
as the primary particles, the concentration of organic matter, the 
permeability, and the structure of the soil. The slope’s steepness and 
concavity or convexity, the amount of pore space filled by air, the 
residual effects of sod crops, the aggregation, the parent material, and 
the many interactions between these factors all have a role (Olaniya 
et al., 2020). There are a number of different indicators of soil erodibility, 
some of which include the aggregation of soil and the proportion of 
water stable aggregates (Zuo et  al., 2020; Rieke et  al., 2022). Soil 
erodibility is reportedly affected by soil aggregation, which in turn is 
affected by land use system (Wassie, 2020). Researchers employ a 
variety of indicators, including quantitative indices for soil erodibility, 
to better comprehend the susceptibility of soil to erosion. Three of these 
are particularly popular: the Clay Ratio (CR), the Modified Clay Ratio 
(MCR), and the Critical Level of Soil Organic Matter (CLOM; Olaniya 
et al., 2020; Babur et al., 2021; Senanayake and Pradhan, 2022). Soil 
conservation priorities can be set with the help of indices like the clay 
ratio, the modified clay ratio, and the CLOM (Vitali et al., 2019; Olaniya 
et al., 2020; de Almeida Valente et al., 2023).

Despite the availability of various methods for assessing and 
quantifying soil erosion, some approaches have been limited to 
incorporating only two or three parameters, while others have 
included multiple parameters. But no study has been conducted to 
incorporate both equation-based soil erosion and weighting-based 
soil erosion models together. In the present study, we used several 
equation-based indices for quantifying the probability of soil erosion 
like clay ratio (CR), modified soil erosion (MCR), and CLOM, as well 
as weighting-based SEI to measure soil erosion probability. However, 
in the present study, we attempted to merge all the available erodibility 
indices and provide one erodibility indices with high accuracy.

Soil erosion is a significant environmental problem, which leads 
to soil degradation, loss of fertile land, and ecological imbalance. 
Therefore, accurate and reliable soil erodibility indices (SEIs) are 
necessary for effective soil erosion management. Various methods have 
been proposed for calculating SEIs, including CR, MCR, CLOM, and 
PCA-based models. However, identifying the best SEI model among 
them is challenging due to the complexity of the soil-landscape system 
and the involvement of numerous variables. To address this issue, 
researchers proposed using Artificial Neural Network (ANN) models 
to identify the best SEI for soil erosion prediction. The study utilized 
ANN to model nonlinear relationships and identify key variables for 
predicting soil erosion. Four SEI models were compared using ANN, 
with hyper-parameters optimized via grid search. Model performance 
was evaluated using R2, Root Mean Squared Error (RMSE), Mean 
Squared Error (MSE), and Mean Absolute Error (MAE).

Moreover, the addition of explainable artificial intelligence in the 
form of SHAP (Shapley Additive Explanations) made a significant 
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contribution to soil erosion management. After identifying the best 
SEI model, the researchers introduced explainable artificial 
intelligence (XAI) techniques to quantify the influence of individual 
parameters in the model (Arrieta et al., 2020; Vilone and Longo, 2021; 
Al-Najjar et  al., 2022). Specifically, SHAP (Shapley additive 
explanations) values were used to estimate the contribution of each 
variable in the model (García and Aznarte, 2020), which can be used 
to develop management strategies for reducing soil erosion. SHAP is 
a model-agnostic method that identifies the most influential variables 
and the magnitude of their influence on the model’s output. By 
utilizing SHAP, it is possible to identify the critical parameters that 
contribute to soil erosion and develop targeted management strategies. 
Overall, the combination of ANN and SHAP has great potential for 
identifying the best SEI model and developing effective soil erosion 
management strategies. This research has theoretical implications for 
the development of soil erosion models and practical implications for 
the implementation of soil erosion management practices.

This study aims to address the issue of identifying the best SEIs for 
effective soil erosion management. The study utilizes ANN to model 
nonlinear relationships and identify key variables for predicting soil 
erosion, with four SEI models compared using ANN. The study’s 
objective is to determine the best SEI model for soil erosion prediction, 
evaluate the performance of the models, and identify the influential 
parameters using XAI techniques. The novelty of the study lies in the 
application of ANN models and XAI techniques to identify the best 
SEI model and quantify the importance of individual parameters in 
the model. The addition of XAI in the form of SHAP made a 
significant contribution to soil erosion management by identifying the 
most influential variables and the magnitude of their influence on the 
model’s output, which can be used to develop management strategies 
for reducing soil erosion. Overall, the study’s findings have both 
theoretical implications for the development of soil erosion models 
and practical implications for the implementation of soil erosion 
management practices.

