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In the face of accelerated global dryland expansion and grassland degradation,

signaling grassland ecosystem state transitions is an ongoing challenge in

ecology. However, there is still a lack of effective indicators and understanding

of the mechanisms of grassland ecosystem state transitions at the continental

scale. Here, we propose a framework that links ecosystem function-based

indicators and critical slowing down (CSD) theory to reveal grassland state

transitions. Across precipitation gradients, we quantified the statistical

characteristics and spatial patterns in ANPP and PUE dynamics (variability,

asymmetry, and sensitivity to precipitation and temperature) in Eurasian

grasslands. We show that the CVANPP, CVPUE, AANPP, APUE, SPUE-P, and SANPP-P

of temperate steppes were significantly higher than those of alpine steppes,

while the SPUE-T and SANPP-T were the inverse. In temperate grasslands, AANPP,

APUE, and SANPP-P indicated the transition of typical steppes, and CVANPP, APUE,

and SPUE-T indicated the transition from meadow to typical steppes. In alpine

grasslands, APUE indicated the transition between alpine deserts and alpine

steppes, and AANPP and SANPP-P indicated the transition between alpine steppes

and meadow steppes. The interannual variability of precipitation strongly

affected xerophyte proportion and demographic processes, which control

state transitions in low-resilience grasslands. Community structures and

limiting factors (nutrient, light, and/or temperature) regulate state transitions in

high-resilience grasslands. Our results demonstrate that function-based

indicators are predictive of impending state transitions of temperate and alpine

grasslands, highlighting the complementation of ANPP and PUE dynamics that

have the potential for predicting grassland ecosystem regime shifts and their

underlying mechanisms.

KEYWORDS

Eurasian grasslands, precipitation-use efficiency, productivity, regime shift,
state transitions
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1 Introduction
With the impacts of global warming and human activities,

planetary boundaries have already been overstepped (Lenton

et al., 2019; Lade et al., 2020). Climate factors are undergoing

abrupt change at different spatiotemporal scales (Wang et al., 2020;

Duffy et al., 2021). With global warming-accelerated drying,

dryland ecosystems risk regime shifts without warning in

structural and functional states and recovery from perturbations

requires more time (Arani et al., 2021; Rietkerk et al., 2021). As one

of the main types of terrestrial ecosystem, grassland ecosystems

maintain the habitat for various wildlife and contribute to human

well-being (Berdugo et al., 2020; Bardgett et al., 2021). However,

grassland ecosystems are sensitive to climate change and face

increasing risk of state transitions, which could have catastrophic

impacts on ecosystem services (Berdugo et al., 2020; Maurer et al.,

2020; Dietz et al., 2021). Therefore, indicators to predict state

transitions and explore the underlying ecological mechanisms are

necessary to cope with the regime shifts of grassland ecosystems

caused by global climate change.

State transitions occur in a system when it is forced outside the

basin of attraction of the original state, allowing a perturbation to

trigger self-propelled change toward a contrasting state (Liu et al.,

2019; Rietkerk et al., 2021). This phenomenon has been extensively

applicated in ecological research, such as the sudden collapse of

coral ecosystems (Hughes et al., 2018), the rapid degradation of arid

ecosystems (Berdugo et al., 2020), and lake eutrophication (Liu

et al., 2017; Su et al., 2021). The critical slowing down (CSD) theory

of dynamical systems has provided a theoretical foundation for

understanding ecosystem state transitions (Scheffer et al., 2009).

The theory suggests that ecosystems subject to low resilience, with

high variability, asymmetry, and sensitivity to external environment

perturbations, and those systems in a state near the critical

threshold (tipping point) are most likely to undergo a state

transition (Scheffer et al., 2009; Clements and Ozgul, 2018).

Experimental perturbations and natural time series have

demonstrated that CSD-based indicators (e.g., variability,

asymmetry, and temporal autocorrelation) are useful metrics to

serve as potential metrics of systems undergoing a state transition

(Carpenter and Brock, 2006; Dakos et al., 2012; Hu et al., 2018).

Consistent with the theory, eigenvalue, skewness, variability,

sensitivity, and autocorrelation estimated from a state variable

increase abruptly before a regime shift occurs (Ratajczak et al.,

2018; Cheng et al., 2021; Liang et al., 2021). However, these metrics

are directly derived from general theoretical expectations and, as

such, lack a link to specific ecological mechanisms (Dakos et al.,

2015; Hu et al., 2022). Exploring useful indicators and ecological

mechanisms in practice remains a big challenge for those concerned

about implementing effective coping measures.

