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There are expectations that increasing temperatures will lead to significant changes 
in structure and function of montane meadows, including greater water stress 
on vegetation and lowered vegetation production and productivity. We evaluated 
spatio-temporal dynamics in production and productivity in meadows within 
the Sierra Nevada mountain range of North America by: (1) compiling Landsat 
satellite data for the Normalized Difference Vegetation Index (NDVI) across a 37-
year period (1985–2021) for 8,095 meadows >2,500 m elevation; then, (2) used 
state-space models, changepoint analysis, geographically-weighted regression 
(GWR), and distance-decay analysis (DDA) to: (a) identify meadows with 
decreasing, increasing or no trends for NDVI; (b) detect meadows with abrupt 
changes (changepoints) in NDVI; and (c) evaluate variation along gradients of 
latitude, longitude, and elevation for eight indices of temporal dynamics in annual 
production (mean growing season NDVI; MGS) and productivity (rate of spring 
greenup; RSP). Meadows with no long-term change or evidence of increasing 
NDVI were 2.6x more frequent as those with decreasing NDVI (72% vs. 28%). 
Abrupt changes in NDVI were detected in 48% of the meadows; they occurred in 
every year of the study and with no indication that their frequency had changed 
over time. The intermixing of meadows with different temporal dynamics was a 
consistent pattern for monthly NDVI and, especially, the eight annual indices of 
MGS and RSP. The DDA showed temporal dynamics in pairs of meadow within a 
few 100 m of each other were often as different as those hundreds of kilometers 
apart. Our findings point strongly toward a great diversity of temporal dynamics 
in meadow production and productivity in the SNV. The heterogeneity in spatial 
patterns indicated that production and productivity of meadow vegetation is being 
driven by interplay among climatic, physiographic and biotic factors at basin and 
meadow scales. Thus, when evaluating spatio-temporal dynamics in condition for 
many high elevation meadow systems, what might often be considered “noise” 
may provide greater insight than a “signal” embedded within a large amount of 
variability.
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Introduction

Alpine and subalpine ecosystems make up a small portion of the 
earth’s surface (<6%; Testolin et al., 2020) but are widely distributed 
both latitudinally and longitudinally. The two characteristics these 
systems share across their broad geographic extent are extreme climatic 
conditions and isolation. Temperatures are very low and precipitation 
comes primarily as snow, and the systems can be envisioned as islands 
surrounded by forests. Distribution of vegetation at high elevations is 
controlled predominantly by temperature (Korner, 2003), so zonation 
of plant communities reflects the progressively harsher environmental 
conditions as elevation increases.

The extreme climatic conditions and isolation have given rise to 
plant species that have specialized adaptations to narrow climatic and 
high stress environments (Scherrer and Körner, 2011). This has 
resulted in relatively high degrees of endemism and species with 
restricted distributions (Packer, 1974). Consequently, high elevation 
plant communities in many mountain ranges are assumed to 
be vulnerable to shifts in climate (Dirnbock et al., 2003; Parmesan and 
Yohe, 2003; Krajik, 2004). There is evidence the relationship between 
climate and vegetation zonation in high elevation ecosystems has 
been, and continues to be, modified as temperatures have risen. 
Upward shifts in species distributions (Walther et al., 2005; Jurasinski 
and Kreyling, 2007; Lenoir et al., 2008; Felde et al., 2012) and changes 
in phenology (Huelber et al., 2006; Inouye, 2008) have been reported 
from mountain ranges in some parts of the world, as have 
encroachment of conifers and other woody species into subalpine 
meadows (Haugo et  al., 2011; Brandt et  al., 2013; Lubetkin et  al., 
2017). Together, these findings point toward the compression of plant 
species into even narrower ranges, changes in community composition 
by colonization and establishment of species from lower elevations, 
potential transformation of herbaceous-dominated to woody-
dominated communities and altered dynamics of vegetation 
functional processes (Shen et al., 2014).