2. Materials and methodology

2.1. Study area

Abha-Khamis Watershed, located in the South-Western region 
of Saudi Arabia, has a semiarid climate and hilly topography. The 
watershed encompasses an area of 1,773 kilometers (Figure  1). 
Aseer’s terrain is rugged, with high peaks that are about 2,990 
meters above sea level. The highest peaks of the watershed are 
located in Jabal Alsouda. Some small Wadi (valley/riverbed which 
is either permanently or intermittently dry) occur in the higher 
mountains because to the great amount of precipitation received by 
the higher mountains, however none of the Wadi flow for more than 
50 kilometers before entering the Wadi plains (Vincent, 2008). The 
semi-arid South-Western Coast of Saudi Arabia is surrounded by 
mountainous terrain, where strong rainstorms occur irregularly 
throughout the year (Mallick, 2016). Wet oceanic currents cause the 
region to get rainfall from the South-Western monsoon (Vincent, 
2008). High summer temperatures over the peninsula have 
contributed to the formation of tropical continental air, which is a 
component of the monsoon with low circulation in the northwest 
of India (Vincent, 2008). From March to June, the regions receive 

the most precipitation, and flash floods are reported in the 
downstream regions (Mallick, 2016). April receives the most 
precipitation, with an annual average of 244 millimeters. In the 
Aseer region, rainfall originates from orographic convection over 
the scarp, particularly during the late summer monsoon season. 
Rainfall over 200 mm per year is restricted to a 20–30 km wide zone 
along the crest.

2.2. Sampling of soils with laboratory 
analysis

Using a Global Positioning System (GPS) model GPS 38S, soil 
samples were gathered from the study region during dry weather 
conditions using a stratified technique, i.e., an area separated into 
areas with similar topography, soil moisture, and land cover. A 
total of one hundred thirty five (135) soil samples were taken from 
each site, with two replicates separated by 2–3 meters and 0–30 
centimeters in depth. After air-drying soil samples at 102°C for 
24 h in an oven, they were carefully homogenized, sieved through 
a 2-mm mesh, and then analyzed for their qualities, including soil 
texture and organic matter content, according to Carter’s standard 
process (1993). Using a muffle furnace at 350–600°C for 2 h, the 
organic matter content was determined. The precision of the 
measurements is specified to be 1.5% of the amount observed, with 
a detection limit of 0.02% (Hill and Schütt, 2000). Using the 
hydrometer method and Stokes’ law, the soil samples were analyzed 
for texture (Sheldrick and Wang, 1993).

2.3. Method for computing soil erodibility 
indices

In the present study, we have computed three conventional SEIs 
and proposed one PCA based SEI method for investigating the 
soil erodibility.

2.3.1. Computation of clay ratio
The clay ratio is an evaluation of the quantity of the binding agent 

clay that securely binds the soil particles, making it difficult for the 
particle to be detached by the external forces in the presence of a larger 
number of clay particles (Bouyoucos, 1935). Ten percent minimum 
clay content is required for any interpretation (Bryan, 1968). Soil 
erodibility decreases as CR rises. The computation of clay ratio Eq. 1 
is mentioned below

 CR sand silt clay= +( )% % / %  (1)

2.3.2. Computation of modified clay ratio
Correlation analyses between soil characteristics have shown that 

the modified clay ratio may be used as an alternative measure of soil 
erodibility, as reported by Mukhi (1988) and Tarafdar and Ray (2005). 
They found that in high-organic-content soil, MCR was a better 
explanation of erodibility than CR. It can be computed using Eq. 2:

 MCR sand silt clay OM= +( ) +( )% % / % %  (2)

https://doi.org/10.3389/fevo.2023.1189184
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Alqadhi et al. 10.3389/fevo.2023.1189184

Frontiers in Ecology and Evolution 04 frontiersin.org

2.3.3. Computation of critical level of soil organic 
matter

An indication of how susceptible soil is to erosion is referred to as 
the critical level of soil organic matter (CLOM). CLOM, according to 
Pieri (2012), has an effect on soil structure, which provides resistance to 
erosion. In their research, if CLOM is 5% or below, soil structure is lost 
and erosion susceptibility is high, 5–7% is moderate, and >9% shows 
stable soil structure, enabling better erosion resistance. The following 
Eq. 3 was used to get an estimate for the Critical Soil Organic Matter:

 
CLOM OM

Clay Silt
=

+  
(3)

2.3.4. Computation of PCA based soil erodibility 
index

In the present study, we proposed a PCA-based soil erodibility 
index (PSEI) method for computing robust SEI, where different 
parameters can contribute. An indexing method was used to 
determine the SEI which has been shown to work well for small-scale 
applications, including on-filed studies (Andrews et al., 2002). A SEI 
is the result of three phases: (i) determination of the minimum dataset 
(MDS) of indicators with the best representation of the soil structure 
related to erosion; (ii) standardization of MDS indicators; and (iii) 
combining the scores of the indicators.