Aboveground net primary productivity (ANPP), as a principal

ecosystem function, determines energy flow and facilitates carbon-

water cycles within ecosystems (Haberl et al., 2014). ANPP

dynamics (e.g., inter-annual variability and asymmetric and

climatic sensitivity) have been used as indicators, identifying state

transitions caused by demographic and limiting factors at the
Frontiers in Ecology and Evolution 02
regional scale (Scheffer et al., 2009; Hu et al., 2018). Recent

research has provided empirical support for the usefulness of

ANPP dynamics as metrics of state transitions in grassland and

forest ecosystems (Hu et al., 2018; Liu et al., 2019). Precipitation-use

efficiency (PUE), as an aspect of ecosystem function–environment

(Hu et al., 2022), represents the adaptive strategies of xerophyte

proportion changes to cope with precipitation resource changes,

especially in grassland ecosystems (Hu et al., 2010; Gherardi and

Sala, 2019; Zhang et al., 2021). Therefore, PUE may be useful for

identifying grassland state transitions. We suppose that the

complementation of ANPP and PUE dynamics probably has

more potential to detect state transitions and understand the

underlying ecological mechanisms of grassland ecosystems.

However, we still lack the combination of ANPP and PUE

dynamics to detect grassland state transitions and reveal the

underlying ecological mechanisms at the continental scale.

Eurasian grasslands have a large and continuous spatial

distribution, a wide range of environment gradients, and various

types of grassland, which will serve as an indispensable and ideal

natural laboratory for understanding the indicators of state

transitions and shifting ecological mechanisms at the continental

scale. Here, we present a framework connecting ANPP and PUE

dynamics to detect the state transitions of grassland ecosystems

(Figure 1). Our framework focuses on the spatial variation in

ANPP and PUE dynamics for variability, asymmetry, and climatic

sensitivity along with precipitation. In our study, we hypothesize that

intensified precipitation restrictions will lead to ecosystem states

approaching the critical threshold (i.e., tipping point) and trending

toward the alternative state. If there is a peak point in the spatial

pattern of the ANPP and PUE dynamics along the mean annual

precipitation (MAP) and corresponding to the shift of grassland type,

the dynamic indicators can serve as metrics for state transitions.

We integrated field surveys of ANPP, the long-term Normalized

Difference Vegetation Index (NDVI), and annual precipitation to

produce long-term ANPP and PUE datasets from 1982 to 2021, then

calculated the ANPP and PUE dynamics (variability, asymmetry, and

sensitivity to precipitation and temperature) at each pixel in Eurasian

grasslands. The main objectives of this study were to identify: (1) the

spatial pattern and statistical characteristics of ANPP and PUE

dynamics for variability, asymmetry, and climatic sensitivity in

Eurasian grasslands; (2) the spatial pattern of ANPP and PUE

dynamics along the MAP in temperate and alpine grasslands; and

(3) effective indicators of ANPP and PUE dynamics to detect state

transitions of grassland ecosystems in Eurasia. Moreover, we aimed to

understand the shifting ecological mechanisms underlying ANPP and

PUE dynamics related to abiotic and biotic factors that could help

optimize regional grassland management strategies for achieving

sustainable development.
2 Materials and methods

2.1 Study area

The Eurasian grasslands are located in the middle latitude

region of the Northern Hemisphere (30°N ~ 55°N, 30°E ~ 125°E)
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(Figure 2A). The precipitation and temperature gradients are from

70 mm to 1030 mm and −9 to 15°C, respectively (Zhang et al.,

2020). We used the International Geosphere-Biosphere Program

(IGBP) terrestrial ecoregions map (Olson et al., 2001), Moderate

Resolution Imaging Spectroradiometer (MODIS) production

(https://lpdaac.usgs.gov/), and vegetation classification map of

China (http://www.geodata.cn/) to obtain the geographical extent

and grassland types. Previous research showed that the response of

ANPP and PUE to precipitation is distinct in water-limited

temperate steppes and temperature-limited alpine grasslands

(Guo et al., 2015; Zhang et al., 2020). We hypothesize that ANPP

and PUE dynamics have contrasting spatial patterns with MAP in

temperate and alpine grasslands, respectively. According to the

geographical environment and plant compositions of Eurasian

grasslands, they could be divided into two categories: temperate

grasslands (i.e., temperate desert steppes (TDS), typical steppes

(TTS), and meadow steppes (TMS)) and alpine grasslands (i.e.,

alpine desert steppes (ADS), alpine steppes (AS), and alpine

meadow steppes (AMS)) (Figure 2A). Desert steppes are

characterized by short shrubs, semi-shrubs, and low diversity
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(Zhang et al., 2016). Typical steppes are dominated by relatively

meso-xerophytic species. Meadows are located in the sub-humid

district and have the highest coverage and biodiversity, which is

dominated by mesophyte species (Artemisia frigida, Agropyron

cristatum and Stipa baicalensis, etc.) (Hu et al., 2018). Alpine

desert steppes are characterized by xerophyte species (Ceratoides

compacta and Stipa purpurea etc.) with low productivity. Alpine

steppes and meadows are mainly composed of drought-resistant

and hardy species (Alpine forbs, Carex moorcroftii, Stipa purpurea,

etc.) (Yang et al., 2010). The grassland types have clear divides and

represent different ecosystem states along the MAP (Figures 2B, C),

allowing us to diagnose if there are signals in the ANPP and PUE

dynamics that correspond to state transitions.
2.2 In situ measured ANPP data

In this study, we collected three datasets of ANPP observations.