This perspective on change in structure, species composition, and 
function of high elevation plant communities not only has support, 
but intuitive and popular appeal as well (Krajik, 2004). Nevertheless, 
while it may not be  inaccurate, this broad, temperature-centered 
outlook may also be overly simplistic (Malanson and Fagre, 2013). An 
increasing number of studies have reported regional and local 
variation driving changes in upward species expansion (Walther et al., 
2005; Pauli et al., 2007, 2012), transitions in community composition 
(Randin et al., 2009; Kudo et al., 2010), and alteration of functional 
processes (Shen et al., 2014; Sun et al., 2016). An important regional 
factor underlying this variation is the role precipitation plays in 
structuring plant species distributions and community composition 
(Ding et al., 2007; Sun et al., 2013). It is common for snowpack to vary 
latitudinally and with elevation (Mote et al., 2004; Sun et al., 2016), 
resulting in regions where availability of moisture may offset presumed 
effects of temperature. Moreover, precipitation in mountainous 
regions occurs in seasons other than just winter, usually coinciding 
with periods when plants are actively growing (Ren et al., 2021). Local 
factors contributing to variation in species and community responses 
include heterogeneity in microclimate, nutrients, soils, and grazing 
(Boelman et al., 2003; Wang et al., 2012; Fu et al., 2013; Malanson and 
Fagre, 2013; Fu et al., 2015). These regional and local influences do not 
negate the importance of increased temperature on plant species 

distributions or community dynamics. They do suggest though that 
effects of temperature are likely to be modified by multiple factors 
operating at different scales, resulting in highly variable spatio-
temporal patterns.

Vegetation in high elevation systems is comprised of different 
types, of which meadows are particularly important. They mainly 
occur on flat terrain in basins where runoff from snowmelt recharges 
shallow water tables, and are a good example of the strong influence 
precipitation exerts on assemblages of plants in the alpine and 
subalpine zones (Loheide and Gorelick, 2007; Ma et  al., 2022). 
Meadows are recognized for their great hydrological (Loheide et al., 
2009) and ecological importance (e.g., Hik et al., 2001; Wang et al., 
2012), as well as the ecosystem services they provide to humans 
(Ganjurjav et al., 2016).

Variation among high elevation meadows in vegetation structure, 
species composition, and functional attributes can be large. This is 
because the communities have assembled and been maintained 
through a complex interplay of abiotic and biotic forces whose 
strengths vary greatly across the landscape. Abiotic factors are 
primarily related, directly or indirectly, to availability of water. These 
include snowmelt, watershed features (e.g., steepness of surrounding 
mountains), tributary characteristics (density, length and extent), and 
soils. Biotic factors include individual and interactive effects of 
competition, facilitation, and herbivory (Song et al., 2006, 2012; Niu 
et al., 2016). Within-meadow variation in vegetation composition can 
be considerable, primarily as a result of complex microtopography, 
herbivory, or both. Thus, meadows are often comprised of highly 
localized assemblages that sort along small-scale gradients in moisture, 
nutrients and grazing intensity (Li et al., 2021; Xiao et al., 2022).

Despite their worldwide distribution and the generally accepted 
view many will be altered to various degrees by shifts in climate, the 
geographic distribution of investigations into dynamics of high 
elevation meadows has been highly skewed (Verrall and Pickering, 
2020). Studies of high elevation meadows in the mountain ranges of 
North America are underrepresented compared to the large number 
conducted in Europe and Asia (Verrall and Pickering, 2020). Meadows 
make up a small portion of the landcover in the Sierra Nevada range 
(SNV from hereon) of western North America (≈ 1%; Viers et  al., 
2013). That portion is higher in the sub-alpine and alpine zones (≈ 10%; 
Klinger et al., 2015), but the importance of meadows for hydrologic 
processes, as well as biological populations and communities, is far 
greater than the limited amount of land area they comprise (Patton and 
Judd, 1970; Allen-Diaz, 1991; Epanchin et al., 2010; Lowry et al., 2011; 
Klinger et al., 2015). Several studies have established clear links between 
water availability and the structure and composition of meadow 
vegetation in the SNV (Allen-Diaz, 1991; Lowry et al., 2011; McIlroy 
and Allen-Diaz, 2012; Roche et al., 2014). Those links suggest that 
climatically driven changes in hydrology would likely result in extensive 
shifts in vegetation composition and, implicitly, meadow condition 
(Loheide et al., 2009; Viers et al., 2013). Thus, climate shifts are widely 
regarded as one of the strongest forces of change in meadows in the 
subalpine and alpine zones of the SNV (Hayhoe et al., 2004; Loheide 
et  al., 2009). Structure, composition, and function are different 
community attributes though, and changes in one will not necessarily 
be representative of change in others (Lamy et al., 2021). The potential 
direction and magnitude of change in vegetation condition in meadows 
in the high elevation zone of the SNV have been largely speculative, 
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especially across large spatial scales and relatively long periods of time. 
This presents a significant gap in understanding of the degree of 
resistance high elevation meadows in the SNV might have to large-
scale shifts in temperature and precipitation.