Principal component analysis (PCA) was used to refine indicators 
suitable for the MDS. PCA reduces dimensionality and minimizes 
information loss. This is done by constructing unrelated variables 
called principal components (PCs), which are arranged so that the first 
few retain most of the volatility of the original data. The 9 previously 
standardized soil chemical and physical variables were subjected to 

PCA analysis. Standardized variables contain unit variance, so the PCA 
variance is equal to the number of observed variables. An eigenvalue is 
the numerical representation of a PC’s proportional contribution to the 
total variance. Using the eigenvalue criterion one (Kaiser, 1960) and the 
Scree test, the number of components was reduced (Cattell, 1966). Any 
component with an eigenvalue greater than 1.00 should be retained. 
Due to the fact that each of the observed standardized variables 
contributes one unit of variance, a PC with an eigenvalue less than 1.00 
can be  said to represent less variation than a single standardized 
variable. The Scree test plots the eigenvalues   of each PC in descending 
order, picking the PC’s up to the bend in the graph.

Component loading or variable weights under a PC have been 
used to reduce the number of variables. For each PC, we considered 
only those variables that were in the top 10% in terms of absolute 
component loading (Wander and Bollero, 1999). Correlation analysis 
was used to assess whether heavily weighted factors were redundant 
and could be reduced further. The MDS indicators were converted 
into unitless combinable values from 0 to 1 to account for their 
contribution to soil functions. Wymore (1993) provided an equation 
for constructing three scoring curves: higher is better, lower is better, 
and optimal (a bell-shaped curve). A thorough knowledge of the 
relationship between the indicator and the quality of the soil is 
necessary to determine which function accomplishes what, i.e., the 
best shape for each indication. More is better should be used when 
increasing the level of the indicator improves the quality of the soil. 
The indicators whose increment decreases the quality of the soil 
correspond to the curve less is better. The optimal curve ranks 
indicators having a positive relationship with soil quality up to an ideal 
threshold, above which the SQ decreases.

After determining the type of indicator curve, the baseline, 
thresholds, and slope of the scoring function should be defined to 

FIGURE 1

Location of the study area as Abha-Khamis watershed, Saudi Arabia.
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account for deviations in the expected ranges due to soil, climate, and 
crop. The literature review and researchers’ opinions were used to 
determine the function and critical limits of each indicator.

After obtaining the S values for all of the indicator parameters, the 
PCA statistics were used to weight each characteristic. Each PC was 
responsible for explaining a particular percentage (%) of the whole 
data set’s variance. Once S and W were determined, the PSEI for each 
location could be computed using Eq. (4). When the index score is 
higher, it indicates that the erodability of the soil is higher.

 
PSEI SE S

i

n
j= ×

=
∑

1  
(4)

2.4. Application of statistical tests for 
finding out the differences among the soil 
erodibility indices

The pairwise t-test was used to compare the means of each SEI 
with every other index prepared in this study. A t-test is a statistical 
test that is used to determine if the means of two groups are 
significantly different from each other. The t-test calculates two 
outputs: the t-value and the value of p. The t-value measures the 
difference between the means of the two groups relative to the variance 
within the groups, while the value of p measures the probability of 
observing a t-value as extreme as the one calculated if the means of 
the two groups were actually equal. If the value of p is less than a 
pre-determined significance level (usually 0.05), it is concluded that 
there is a statistically significant difference between the two indices 
being compared. By using a pairwise t-test, we can identify which 
indices have significantly different means from each other and thus 
provide insights into the differences between the soil erodibility indices.

2.5. Application of artificial neural network 
to find out best SEI

Artificial Neural Networks (ANN) is a class of machine learning 
algorithms that are inspired by the structure and functioning of the 
human brain (Boger and Guterman, 1997). ANN models consist of 
layers of interconnected artificial neurons that process and transmit 
information. ANN has been widely used in the field of agriculture and 
soil science for various applications, including soil erosion prediction 
(Garg et al., 2022; Egbueri et al., 2023).