This field sampling data approximates the ANPP of grassland

ecosystems. The first ANPP dataset was extracted from published
FIGURE 1

Schematic illustration of alternative stable states by means of ball-and-cup diagrams representing the stability properties at different external
conditions. In (A), the upper branch represents one stable ecosystem state, and the lower branch represents another stable state. Ecosystems are in
one state of the upper branch under external disturbances (j). Ecosystems are in two transitional states under external disturbances (k-m), where, in
ecosystem states near the tipping point (for example point F1 or point F2), minor disturbances may cause a significant shift. Ecosystems are in one
state of a lower branch under external disturbances (⑤). (B) shows the corresponding ball-and-cup explanations of alternative stable states at the
different external conditions from ① to ⑤. In (C), the temporal variance, skewness, covariance, and autocorrelation in state and functional variables
serve as CSD state-based indicators of dynamical systems. In (D), we assume that these CSD function-based indicators (variability, asymmetry, and
climatic sensitivity) can also potentially serve as metrics of state transitions in terrestrial ecosystems.
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literature, in which the AGB was measured at 267 sites on the

Eurasian grasslands during July and August of 2002–2004 (Yang

et al., 2010). The second ANPP dataset was supported by the

Ministry of Agriculture of China (Hu et al., 2010). A background

survey was organized in the peak growing seasons of 1983–1995 to

study the forage yield of the region, in which the ANPP was
Frontiers in Ecology and Evolution 04
measured at 503 sites on the Eurasian grasslands. The third

dataset was extracted from the Oak Ridge National Laboratory

(ORNL) (seven sites) and obtained directly from field surveys (81

sites) (Jiao et al., 2017). A total of 858 sites were selected from three

sources (Figure 2A), which were used to estimate the long-term

ANPP remote sensing products in Eurasian grasslands.
FIGURE 2

Spatial distributions of grassland types and measured aboveground net primary productivity (ANPP) (A); the frequency distributions of mean annual
precipitation (MAP) in temperate grasslands (B) and alpine grasslands (C). TDS, TTS, TMS, ADS, AS, and AMS represent the six grassland types, i.e., temperate
desert steppes, temperate typical steppes, temperate meadow steppes, alpine desert steppes, alpine steppes, and alpine meadow steppes, respectively.
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2.3 ANPP and PUE estimations from
remote sensing products

The Global Inventory Modeling and Mapping Studies

Normalized Difference Vegetation Index (GIMMS NDVI) and

Moderate Resolution Imaging Spectroradiometer NDVI

(MODIS13A2) data were used to construct the empirical mode

between ANPP measurements and their corresponding NDVI at

the sites. Specifically, we used the biweekly NDVI with a spatial

resolution of 8 km from the GIMMS group as derived from the

Advanced Very High Resolution Radiometer (AVHRR) from 1982

to 2015 (http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/). The

preprocessing of GIMMS NDVI remote sensing images consisted of

15-day maximum-value compositions (MVC), corrected to reduce

the effects of residual clouds, the solar zenith angle, viewing

geometry, and atmospheric perturbations (Jiao et al., 2017; Chen

et al., 2019).

The MODIS NDVI product (MOD13A2) comes from the

National Aeronautics and Space Administration (NASA, https://

lpdaacsvc.cr.usgs.gov), with a temporal resolution of 16 days and a

spatial resolution of 1 km. The MODIS NDVI data were corrected

for cloud cover, atmosphere, and solar elevation angle (Liu et al.,

2022). The bilinear interpolation method was used to resample the

data to the spatial resolution of the GIMMS NDVI (Parker et al.,

1983). Previous studies showed that seasonally integrated NDVI are

more direct measures of vegetation activity, and therefore,

frequently estimate ANPP (Verma et al., 2014; Maurer et al.,

2020). We compared and found that the GIMMS and MODIS

NDVIint had some linearity errors in the years between 2004 and

2013 (Figure 3A). We established an empirical relationship between

the GIMMS and MODIS NDVIint (R
2 = 0.93) (Figure 3B). Then, we

recalibrated the MODIS NDVIint and obtained the long-term

NDVIint from 1982 to 2021 in the study area.