Our goal was to evaluate spatio-temporal dynamics in vegetation 
production and productivity for meadows in the subalpine and alpine 
zones of the SNV. Increasing summer temperatures and alterations to 
snowpack and hydrologic regimes have been occurring in the SNV for 
several decades (Cayan et al., 2001; Mote et al., 2005; Thorne et al., 2007; 
Stewart, 2009; Dettinger et al., 2018). An overwhelmingly strong climate 
signal would be  expected to lead to largely consistent responses in 
meadow condition, but whether that response would translate to 
increased or decreased production and productivity is not known. Lower 
water tables in combination with higher temperatures could result in 
decreased production and productivity (Sun et al., 2013; Shen et al., 2014). 
But higher temperatures could lead to extended growing seasons and 
hence greater production and productivity (Ganjurjav et al., 2016; Wang 
et al., 2022). Moreover, there is high heterogeneity in topography, soils, 
climate, and hydrology throughout the SNV, all of which influence 
meadow condition (Viers et al., 2013). Finally, changes in production and 
productivity could be abrupt, possibly reflecting the existence of threshold 
effects (Hillebrand et al., 2020). Therefore, more than a largely consistent 
pattern of change in condition across meadows, there could be highly 
variable temporal and spatial responses that reflect the strong 
heterogeneity in environmental conditions.

We had three main objectives. The first was to identify the forms of 
temporal dynamics in terms of trends and variability over the last several 
decades. The second was to evaluate if there was a consistent pattern of 
increasing or decreasing production of vegetation biomass over the last 
several decades. The third was to identify the spatial pattern of variability 
in production and productivity (rate of biomass production) over the last 
several decades. We  addressed five main questions: (1) Was there a 
consistent decreasing or increasing trend in production over the last four 
decades? (2) Were changes in vegetation production characterized 
primarily by steady trends or more abrupt changes? (3) Did abrupt changes 
tend to occur in different or the same periods of time? (4) Did meadows 
with higher or lower levels of production and/or productivity cluster in 
particular regions, or were they dispersed throughout the SNV? (5) Did 
meadows with greater or lower variability in production and productivity 
cluster in certain regions, or were they dispersed throughout the SNV?

Methods

Study region

The SNV is approximately 335 km east of the Pacific Ocean and 
located between the Central Valley of California and the Great Basin 
and Mojave Deserts (Figure 1). It is one of the major mountain ranges 
in North America, extending approximately 640 km in a north–south 
direction with a width of 80–130 km (east–west). Elevation initially 
increases from south to north until it reaches a maximum of 4,421 m 
in the central part of the range, then decreases again northward of that 
maximum. Its elevation and orientation results in the range 
intercepting winter storm systems from the Pacific Ocean, as well as 
moist airmasses from the Gulf of California during the monsoon 
season (mid-July to mid-September). Most of the annual precipitation 
above 1,800 m occurs as snow, with 90% of it falling between 

November and April (Storer et al., 2004). Monsoon rains are frequent 
and often intense, but are usually of short duration (1–3 cm in 1–2 h) 
and in total comprise <5% of total annual amounts. Precipitation has 
a pronounced rain shadow pattern, with the east side of the range 
receiving substantially less than the west.