In this study, TensorFlow and Keras were used to implement an 
ANN regression model to predict the soil erodibility indices based on 
the given features. The four soil erodibility indices CR, MCR, CLOM, 
and PCA were considered as the target variables, and the other 
relevant soil properties were considered as features. The ANN 
regression model is trained using a large dataset of soil properties and 
particular SEI. The process is repeated for four times, because we have 
four target variables with the same model architecture. During the 
training process, the model learns to optimize the weights of its 
connections by minimizing the error between the predicted and actual 
values (Nouri et al., 2023). The model’s performance is evaluated using 
metrics such as Mean Squared Error (MSE), Root Mean Squared Error 
(RMSE), R-squared (R2), and Mean Absolute Error (MAE). The ANN 
model’s architecture consists of an input layer, two hidden layers, and 

an output layer. Each layer contains a set of neurons that perform a 
specific computation. The input layer receives the input features, and 
the output layer produces the predicted soil erodibility indices. The 
hidden layers perform intermediate computations between the input 
and output layers, and each neuron’s output is determined by an 
activation function. The activation function introduces non-linearity 
into the model and enables it to learn complex relationships between 
the input features and the target variables (Nouri et al., 2023).

The model’s performance can be  improved by tuning its 
hyperparameters such as the number of hidden layers, number of 
neurons per layer, learning rate, batch size, and number of epochs. 
These hyperparameters are optimized using techniques such as Grid 
Search, Random Search, and Bayesian optimization. Once the model 
is trained and optimized, it can be used to predict the soil erodibility 
indices for new soil samples. The model’s prediction accuracy can 
be further improved by using a larger and more diverse dataset for 
training and by including additional relevant features.

2.6. Improving the soil erosion 
management decision making using ANN 
derived SHAP model

Shapley additive explanations is a popular model-agnostic 
interpretability technique used to explain the predictions of machine 
learning models, including ANN models (Wieland et al., 2021). The 
SHAP values are calculated for each input feature and indicate the 
contribution of each feature to the model’s output (Al-Najjar et al., 2022).

In this study, the SHAP values were derived from the ANN model 
to identify which input features are responsible for soil erosion and 
their impact on the soil erodibility indices. The SHAP values can 
be used to generate a summary plot that displays the feature importance 
rankings in descending order (Tang et al., 2022). This summary plot 
can be used for soil erosion management purposes to identify the most 
important features and develop effective strategies to manage soil 
erosion (Zhang et al., 2020; Mohammadifar et al., 2021). The SHAP 
values are calculated using game theory concepts and define the 
contribution of each feature by comparing the model’s predictions with 
and without that feature. The SHAP values are additive, meaning that 
the sum of the SHAP values for all features equals the difference 
between the model’s output and the baseline prediction (Tang et al., 
2022). The summary plot generated from the SHAP values displays the 
most important features at the top of the plot, with the corresponding 
SHAP values indicating the feature’s impact on the soil erodibility 
indices. The summary plot can be used to identify the most important 
features and develop effective strategies to manage soil erosion. For 
example, if the summary plot shows that rainfall intensity is the most 
important feature contributing to soil erosion, then soil conservation 
strategies could focus on reducing runoff and increasing infiltration.

3. Results

3.1. Descriptive assessment and spatial 
mapping of soil parameters

To assess the impact of land management techniques on soil 
quality, it is essential to evaluate various physicochemical parameters 
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of the soil, including sand, silt, clay, soil density, moisture content, 
porosity, and the status of soil organic matter. The results of the SEI 
are presented in Figure  2, which confirms that SOC, soil density, 
porosity, and soil particles exhibit significant differences in soil 
quality/physicochemical properties at the 95% level of statistical 
confidence (Figure  2). Without a correlation between soil 
physicochemical properties, identification of underlying factor 
patterns would not be possible (Brejda et al., 2000). However, the 
two-tailed correlation matrix for the soil properties in the samples 
retrieved from the study area showed several correlations among the 
variables, with significant relationships (p  < 0.05) being identified 
among the maximum number of possible soil properties. This large 
amount of correlation indicates that they can be  grouped into a 
homogeneous set of variables based on their correlation patterns. 
Thus, these variables can be  used as indicators of soil quality in 
conjunction with the land use management categories identified in the 
study area. The correlation between soil properties and SEI suggests 
that soil quality increased as soil properties such as SOC, porosity, and 
moisture content increased.

Soil texture is a crucial characteristic that influences the 
infiltration rates of water from the soil surface (Figures  3A-I). 
Additionally, soil texture plays a significant role in the soil’s capacity 
to retain water and nutrients. The concentration of sand in the soil 
remained low in most of the study area, particularly in the 
northwestern site, while it increased in other areas of the study 
(Figures 3A,C). The northwestern site showed a high silt content that 
decreased in other regions of the study area. The textural classification 
of the northwestern area remained as sandy to silty loam texture. The 
distribution of clay concentration in the soil of the study area indicated 
a very low class distributed from the northeastern area to the 
southeastern area. A slightly higher level of clay content was observed 

in the northwestern part of the study area. The distribution of clay in 
soil samples suggested that the studied soils have low erodibility due 
to the cohesiveness of clay particles that form soil aggregates. This 
study revealed that clay had a negative correlation with soil erodibility 
(sand particles). The content of clay varied in the study area due to 
factors such as parent material, mineral characteristics, and 
weathering processes.