The NDVI is highly correlated to biomass across spatial scales

and commonly used to estimate the quantities of vegetation ANPP

in grasslands (Hu et al., 2018; Maurer et al., 2020). For these

reasons, we established the relationship between ground-based
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measurements of ANPP and integrated NDVI during the growing

season. A significant exponential relationship between measured

ANPP and the corresponding integrated NDVI for the growing

season was derived as (Figure 4):

ANPP ¼24:20e0:47NDVIint R2 = 0 : 61, n = 858, P < 0 : 01
� �

With this relationship, ANPP was estimated for the entire study

region based on long-term NDVI data from 1982 to 2021. The PUE

was produced by the ratio of ANPP to the corresponding annual

precipitation at each pixel during 1982 to 2021 in Eurasian

grasslands (Zhang et al., 2021).
2.4 Precipitation and temperature data

The monthly precipitation and temperature data (0.5° × 0.5°)

from 1982 to 2021 were obtained from the Climate Research Unit

4.06 dataset (CRU) (https://crudata.uea.ac.uk/cru/data/hrg/

cru_ts_4.06/) (Harris et al., 2020). We calculated the annual

precipitation and temperature from the monthly datasets. MAP

was calculated as a multi-year averaged value from 1982 to 2021.

The nearest neighbor interpolation method was used to resample

the data to the spatial resolution of ANPP (8 km at the equator) for

subsequent analysis (Parker et al., 1983).
2.5 ANPP and PUE dynamics for variability,
asymmetry, and sensitivity

The ANPP and PUE dynamics for variability, asymmetry, and

precipitation and temperature sensitivity were calculated based on

the inter-annual ANPP and PUE data of the remote sensing

products. The interannual variability in ANPP and PUE was

calculated as the coefficient of variation in ANPP (CVANPP) and

PUE (CVPUE), namely, the ratio of standard deviation of the mean

with long-term ANPP and PUE at each pixel from 1982 to 2021

(Knapp and Smith, 2001; Hu et al., 2018), according to
BA

FIGURE 3

Comparisons NDVI between the GIMMS_NDVIint and MODIS_NDVIint from 1982 to 2021 in the entire Eurasian grasslands. (A) The time series of ANPP of
the GIMMS_NDVIint and MODIS_NDVIint. (B) The linear relationships between ANPP of the GIMMS_NDVIint and MODIS_NDVIint from 2003 to 2013.
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CVX(1982–2021) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ot(Xt − �X)

�X

r
t − 1

, X ¼ ANPP, PUE (1)

where CV is the coefficient of variation, X is ANPP, PUE, t is the

year from 1982 to 2021, and �X is mean value of variables.

Asymmetry (A) as an indicator is broadly analogous with

skewness in system dynamics. With the disturbance of

environmental factors, resilience decreases with increasing A (Wu

et al., 2018; Al-Yaari et al., 2020). We estimated A as

AX =
Xmax − �X
�X − Xmin

, X ¼ ANPP, PUE (2)

where AX is the asymmetry of ANPP (AANPP) and PUE (APUE),

Xmax is the maximum and Xmin is the minimum of ANPP and PUE

during 1982–2021. An A value > 1 implies that ANPP gains in wet/

warm years are larger than reduced in dry/cold years, and vice versa.

The A value equal to 1 means the ecosystem is in a stable

equilibrium state. The greater the degree of the ecosystem state

deviating from the equilibrium is characterized by the deviation

degree of A to 1, which indicates the ecosystem state is closer to the

tipping point.

An ecosystem state closer to the tipping point responds more

sensitively (S) to external perturbations (Hu et al., 2022; Zeng et al.,

2022). To evaluate the sensitivity of ecosystems to climate variability,

we estimated the response of ANPP and PUE to precipitation (SANPP-P,
Frontiers in Ecology and Evolution 06
SPUE-P) and temperature (SANPP-T, SPUE-T) for each pixel during 1982–

2021 using a multiple regression method (He et al., 2019):

y0 ¼ dintñAP0+g intñAT0+ϵ (3)

where y’ is the detrended anomaly of the ensemble mean of

ANPP and PUE. AP’ and AT’ are the detrended anomalies of annual

precipitation and temperature, respectively. dint and g int represent

the sensitivity of ANPP and PUE to climate factors, respectively,

and e is the residual error.
In addition to the variability and asymmetry of ANPP and PUE,

we also calculated the annual precipitation variability (CVP) and

asymmetry (AP) to evaluate the effect that precipitation dynamics

plays in determining the ecosystem state.

The spatial pattern of ANPP and PUE dynamics were mapped

using ArcGIS 10.7 software. The multiple regression analysis was

achieved using Sigmaplot 14.0 software.
2.6 Data processing and methodology

We calculated the arithmetic average and standard error value

of ANPP and PUE dynamics (CVANPP, CVPUE, AANPP, APUE,

SANPP-P, SANPP-T, SPUE-P, SPUE-T) at 20 mm intervals in the MAP.

The simple line regression analysis was applied to explore the

spatial pattern of ANPP and PUE dynamics with MAP, according
FIGURE 4

Regression function between the NDVIint and measured ANPP.
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to Equation (4):

y = a + bMAP + x (4)

where y is ANPP or PUE dynamics, MAP is mean annual

precipitation, a is the constant term, b is the regression coefficient

for MAP, and x is the residual error.