The study region spanned an elevation range of 2,500–4,000 m 
along a 350 km north–south gradient (≈ 3° of latitude) and 
encompassed virtually all of the alpine zone and a large portion of 
the sub-alpine zone (Figure 1). Transitions from the subalpine to 
alpine zones are not distinct, but vary with latitude and local 
topography (Fites-Kaufman et al., 2007). Thus, the existence of a 
distinct “treeline” between the subalpine and alpine zones is 
uncommon. Meadows tend to be surrounded by conifer stands in 
the lower and mid sub-alpine (Lubetkin et al., 2017), while in the 
upper sub-alpine conifers occur patchily in small, low-statured 
stands (“krummholz”) scattered among a matrix of rock and 
meadows. Meadows comprise the main vegetation type in the alpine 
zone, but they occur patchily and in varying sizes among the 
dominant rocky features. There can be significant heterogeneity in 
soil moisture due to fine-scaled variation in topography, which is 
reflected in considerable within-meadow variation in species 
composition. Woody plants may be present in meadows (usually 
willows Salix spp.), but vegetation is overwhelmingly comprised of 
herbaceous plants.

FIGURE 1

Location of the study region in the Sierra Nevada mountain range of 
North America. The inset shows the location of the study region 
(green polygon) in California, United States. The main map shows the 
geographical extent of the study region, and the blue polygons the 
locations of 21 randomly selected 10 km2 areas where herbaceous 
biomass samples were collected from 160 randomly located plots 
distributed among 60 randomly selected meadows >2,500 m.
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Analysis overview

We based our analysis on monthly and annual satellite-derived 
indices of production and productivity. This allowed us to evaluate their 
temporal and spatial patterns throughout virtually all of the alpine zone 
and a substantial portion of the upper subalpine zone. The ability to 
analyze patterns across long temporal and large spatial scales is a clear 
advantage of satellite indices, but this depends on the accuracy of the 
indices. Therefore, our initial steps were to: (1) evaluate the accuracy of 
GIS polygons identified as meadows; and (2) relate data on biomass 
collected in the field to the satellite index of production (the Normalized 
Difference Vegetation Index; NDVI). After this, we  partitioned the 
analysis into temporal and spatio-temporal dynamics. Monthly time 
series were used to investigate temporal dynamics of NDVI and 
variables derived from annual NDVI time series were used to examine 
spatio-temporal dynamics. We calculated the proportion of meadows 
with trends, abrupt changes (changepoints; Beaulieu et  al., 2012), 
neither or both from time series of monthly NDVI. When there was 
evidence of abrupt changes, we determined the years they occurred. To 
analyze spatio-temporal dynamics, we  derived indices of annual 
production and productivity, two measures of variability in annual 
production and productivity, and the overall change in annual 
production and productivity across years for each meadow. We used 
geographically weighted regression (GWR) to quantify the spatial 
distribution of meadows along gradients of latitude, longitude, and 
elevation for each annual index. We then conducted a distance-decay 
analysis to evaluate the relationship between similarity among annual 
temporal indices and distance among meadows. All analyses were 
conducted in R (R Core Team, 2022).

Data acquisition

Meadow boundaries
We used an Arc GIS shapefile of meadow polygons that was 

developed by integrating dozens of meadow shapefiles from multiple 
public and private organizations (Fryjoff-Hung and Viers, 2012). The 
polygons were for all meadows throughout the SNV, therefore 
we subset it to include only those ≥2,500 m and within the boundary 
of our study region. Elevation for each meadow was derived from a 
30-m digital elevation model acquired from the US Geological Survey 
(USGS) National Map.1

NDVI
Satellite-derived indices have been used for monitoring vegetation 

biomass and phenology in an extensive range of ecosystems, including 
those at high elevation (Carlson and Ripley, 1997; Shen et al., 2011). 
Since the mid-1980’s, NDVI has been perhaps the most widely used 
of those satellite indices (Pettorelli, 2013). We calculated monthly 
estimates (January 1985–December 2021) of NDVI from the US 
Geological Survey Analysis Ready Data archive (ARD; Dwyer et al., 
2018). ARD are produced from Landsat 4–9 satellite images that have 
been accurately georegistered, calibrated, and pre-processed (both top 
of atmosphere and atmospheric correction). Because ARD are derived 