The soil density was found to be high throughout the study area, 
as shown in Figures  3D,E. The decrease in soil attributes such as 
moisture content, porosity, and SOC content, along with an increase 
in bulk density, indicates that intensive tillage practices and lower 
plant productivity negatively affected soil compaction, microbial 
attributes, and soil aggregation. Annual tillage activities can disrupt 
soil aggregates and reduce physical protection of organic matter 
content, leading to lower SOC content and labile fractions in tilled 
soils compared to no-tilled soils (Green et al., 2007). The lower SOC 
content in cultivated soils can also have a negative impact on soil 
chemical, physical, and microbial properties (Ding et al., 2013; Zandi 
et al., 2017; Nabiollahi et al., 2018). Figure 3I shows that some areas 
have increased SOC content, which may be due to higher plant litter 
inputs and no-till practices during the restoration period, resulting in 
greater carbon inputs into the soil (Guo et al., 2017).

3.2. Modeling and proposing of SEIs

3.2.1. Analysis of the conventional SEIs
In this study, we investigated the soil erodibility condition of the 

study area using three conventional SEIs, namely CR, MCR, and 
CLOM (Figure  4). The CR values in the study area ranged from 
moderate to high, with lower values observed in the Western part of 

FIGURE 2

Relationship between different soil parameters using Pearson’s correlation coefficient technique.
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the area. However, since CR is a ratio between erosion-susceptible 
primary particles and clay, it cannot provide conclusive information 
on erosion proneness. To draw meaningful conclusions, it is 
recommended that the clay content in the cultivated soil be more than 
10% (Bryan, 1968), which was the case for all the samples in the study 
area. However, due to the absence of any scale for erosion proneness, 
conclusive interpretation could not be drawn for the present study.

Other studies have suggested modified clay ratio (MCR) as 
another index for soil erosion due to the effects of wind, water, or 
other natural events (Mukhi, 1988; Tarafdar and Ray, 2005). In this 
study, the MCR values for the study area ranged from low to high, 
with most of the soil showing low MCR and a moderate trend of 
CR. Although the MCR values did not provide conclusive information 
on the erosion proneness of the soil according to land uses, the low 
average values indicated that the soils in the study area were not highly 
susceptible to erosion.

The results showed significant differences among CR and CLOM, 
with the contribution of 25–27% (Figure 4) accounting for >89% of 
the total variability. Moreover, significant correlations were observed 
between the CR and CLOM, with both contributing to the SEI of the 
study soils.

The CLOM values ranged from low to high, with 40% of the soil 
showing low CLOM, 40% showing moderate CLOM, and the 
remaining 20% showing high CLOM (Figure  4). These findings 
indicate that the soils in the study area had moderate to stable soil 
structure and offered resistance to erosion. Soil aggregate stability is 
related to soil organic matter, and the study area showed a range of soil 
organic carbon levels between 0.29 and 7.22% (Figure 3I). This is 
consistent with the CLOM findings, which revealed a positive 
correlation between soil stability and the amount of soil organic 
matter. However, it is important to note that these methods are entirely 
based on the developed equation.

FIGURE 3

Spatial mapping of the concentration of different physical and chemical parameters, such as (A) sand, (B) clay, (C) silt, (D) bulk density, (E) dry density, 
(F) moisture, (G) porosity, (H) void ratio, (I) SOC.
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3.2.2. Proposing PCA based SEI
In this study, instead of relying on equation-based SEIs, 

we  employed a PCA-based weighting technique to develop a new 
SEI. The PCA analysis indicated that the first three principal 
components (PCs) accounted for over 10% of the total variance 
(Figure 5) and explained more than 68.4% of the variability among the 
various soil properties studied for SEI development. Bulk density is 
widely recognized as a reliable indicator of soil compaction, and the 
distribution map revealed a strong correlation between soil density and 
sand concentration, indicating that higher sand content in soils tends 
to result in higher bulk density due to the lower total pore space in 
sandy soils compared to silt or clay soils. Conversely, soils with finer 
textures, such as silt and clay loams, that display good structure tend to 
have higher pore space and lower bulk density compared to sandy soils. 
In our study, we also developed an index based on weights using the 
first PC of PCA. The weights were computed from the field-based data 
patterns obtained from Figure 5, rather than relying solely on equations. 
By using the weights generated from field-based data, we were able to 
compute erodibility in a more accurate and reliable way. The SEI 
developed using this approach revealed that 68% of the study area was 
covered by moderately erosion-prone areas, followed by 9 and 23% of 
the area being low and high erosion-prone, respectively (Figure 4D).