We also used a piecewise linear regression model to diagnosis

the critical threshold of ANPP and PUE dynamics (CVANPP,

CVPUE, AANPP, APUE, SANPP-P, SANPP-T, SPUE-P, SPUE-T) in

response to MAP (Hu et al., 2018), determined by the least

square error. According to Equation (5):

y  ¼
b0+b1MAP + ϵ , t ≤ a

b0 + b1t + b2ðMAPÞ-a+ϵ, t ≥ a

(
(5)

where y is the ANPP and PUE dynamics, and MAP is the mean

annual precipitation. a is the value of the turning point. b0 is the

constant term. b1 and b2 are the regression coefficients forMAP. A t-test

was applied to test the null hypothesis “b2 is not different from zero”.
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3 Results

3.1 Spatial pattern and statistical
characteristics of ANPP and PUE dynamics
in Eurasian grasslands

Our results showed that the range of CVANPP, AANPP, SANPP-P,

and SANPP-T in Eurasian grasslands were 0.02–0.56, 0.3–3.1, −0.05–

0.32, and −12–21, respectively (Figures 5A–D). A high CVANPP and

SANPP-P were found in the northern typical and meadow steppes. In

contrast, a low CVANPP and SANPP-P were found in the southern

desert grasslands and alpine grasslands (Figures 5A, C). The CVPUE,

APUE, SPUE-P, and SPUE-T varied from 0.02 to 0.45, 0.4 to 3.2, −0.006

to 0, and −0.05 to 0.28, respectively (Figures 5E–H). A high SPUE-P
and SPUE-T occurred in the eastern temperate grasslands. A low

SPUE-P and SPUE-T appeared in the desert steppes and southwestern

alpine steppes (Figures 5G, H). However, the spatial distribution of

AANPP, SANPP-T, CVPUE, and APUE showed no clear rule of

territorial differentiation.
B

C

D

E

F

G

H

A

FIGURE 5

Spatial distribution of interannual variability of aboveground net primary production (CVANPP) (A) and precipitation use efficiency (CVPUE) (E), ANPP
asymmetry (AANPP) (B) and PUE asymmetry (APUE) (F), ANPP precipitation sensitivity (SANPP-P) (C) and PUE precipitation sensitivity (SPUE-P) (G), and
ANPP temperature sensitivity (SANPP-T) (D) and PUE temperature sensitivity (SPUE-T) (H) in Eurasian grasslands.
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The magnitude of ANPP and PUE dynamics of temperate

grasslands were generally larger than those of alpine grasslands

(Supplementary Figure S1). In temperate grasslands, the magnitude

of CVANPP, SANPP-T, CVPUE, SPUE-P, and SPUE-T in desert steppes

were generally lower than in meadow steppes, while the magnitude

of AANPP and APUE was the converse (Figure 6). We also found that

the magnitude of SANPP-P in typical steppes was larger than in desert

and meadow steppes (Figure 6C). In alpine grasslands, the

magnitude of CVANPP, SANPP-T, CVPUE, and SPUE-P in alpine

desert steppes were significantly lower than alpine meadows

(Figures 6A, D, E, G), while the magnitude of AANPP was the

converse (Figure 6B). It is worth noting that the SANPP-P and SPUE-T
in alpine steppes were lower than in alpine desert and meadow

steppes (Figures 6C, H). We also found that the ANPP and PUE

sensitivity to precipitation were positive and negative values,

respectively. In addition, the ANPP and PUE sensitivities to

temperature had positive and negative values, respectively. These

results indicated that ANPP and PUE dynamics have different

meanings in grassland state transitions.
3.2 Spatial patterns of ANPP and PUE
dynamics with MAP in temperate and
alpine grasslands

In temperate grasslands, the spatial patterns of CVANPP, AANPP,

SANPP-P, APUE, and SPUE-T appeared as peaks along the MAP, which

were consistent with the transition of grassland types (Figures 7A–

C, F, H). AANPP, SANPP-P, and APUE peaked at the regime shift of

typical steppes (Figures 7B, C, F), indicating it was an available

CSD-based indicator for state transitions between the desert and

typical steppes. In addition, the spatial patterns of CVANPP, AANPP,

and SPUE-T appeared as peaks at the transition zone between the
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typical and meadow steppes (Figures 7A, B, H). On the contrary,

SANPP-T, CVPUE, and SPUE-P showed no peaks corresponding to

regime shifts between grassland types along the MAP (Figures 7D,

E, G), indicating it failed to capture state transitions in temperate

grasslands. These results showed that CVANPP, AANPP, SANPP-P,

APUE, and SPUE-T were effective indicators for state transitions of

temperate grasslands.