1 https://apps.nationalmap.gov/downloader/

from multiple Landsat satellites, there are multiple images for each 
month (2–7 at 30 m resolution). Therefore, we used the terra package 
(Hijmans, 2022) in R to derive estimates of monthly maximum NDVI 
values. NDVI is a ratio between red (R) and near infrared (NIR) 
wavelengths, but the bands for these wavelengths differ between 
sensors (i.e., different Landsat satellites). We  calculated NDVI as 
(Band 4 – Band 3)/ (Band 4 + Band 3) for Landsat 4–7 data, and (Band 
5 – Band 4) / (Band 5 + Band 4) for Landsat 8 and 9 data. The 
calculations were done for images where cloud cover was ≤25%.

Because of the high proportion of rock in our study region, 
we wanted to confirm that NDVI was an accurate index of vegetation 
biomass. Therefore, we collected herbaceous biomass data that could 
be  directly related to NDVI values. We  established 21 randomly 
selected 10-km2 units along a 270 km latitudinal gradient across the 
study region (Figure 1). The units consisted of 10 km transects with a 
1-km buffer (500 m on each side of the transect) separated by a 
minimum of 5 km. The transects were on trails randomly chosen from 
a pool of 68 existing routes. Most of the transects traversed the crest 
of the SNV in a largely east–west orientation and avoided highly 
traveled routes such as the Pacific Crest Trail.

We randomly selected 60 meadows distributed among the 10-km2 
regions, then established 1–6 0.25 ha plots (50 m × 50 m) within each 
meadow (N = 160 plots). Plots within a meadow were separated by a 
minimum distance of 60 m, with plot centers located approximately in 
the center of a Landsat pixel. Herbaceous vegetation in four functional 
groups (forb, grass, rush, sedge) was clipped to ground level in four 
randomly located 900 cm2 quadrats (30 cm × 30 cm) within each plot. 
The samples for each group were composited within each plot, 
weighed in the field, then oven dried and weighed in a USGS 
laboratory on the east side of the SNV (Bishop, California; 37.36° 
north, 118.40° west). Samples were collected from mid-July to late-
August in 2010–2012 and 2014. Biomass (g 3,600 cm2) was calculated 
as the weight of the composited samples after oven drying.

Analysis

Meadow boundaries
We assessed the accuracy of the meadow polygons with a two-stage 

ground-truth approach. The first stage consisted of visiting areas 
identified as meadows within the 21 randomly selected 10-km2 regions. 
We used Arc GIS to calculate centroids for 1 to 9 randomly selected 
meadow polygons (median = 6) in each 10-km2 region (N = 126 total). 
One of the authors (RK) then used a global positioning unit (GPS) to 
locate each centroid and classified the surrounding area into one of five 
landcover classes: meadow, shrub, conifer, mixed conifer-shrub, or 
rock. Visits to the centroids occurred from 2014 through 2016.

The second stage consisted of visiting an equal number (N = 126) 
of randomly selected points identified as landcover other than 
meadows and then classifying the surrounding area into one of the 
five landcover classes. These points were located in areas outside of but 
between the 10-km2 regions. Visits to these points were made by RK 
between 2015 and 2019.

Accuracy assessment was made by collapsing the landcover classes 
into meadow and non-meadow, and then developing a confusion matrix 
based on the number of correct and incorrect classifications. We then 
calculated the true positive (sensitivity) and negative (specificity) rates, as 
well as overall accuracy of the meadow polygon delineations.
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NDVI
We used ordinary least-squares regression (OLS) to model the 

relationship between NDVI and total herbaceous biomass (i.e., 
summed across the functional groups within each plot i). An 
exploratory analysis indicated there was a curvilinear relationship 
between NDVI and biomass (g 3,600 cm2), so we log10-transformed 
biomass and specified the model as:

 
NDVI Ni i~ � �, 2� �

 
� � �i i� � � � ��

1 10log Biomass i�

with α ~ N(0,σ2), β1 ~ N(0,σ2), εi ~ N(0,σ2).