3.3. Analysis of the difference among SEIs

In this study, the heatmap of correlation shows the correlations 
between the four soil erodibility indices - CR, MCR, CLOM, and 

PCA (Figure 6). The correlation coefficients show the strength and 
direction of the relationship between two variables. According to the 
heatmap, CR has a relatively strong positive correlation of 0.65 with 
PCA and an even stronger positive correlation of 0.75 with MCR. On 
the other hand, the correlation between CR and CLOM is weak with 
a coefficient of 0.036. This suggests that CR and MCR are likely to 
be highly related to each other, while CLOM may be less related to 
the other indices. CLOM has a weak negative correlation with PCA, 
with a coefficient of −0.047, indicating that these two indices are 
slightly negatively related to each other. Additionally, CLOM has a 
moderate negative correlation of −0.28 with MCR, suggesting that 
these two indices may be somewhat negatively related.

Finally, MCR has a strong positive correlation of 0.74 with PCA, 
indicating that these two indices are highly related to each other. This 
correlation is similar in strength to the correlation between CR and 
MCR, suggesting that both CR and MCR are highly related to PCA.

The results of the T-tests provide additional information on the 
differences between the four soil erodibility indices. A T-test is a 
statistical test used to determine if there is a significant difference 
between the means of two groups.

The T-test results show that there is a significant difference 
between the means of each pair of soil erodibility indices. The T-test 
for CR vs. CLOM shows a large t-value of 43.638 and a value of p of 
0.00001, indicating a very significant difference between the means of 
these two indices. Similarly, the T-test for CR vs. MCR shows a large 
t-value of 33.643 and a value of p of 0.00001, indicating a very 
significant difference between the means of CR and MCR. The T-test 
for CR vs. PCA also shows a large t-value of 48.209 and a value of p of 

FIGURE 4

Computed soil erodibility indices, such as (A) CR, (B) MCR, (C) CLOM, and (D) PCA based SEI model for the Asir.
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0.00001, indicating a very significant difference between the means of 
CR and PCA. The T-test for CLOM vs. MCR shows a negative t-value 
of −11.072 and a value of p of 0.00001, indicating a significant 
difference between the means of these two indices, with CLOM having 
a lower mean than MCR. The T-test for CLOM vs. PCA shows a 
positive t-value of 14.615 and a value of p of 0.00001, indicating a 
significant difference between the means of these two indices, with 
PCA having a higher mean than CLOM. Finally, the T-test for MCR 
vs. PCA shows a positive t-value of 18.327 and a value of p of 0.00001, 
indicating a significant difference between the means of MCR and 
PCA, with PCA having a higher mean than MCR.

Based on the T-test results, CR is significantly different from 
CLOM, MCR, and PCA, while CLOM is significantly different from 
MCR and PCA, and MCR is significantly different from PCA.

3.4. Best SEI selection using ANN

We optimized the ANN model using grid search to find the best 
hyper-parameters. The best hyper-parameters are alpha = 0.17060, 
beta_1 = 0.0001, beta_2 = 0.0289, hidden_layer_sizes = 2, learning_
rate_init = 0.0030, max_iter = 971, random_state = 42. These hyper-
parameters are fixed for four models means CR with all parameters, 
MCR with all parameters, CLOM with all parameters, PCA with 
all parameters.

Figure 7 was used to illustrate the relationship between actual and 
predicted SEI values for the training and testing datasets for each of 
the four models. The R2values for CR were 0.93 and 0.82 for the 
training and testing datasets, respectively (Figures  7A,B). The R2 
values for MCR were 0.78 and 0.70 for the training and testing 
datasets, respectively (Figures 7C,D). The R2 values for CLOM were 
0.98 and 0.95 for the training and testing datasets, respectively 
(Figures 7E,F). The R2 values for PCA were 0.73 and 0.60 for the 
training and testing datasets, respectively (Figures 7G,H).

The results of the ANN implementation show that CLOM is the 
best model for finding out soil erodibility based on the performance 
indices. This conclusion is based on the evaluation of the four models 
using R2, RMSE, MSE, and MAE. The training and testing RMSE, 
MSE, and MAE values for CLOM were significantly lower than the 
values for the other models, indicating that the predictions made by 
the CLOM model are more accurate than those made by the 
other models.