We found that the spatial pattern of ANPP and PUE dynamics

with the MAP differed in alpine and temperate grasslands

(Figures 7, 8). In alpine grasslands, APUE peaked at the dry edge

of alpine steppes (Figure 8F), indicating APUE was an available CSD-

based indicator for the state transition between alpine desert and

alpine steppes. In addition, AANPP and SANPP-P peaked at the wet

edge of alpine steppes and near the critical zone between alpine

steppes and alpine meadows (Figures 8B, C). The CVANPP, CVPUE,

and SPUE-P showed an increasing trend with MAP and did not peak

corresponding to the transition interval of grassland types

(Figures 8A, E, G). Although the spatial pattern of SANPP-T and

SPUE-T appeared as peaks along the MAP (Figures 8D, H), it was

inconsistent with ecotone, and thus also could not indicate state

transitions in temperate grasslands. These results showed that

SANPP-P, APUE, and AANPP were available indicators for state

transitions of alpine grasslands.
4 Discussion

4.1 Ecological significance of variability,
asymmetry, and sensitivity of ANPP
and PUE

Overall, we found that the ANPP and PUE dynamics (e.g.,

CVANPP, SANPP-T, CVPUE, SPUE-P, and SPUE-T) in desert steppes were
B C D

E F G H

A

FIGURE 6

Statistical characteristics of interannual variability of aboveground net primary production (CVANPP) (A) and precipitation use efficiency (CVPUE) (E),
ANPP asymmetry (AANPP) (B) and PUE asymmetry (APUE) (F), ANPP precipitation sensitivity (SANPP-P) (C) and PUE precipitation sensitivity (SPUE-P) (G),
and ANPP temperature sensitivity (SANPP-T) (D) and PUE temperature sensitivity (SPUE-T) (H) in temperate and alpine grasslands. TDS, TTS, TMS, ADS,
AS, and AMS represent the six grassland types, i.e., temperate desert steppes, temperate typical steppes, temperate meadow steppes, alpine desert
steppes, alpine steppes, and alpine meadow steppes, respectively.
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generally lower than in meadow steppes in temperate and alpine

grasslands, respectively (Figure 6). It is likely because the short

xerophytic species and low diversity in deserts are adapted the low

precipitation and poor nutrient availability, causing low ANPP and

PUE dynamics (Davidowitz, 2002; Huang et al., 2015; Hu et al., 2022).

On the contrary, meadow steppes are characterized by the highest

coverage and abundant biodiversity, likely causing the high variability

and sensitivity of ANPP and PUE to climate change (Bai et al., 2004;

Wang et al., 2005; Guo et al., 2015). These results were consistent with

previous analyses based on long-term observations of ANPP dynamics

in temperate grasslands (Zhou et al., 2006).

We have also found that the magnitude of AANPP and APUE in

desert steppes were larger than typical and meadow steppes in

temperate grasslands (Figure 6). The AANPP and APUE were positive
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values, which suggested a more significant decrease of ANPP and PUE

in dry years than increases in wet years (Knapp and Smith, 2001; Zhou

et al., 2006; Wu et al., 2018). Previous research showed that the

hysteresis effects of soil moisture of earlier years alleviate the

substantial declines of ANPP and PUE, meaning that AANPP and

APUE in the dry region were larger than in the wet region (Sala et al.,

2012; Petrie et al., 2018). In dry regions, the hysteresis effects of soil

moisture from previous years was limited. In contrast, in a wet region,

other resources such as soil nutrient availability, light, or temperature

limitations associated with wet periods countervailed the effect of

increased precipitation on ANPP and PUE (Wu et al., 2018).

In addition, we found that CVP in desert steppes was generally

larger than in meadow steppes (Supplementary Figure S2).

Collectively, we demonstrated that ANPP and PUE dynamics
B

C

D

E

F

G

H

A

FIGURE 7

Spatial pattern of interannual variability of aboveground net primary production (CVANPP) (A) and precipitation use efficiency (CVPUE) (E), ANPP
asymmetry (AANPP) (B) and PUE asymmetry (APUE) (F), ANPP precipitation sensitivity (SANPP-P) (C) and PUE precipitation sensitivity (SPUE-P) (G), and
ANPP temperature sensitivity (SANPP-T) (D) and PUE temperature sensitivity (SPUE-T) (H) along the mean annual precipitation (MAP) in Eurasian
temperate grasslands. The broken lines with ANPP and PUE dynamics denote 95% confidence intervals for the regressions. The vertical dashed lines
denote the edge of the desert and typical steppes at 280 mm and 450 mm, respectively (based on Figure 2B). The data exemplified were bin-
average at 20 mm MAP intervals. Yellow, green, and blue represent the three grassland types, i.e., temperate desert steppes, typical steppes, and
meadow steppes, respectively.
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were available to indicate the stability and resilience of grassland

ecosystems. Abiotic and biotic factors are essential factors

influencing the variability, asymmetry, and climatic sensitivity of

ANPP and PUE in grassland ecosystems (Hector et al., 2010; Willis

et al., 2018).