Temporal dynamics
Because the cloud cover threshold (≤25%) resulted in months with 

missing data (median = 34 per meadow; range = 12–87), we interpolated 
and smoothed the raw monthly NDVI values with a state-space model. 
These are flexible hierarchical time series models where parameter 
estimation is based on an observation model that is linked to a state 
(process) model (Auger-Méthé et al., 2021). They have several advantages 
over other time series models (e.g., ARIMA), including; (1) the 
partitioning of state and observation variability results in estimates of 
process variation being less biased by sampling error; (2) the time series 
do not need to be stationary to estimate the parameters; and (3) missing 
values are accurately estimated through application of a recursive fitting 
and smoothing process (the Kalman filter). The structure of a state-space 
model with seasonality is (Shumway and Stoffer, 2011):

 x x u Qi i t i i t i i i� � � � � ��B C c w the state process with w MVN ,1 0; ~

 y x a Ri i t i i t i i i� � � � �Z D d v the observation process with v MVN ,; ~ 0 ��

where x and y are time series values for meadow i at time t, B and 
Z are parameters for x at time t or in the previous time step t−1, 
respectively, u and a are rate parameters, C and D are parameters 
associated with covariates for seasonality c and d, respectively (i.e., 
month), and w and v are the process and observation errors that are 
assumed to be multivariate normally (MVN) distributed with a mean 
of 0 and covariances Q and R, respectively. Because NDVI values are 

continuous and can be positive or negative, the assumption of MVN 
was justifiable. We used the imputeTS package (Moritz and Bartz-
Beielstein, 2017) to interpolate missing NDVI values and the 
statespacer package (Beijers, 2022) to conduct the smoothing.

We analyzed temporal dynamics by comparing seven models of 
monthly NDVI for each meadow. The models included: (1) constant 
mean (null model: no trend or abrupt shifts in level); (2) 1-month 
autoregression (random walk); (3) 1-month autoregression and 
changepoints (random fluctuations between periods of abrupt shifts 
in level); (4) linear trend (steady increase or decrease over time);  
(5) 1-month autoregression and linear trend (random walk with drift); 
(6) linear trend with changepoints (steady increase or decrease 
between periods of abrupt shifts in level); and (7) 1-month 
autoregression, linear trend, and changepoints (random fluctuations 
or steady increase or decrease between periods of abrupt shifts in 
level). Detection of changepoints (number of changepoints and time, 
i.e., year) was based on a pruned exact linear time algorithm (PELT; 
Beaulieu and Killick, 2018). PELT searches for changes in mean and/
or variance across sequential time segments using penalized likelihood 
ratio tests that evaluate where changepoints occur (Killick and Eckley, 
2014). PELT assumes that the number of changepoints will increase 
with time series length, but it will not identify changepoints if the 
likelihood ratio tests indicate there are none. We specified 3 years as 
the minimum time segment length and used a modified Bayesian 
Information Criterion penalty for the likelihood ratio tests (Zhang and 
Siegmund, 2007; Beaulieu and Killick, 2018). Model comparisons 
were based on the biased-corrected version of Akaike’s Information 
Criterion (AICc) and AICc weights (wAICc).

AICc is prone to identifying more complex models as having 
the most support even though some parameters may have little 
explanatory power (Ward, 2008). Therefore, we  used dynamic 
linear regression (DLR; Zeileis et  al., 2005) to calculate slope 
parameters for meadows identified by the PELT algorithm as 
having a trend. The incorporation of autoregressive effects into 
DLR makes it an appropriate tool for evaluating different types of 
dynamics, including the existence of linear trends. We used the 
dynlm package in R (Zeileis, 2019) to specify DLR models with 
trend and 1- and 12-month autoregression, then calculated the 
trend coefficients and their 95% confidence interval (CI). Based on 
the results of the PELT and DLR analyses, we assigned the temporal 
dynamics of each meadow into one of five classes (Table  1): 
significant decreasing trend in NDVI, negative but non-significant 
trend coefficient (the 95% CI of the slope coefficient from the DLR 

TABLE 1 The number (N) and percentage of meadows >2,500 m in the Sierra Nevada mountain range of North America where changepoints were 
detected within five classes of trends between January 1985 and December 2021.