The CLOM model had lower RMSE values than the other models, 
with values of 0.4781 for training and 0.5377 for testing. The superior 
performance of the CLOM model was further confirmed by the MSE 
and MAE values. Specifically, the MSE values for the CLOM model 
were 0.2286 for training and 0.2891 for testing, which were 
significantly lower than the values for the other models. Furthermore, 
the MAE values for the CLOM model were 0.2998 for training and 
0.3489 for testing, which were again significantly lower than the values 
for the other models.

Therefore, it can be concluded that the CLOM model is the best 
model for finding out soil erodibility, and this information can be used 
for soil erosion management practices. The significantly lower values 
of performance indices indicate that the predictions made by the 
CLOM model are more accurate, which can help in developing more 
effective soil erosion management practices.

3.5. Improving decision making using SHAP

In this study, we used Artificial Neural Network (ANN) models 
to predict the SEI and calculated the SHAP values to identify the most 
influential variables for each of the four models, namely CR, MCR, 
CLOM, and PCA (Figure 8). The results showed that sand and silt 
were the most important variables for CR model, while clay, sand, silt, 
SOC, and moisture were highly influential for the MCR model. For 
the CLOM model, SOC, sand, moisture, and void ratio were found to 
be responsible for soil erosion, while silt and clay played a negative 
role. These findings have important implications for decision-making 
in soil erosion management. For example, the study suggests that sand 
and silt content are crucial factors that need to be monitored and 
managed to prevent soil erosion. This can be achieved through various 
management strategies, such as planting vegetation or using 

FIGURE 6

Correlation coefficient analysis among four SEIs for understanding 
the difference among them.

FIGURE 5

Application of PCA for feature selection.
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FIGURE 8

SHAP computation for (A) CR, (B) MCR, (C) CLOM, and (D) PCA based model.

FIGURE 7

Selection of best SEI using optimized ANN model, for (A) training of CR, (B) testing of CR, (C) training of MCR, (D) testing of MCR, (E) training of CLOM, 
(F) testing of CLOM, (G) training of PCA, and (H) testing of PCA.
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conservation tillage techniques. Additionally, the study highlights the 
importance of monitoring the anthropogenic activities that affect the 
soil properties, such as land use changes or tillage practices, which can 
have a significant impact on soil erosion.

4. Discussion

The study focused on the use of SEIs to effectively manage soil 
erosion, which is a significant environmental problem leading to soil 
degradation, loss of fertile land, and ecological imbalance. Several SEI 
models were compared using ANN model, and the best model was 
identified. To further improve soil erosion management, explainable 
artificial intelligence in the form of SHAP was introduced to quantify 
the influence of individual parameters in the model.

This study has provided insights into the effects of land use 
changes on soil recovery in native upland rangeland ecosystems. 
While soil quality index has been previously used to evaluate soil 
degradation and the effects of land conversion on soil quality (Li et al., 
2013; Raiesi, 2017; Nabiollahi et al., 2018), this approach (use of AI for 
SEI assessment) has not been used to study the effects of cropland 
abandonment on soil recovery. The current study has used SEIs to 
determine soil physicochemical properties after a sequence of land use 
changes in native rangelands. The results indicated that the long-term 
activities for crop production on soil had a stronger influence on the 
quality of these soils, with lower values of SEI, moisture content, void 
ratio, and SOC observed in the study soils.

Different land use activities can negatively affect the soils, leading 
to decreases in SOM, soil moisture content, and soil structural 
stability, which can increase soil erodibility (Harris, 2010; Li et al., 
2013; Raiesi and Riahi, 2014). The low values of SEI in soils suggest 
that the current cropland soils are in a degradation process, primarily 
due to the loss of soil structure, SOM, soil moisture content, and other 
physicochemical properties of soil (Raiesi and Salek-Gilani, 2020).

The observed deterioration of soil properties and function is likely 
due to low SOC input, soil moisture, and soil disturbance by human 
activities. Consistent with our observations, previous studies have 
reported soil quality degradation in cropland soils due to frequent 
tillage practices and little accumulation of plant residues in the surface 
soils (Raiesi, 2017; Zhang et al., 2019).

Our results showed that SEI values in the North-Western area were 
higher than those in other areas, which is likely due to the low SOC 
content at these sites (Figure 3I). In other areas of the study sites, SEI 
values were slightly higher, suggesting that soil quality can be restored 
when other physicochemical properties of soils are improved (Raiesi 
and Salek-Gilani, 2020). Therefore, the addition of SOC through 
improved cropping systems and the establishment and development of 
natural vegetation on eroded cropland soils in the study area can switch 
soil degradation to soil quality, except in the North-Western area.

The study findings indicate that ANN models can be  highly 
accurate in predicting SEI, and the selection of the best model for 
predicting soil erodibility can be achieved by utilizing four indices, 
including CR, MCR, CLOM, and PCA. The results of the study 
showed that CLOM was the best model among the four indices, and 
the significant factors in predicting soil erodibility included SOC, silt, 
clay, sand, moisture, and void ratio.