4.2 Underlying ecological mechanisms
shape the spatial patterns of ANPP and
PUE dynamics

We found that the CVANPP exhibited an initial ascending and

then declining spatial pattern with MAP in temperate grasslands

(Figure 7A), while it increased with MAP in alpine grasslands
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(Figure 8A). These results were consistent with previous analyses

based on long-term observations of ANPP dynamics in temperate

grasslands (Knapp and Smith, 2001; Hu et al., 2018). In our study,

we once again illustrated the relationship between CVANPP and

precipitation and enhanced robustness by using long-term remote

sensing products and climate data sets of grassland ecosystems on a

large spatial scale. In addition, CVPUE and CVANPP had reverse

spatial patterns along the MAP in temperate grasslands, and were

consistent in alpine grasslands (Figures 8A, E). It is worth noting

that the CVANPP, CVPUE, and CVAP were inconsistent with MAP in

temperate and alpine grasslands (Supplementary Figure S3). This

result showed that CVANPP was not completely controlled by spatial

patterns in CVP.
B

C

D

E

F

G

H

A

FIGURE 8

Spatial pattern of interannual variability of aboveground net primary production (CVANPP) (A) and precipitation use efficiency (CVPUE) (E), ANPP
asymmetry (AANPP) (B) and PUE asymmetry (APUE) (F), ANPP precipitation sensitivity (SANPP-P) (C) and PUE precipitation sensitivity (SPUE-P) (G), and
ANPP temperature sensitivity (SANPP-T) (D) and PUE temperature sensitivity (SPUE-T) (H) along the mean annual precipitation (MAP) in Eurasian alpine
grasslands. The broken lines with ANPP and PUE dynamics denote 95% confidence intervals for the regressions. The vertical dashed lines indicate
the edge of alpine desert steppes and alpine steppes at 200 mm and 400 mm, respectively (based on Figure 2C). The data illustrated were bin-
average at 20 mm MAP intervals. Yellow, blue, and red represent the three grassland types, i.e., alpine desert steppes, alpine steppes, and alpine
meadow steppes, respectively.
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The AANPP exhibited a piecewise mode with MAP and peaked at

the wet edge of temperate desert, typical, and alpine steppes in

Eurasian grasslands. In this region, precipitation strongly shaped

xerophyte proportion and demographic processes, which could

cause the transition between shrub and steppe (Huxman et al.,

2004; Liu et al., 2012; Zhang et al., 2020). These results were

consistent with the spatial pattern of AANPP in desert and typical

steppes of temperate grasslands (Hu et al., 2018). In addition, the

APUE showed a similar piecewise pattern with MAP in temperate

and alpine grasslands and peaked at the moist edge of temperate

and alpine desert steppes. We suggested that the ANPP gains in

rainy years were larger than reduced in lower rainfall years and

intensified with the MAP in desert steppes. Conversely, ANPP gains

in wet years and reductions in dry years could be offset, causing

AANPP to decrease with the MAP in meadow steppes (Wilcox et al.,

2017; Wu et al., 2018). In addition, the spatial pattern of AANPP and

APUE was inconsistent with AP in temperate and alpine grasslands,

respectively (Figure S3). Consequently, we inferred that the

proportion of opportunistic species, demographic, and ecosystem

traits regulated the asymmetry of ANPP and PUE in temporal

(Huxman et al., 2004; Luo et al., 2017).

The SANPP-P peaked at the moist edge of temperate desert and

alpine steppes (Figures 7C; 8C), where the importance of ecosystem

traits and xerophyte proportion on ecosystem temporal dynamics

of ANPP and PUE were higher. We also found that SPUE-T peaked at

the wet edge of alpine steppes (Figure 8H), where light,

temperature, ecosystem traits, and soil nutrient limitations on

ANPP and PUE dynamics were higher (Guo et al., 2015;

Ganjurjav et al., 2016). In addition, low temperature and soil

nutrients limited the ability of plants to use soil moisture and

caused the decline of SANPP-P and SANPP-T in temperate and alpine

meadow steppes (Kou et al., 2020).
4.3 Indicators of grasslands ecosystem
state transitions at the continental scale

Our study confirmed that ANPP and PUE dynamics are useful

indicators in detecting state transitions at the continental scale. ANPP

as a principal ecosystem function has been demonstrated, but PUE is

rarely mentioned (Hu et al., 2018; Berdugo et al., 2020). The adaptive

strategies of communities to precipitation are important for

understanding state transitions, especially in grassland ecosystems

(Knapp et al., 2017; Wu et al., 2018; Wang et al., 2022). We based

our study on the magnitude of ANPP and PUE dynamics magnitude

and divided temperate and alpine grasslands into low and high

resilience states, respectively (Figure 9). Spatial patterns of ANPP and

PUE dynamics with MAP were used to analyze state transitions of low

and high resilience in Eurasian grasslands. Notably, we found that the

complementation of ANPP and PUE dynamics was helpful in

identifying state transitions and understanding its underlying

ecological mechanisms in Eurasian grasslands.