Trend class
Changepoints (%)

N Percent
Not detected Detected

Decrease 15.6 1.5 1385 17.2

Negative (NS) 7.8 2.9 862 10.6

No trend 0.0 19.7 1593 19.7

Positive (NS) 21.0 7.2 2276 28.1

Increase 7.1 17.4 1979 24.4

Total (%) 51.4 48.6 100.0

Total (N) 4163 3932 8095

https://doi.org/10.3389/fevo.2023.1184918
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org


Klinger et al. 10.3389/fevo.2023.1184918

Frontiers in Ecology and Evolution 06 frontiersin.org

overlapped zero), no trend based on both the PELT and DLR 
analyses, a positive but non-significant trend (the 95% CI of the 
slope coefficient from the DLR overlapped zero), and a significant 
increasing trend in NDVI.

Spatio-temporal dynamics
We used the greenbrown package (Forkel et al., 2013, 2015) to 

derive an initial set of five indices of annual production and 
productivity from the monthly time series for each meadow. The 
indices included: mean growing season NDVI (MGS), peak growing 
season NDVI (Peak), low growing season NDVI (Trough), the 
amplitude in growing season NDVI (Amplitude; Peak–Trough), 
and the rate of spring greenup (RSP). We examined the intra-annual 
correlations among the indices and removed Peak and Trough 
because of their high correlations with MGS (mean r = 0.97 and 
0.72, respectively), and Amplitude because of its high correlations 
with RSP (mean r = 0.97). The remaining variables provided indices 
of annual production (MGS, calculated as the mean NDVI value 
during the growing season) and productivity (RSP, calculated as the 
slope in NDVI between the beginning and peak of the growing 
season). We then calculated three other variables each for MGS and 
RSP: the coefficient of variation (CV) of temporal variation, the 
consecutive disparity index (D) of temporal variability, and the 
overall change in MGS or RSP over the 37-year period (ΔMGS and 
ΔRSP). The CV is a commonly used measure of temporal variability, 
but it is not independent of the mean of a time series and is sensitive 
to uncommon events (Fernández-Martínez et al., 2018). D takes 
into account the order of values in a time series, is independent of 
the mean, and not as sensitive to rare events as the CV (Fernández-
Martínez et al., 2018). Since D is calculated as the mean rate of 
change of the log ratios of consecutive values, when D  = 1, for 
example, this indicates that on average variability is ≈ 2.72 × greater 
than if a time series was constant. Thus, more than simply being an 
alternative to the CV, D provides additional insight into patterns of 
temporal variability. ΔMGS and ΔRSP were calculated as the sum 
of differences between years [e.g., ΔMGS = Σ(MGSyear – MGSyear−1)] 
and gave a measure of the net increase or decrease of MGS and RSP 
over the 37 years of the study.

We quantified the distribution of the annual indices along 
gradients of latitude, longitude and elevation with geographically 
weighted regression (GWR; Fotheringham et al., 2002). GWR is a 
variety of least-squares regression that examines how the relationship 
between dependent and predictor variables varies over space. 
Whereas traditional (i.e., non-spatial) least-squares would fit a global 
estimate of the relationship, GWR calculates an estimate for each data 
point. The non-spatial and spatially varying models can be compared 
with AICc, and if there is support for the spatial model the local 
coefficients can be mapped. The core of GWR is the development of 
a spatial kernel that is a moving window from point to point. The 

window includes a number of neighboring points determined by the 
bandwidth, which can be fixed or vary among points (an “adaptive 
kernel”); narrower bandwidths mean fewer neighboring points are 
used to calculate the local coefficients. We used the spgwr package 
(Bivand and Yu, 2020) to calculate the optimal bandwidth for 
adaptive kernels with a bisquare weighting function, then conducted 
the GWR for each MGS and RSP variable. We compared GWR and 
OLS models with wAICc and ANOVA (Fotheringham et al., 2002). 
We then classified local coefficients as increasing, decreasing or not 
changing based on the sign of the coefficient and if their 95% CIs 
overlapped zero.