The results of this study suggest that SOC and moisture content 
are critical variables for the CLOM model, indicating that management 

practices such as conservation tillage or adding organic matter to the 
soil can help to increase SOC content and improve soil moisture, 
thereby reducing soil erosion (Rojas et al., 2016; de Moraes Sa et al., 
2018; Yang et al., 2019). Monitoring the void ratio can also help to 
prevent soil compaction and promote better soil structure. These 
findings have significant implications for soil erosion management, as 
soil erosion can lead to severe consequences such as soil degradation, 
loss of biodiversity, and reduced agricultural productivity.

To address this problem, management strategies should 
be proposed based on the significant factors identified in this study. 
Efforts can be made to increase the amount of clay and moisture in the 
soil, while reducing the amount of sand and silt, to reduce soil erosion. 
Additionally, anthropogenic activities should be  monitored to 
determine their impact on soil erosion. Overall, the study 
demonstrates that the use of ANN models and SHAP values can 
provide valuable insights into the factors that contribute to soil 
erosion, and the findings can help policymakers and soil management 
practitioners in developing more effective management strategies to 
prevent soil erosion and preserve soil health.

This study also highlights the need for further research to assess 
the applicability of these findings across different soil types and 
geographic locations. It is important to note that while the study was 
conducted in a specific area, the results can be used as a foundation 
for future research in other locations.

The study may also provide valuable insights into the factors that 
influence soil erodibility, which can be used to develop effective soil 
erosion management strategies. By implementing these strategies, it is 
possible to minimize the adverse impact of soil erosion on the 
environment, agriculture, and society. Therefore, it is crucial for 
researchers to conduct further studies to validate and expand upon 
these findings, ultimately leading to better soil erosion management 
practices globally.

In inference, the study demonstrates the potential of using ANN 
models and SHAP values to predict soil erodibility with high accuracy. 
These findings provide significant implications for soil erosion 
management and suggest that promoting conservation practices and 
monitoring anthropogenic activities can help prevent soil erosion and 
preserve soil health. With further research, the findings can be applied 
globally, leading to more effective soil erosion management practices 
and a healthier environment.

5. Conclusion

This study provides a comprehensive assessment of different 
conventional SEI and proposed PCA based SEI with ANN model. 
Also, the most influencing parameters for SEI have been identified 
using XAI in the form of SHAP for explaining the interconnection 
between management practices, soil quality, and crop yields. 
Significant differences were observed among CR and CLOM with 
the contribution of 25–27% accounted for >89% of the total 
variability. The MCR for the 70% of the study area was observed 
as low, 20% moderate and 10% as high. CLOM for the study area 
ranged from low to high; where 40% of soil showed low CLOM, 
40% of soil showed moderate and remaining 20% of soil fall under 
high CLOM. Based on the T-test results, CR is significantly 
different from CLOM, MCR, and PCA, while CLOM is 
significantly different from MCR and PCA, and MCR is 
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significantly different from PCA. The ANN implementation 
demonstrated that the CLOM model had the highest accuracy for 
predicting soil erodibility, with SOC, sand, moisture, and void 
ratio being the most important variables. The SHAP analysis 
confirmed the importance of these variables for each of the four 
ANN models. These results highlight the importance of 
implementing effective soil erosion management strategies, 
especially in urban areas where erosion rates are highest. The 
results also suggest that monitoring and controlling anthropogenic 
activities that affect these variables, such as land use changes, 
construction, and irrigation practices, can help reduce soil erosion 
rates. Overall, these findings can inform policymakers and land 
managers on effective soil erosion management practices that can 
help protect soil health and ensure sustainable land use for 
future generations.

Despite the comprehensive approach used in this study to develop 
a standard SEI, there are limitations that should be considered. First, 
the study was conducted in a specific region, and the results may not 
be  applicable to other regions with different soil types and 
environmental conditions. Second, the study only considered a limited 
number of soil attributes and did not incorporate biological indicators 
of soil quality, which are essential for the long-term sustainability of 
soil health. Finally, while the ANN models showed high accuracy in 
predicting soil erodibility, further research is needed to validate the 
results and assess their applicability to other regions.

Future research can build on the findings of this study to improve 
the accuracy and applicability of SEI models for different regions and 
soil types. Incorporating biological indicators of soil quality, such as 
microbial activity and biodiversity, can provide a more comprehensive 
understanding of soil health and sustainability. Additionally, the use 
of remote sensing techniques can help in the rapid assessment of soil 
erosion rates and inform soil erosion management strategies in 
real-time.
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