In our study, AANPP, APUE, and SANPP-P peaked at the wet edge

of desert steppes (Figure 7C), and CVANPP, AANPP, and SPUE-T
peaked at the moist edge of typical steppes (Figures 7B, E, H). Thus,

these grassland types lie functionally approach a state transition in
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temperate grasslands. APUE peaked at the edge of alpine desert

steppes (Figures 8C, G), and AANPP and SANPP-P peaked at the wet

edge of alpine steppes (Figure 8D), all of which peaked at the

transition region in alpine grasslands. A previous study showed that

CVANPP and AANPP could indicate state transitions between desert

and typical steppes, and SANPP-P was available to detect typical and

meadow steppe regime shifts in temperate grasslands (Hu et al.,

2018). We suggest that CVP and xerophyte proportion explained

the relative state transitions in low resilience grassland ecosystems

(Gherardi and Sala, 2019; Deng et al., 2021; Hu et al., 2022).

Community (species traits, composition, and competition) and

limiting factors (light, temperature, and nutrients) regulate the

relative abrupt transition of high resilience grassland ecosystems

(Kou et al., 2020; Sun et al., 2021) (Figure 9). Note that, although

MAP itself has a clear threshold between grassland types

(Figures 2B, C), ecosystems may be undergoing a state transition

without detectable signals in precipitation changes (Scheffer et al.,

2009; Lenton, 2011; Hou et al., 2021). In addition, we also found

that the ANPP and PUE dynamics closely linked to precipitation

are a promising complementary method for understanding the

underlying mechanisms.

Overall, ANPP and PUE dynamics were predictive of critical

state transitions of grassland ecosystems, and this was our

motivation for connecting function-based indicators and CSD to

identify state transitions. However, not all indicators could serve as

metrics of state transition. For instance, CVPUE, SPUE-P, and SANPP-T
did not peak corresponding to the transitions between grassland

types. Note that the theory predicts positive feedback for the

cascading effects of multiple elements (species, soil water, plant

biomass, root system, and water uptake, etc.) as a critical

fundamental mechanism for state transition (Grace et al., 2007;

Estiarte et al., 2016; De Boeck et al., 2018). Unfortunately, we lacked

the data to assess the connection between the dynamics and

feedback. Furthermore, the quality and quantity of data, as well as

the temporal and spatial scales, all affected the robustness of the

indicators (Dakos et al., 2015; Rietkerk et al., 2021). In future

research, we would further consider the feedback processes of

ecosystems, and use long-term in situ observation data to explore

the indicators for state changes in terrestrial ecosystems at the

continental scale.
5 Conclusion

With long-term ANPP and PUE remote sensing products, our

study proposed a theoretical basis for ecosystem function-based

indicators to detect state transitions in Eurasian grasslands. We

greatly extended the analysis of ANPP and PUE dynamics across the

conterminous Eurasia grasslands, thereby firmly establishing functional

ecosystem indicators to signal state transitions at the continental scale.

Of greater significance, we have comprehensively confirmed valuable

indicators for state transitions, and revealed its underlying ecological

mechanisms in low and high resilience in Eurasian grasslands. CVANPP,

AANPP, APUE, SANPP-P, and SPUE-T displayed distinct spatial patterns,

with peaks signaling state transitions of grassland ecosystems. We

highlight the essential roles of hydrothermal conditions, community
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structures, and limiting factors in regulating ecosystem state transitions.

We suggest that grassland management strategies and climate change

research focus on areas that are highly vulnerable to climate variability

and are changing rapidly due to multiple factors in the grassland

transition zone.
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FIGURE 9

Schematic illustration of early warning signals and ecological mechanisms of state transitions in the processes underlying their distribution along
MAP. Precipitation, light/temperature, and species composition regulated high and low resilience state transitions in Eurasian grasslands. In the inner
rectangular list, peak ANPP asymmetry (AANPP), PUE asymmetry (APUE), and ANPP precipitation sensitivity (SANPP-P) signal transitions at the edge of
desert steppes of low resilience temperate grasslands. Interannual variability of ANPP (CVANPP), APUE, and PUE temperature sensitivity (SPUE-T) peak at
the transition of high resilience temperate grasslands. APUE signals transitions of the low resilience alpine grasslands. AANPP and SANPP-P signal
transitions of the high resilience alpine grasslands. Precipitation and xerophyte proportion controlled state transitions in low resilience grasslands.
Community structure and limiting factors (nutrient, light, and/or temperature) regulated state transitions in high resilience grasslands. Low and high
resilience represent the desert and meadow steppes in temperate and alpine grasslands, respectively. Phase I, II, and III correspond to desert
steppes, typical steppes, and meadow steppes in temperate grasslands, respectively, or alpine desert steppes, alpine steppes, and alpine meadow
steppes in alpine grasslands, respectively.
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