We reasoned that if meadows with different spatio-temporal 
dynamics were segregated from each other this would translate to a 
well-defined distance-decay relationship. Conversely, if there was 
intermixing of meadows where spatio-temporal dynamics were 
unlike, then distance-decay relationships would be  weak or 
non-existent. Therefore, we calculated distance matrices from each 
set of standardized MGS and RSP variables, then regressed those 
distance matrices against the geographic distances among meadows. 
We  used Euclidean distance because some of the MGS and RSP 
variables had negative values. The large number of meadows (see 
Results) made pairwise comparisons of distances computationally 
unachievable using the full dataset, so we applied a randomization 
approach to compare slopes of the relationship between observed and 
permuted geographic distance. This entailed randomly selecting 
1,000 meadows in each of 1,000 iterations, then estimating the slope 
and explained variation (R2) from each iteration. We then calculated 
the slope based on 1,000 random permutations of the geographic 
distances within each iteration and compared the mean and 95% CIs 
of the observed and permuted values. The simba package (Jurasinski 
and Retzer, 2012) was used to create permutations and calculate 
slopes from the permuted distances.

Results

The meadow polygons were identified with a very high degree 
of accuracy. Sensitivity (98%; 123 meadows correctly identified as 
so) and specificity (97%; 122 points correctly identified as not being 
meadows) were nearly identical, and overall accuracy was 97.2% 
(95% CI = 94.4–98.9). A total of 8,149 meadows occurred within the 
study region. We  removed 54 (<1%) from the dataset because 
sensible NDVI values could not be calculated for them, leaving a 
working set of 8,095.

There was a very strong relationship between NDVI and total 
herbaceous biomass (r = 0.914; Table 2 and Figure 2). The relationship 
was particularly strong in the middle range of biomass values, with a 
tendency of lower and higher estimates of NDVI than predicted for 
lower and higher values of biomass, respectively (Figure 2).

TABLE 2 Parameter estimates of the relationship between the Normalized Difference Vegetation Index (NDVI) and herbaceous biomass in 160 randomly 
located plots within 60 randomly selected meadows >2,500 m in the Sierra Nevada mountain range of North America.

Parameter Estimate SE LCL UCL t p

Intercept 468.51 70.24 329.78 607.24 6.67 <0.0001

Biomass (log10) 2491.58 88.04 2317.69 2665.47 28.31 <0.0001

Biomass samples were collected once in four 900 cm2 quadrats within each plot between 2010 and 2014. LCL and UCL are the lower and upper 95% confidence intervals of the parameter 
estimates.
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Temporal dynamics

Temporal dynamics varied greatly among the meadows 
(Figure  3). Meadows with strong evidence of a positive trend 
comprised almost 25% of the total and were 1.5× more common 
than those with strong evidence of a negative trend (Table  1). 
Collectively, meadows classified as not having a long-term trend, 
having a positive but weak trend, or having a positive trend made 
up >70% of the total. There was marked mixing among the five 
trend classes when they were plotted along gradients of latitude, 
longitude, and elevation (Figure 4).

Changepoints occurred in every year (Figure 5) and were present 
in the dynamics of >48% of the meadows (N = 3,932). They occurred 

in 10.4 to 30.5% of the meadows across years, with no indication of a 
trend of them becoming less or more frequent over time (Figure 5). 
They also occurred in meadows in all five trend classes, particularly 
those with no evidence of a trend (100%) or strong evidence of a 
positive trend (71%) (Table 1).

Spatio-temporal dynamics

There was high heterogeneity in the spatial distribution of the 
MGS and RSP variables, with wAICc and ANOVA consistently 
supporting the GWR models for all eight variables (Table 3). The 
ranges of each of the local coefficients included negative and positive 
values, and while median values of those ranges were sometimes 
similar to the values of the global coefficients (MGS, CV of MGS, D 
for MGS, D for RSP), in other cases they were not (ΔMGS, RSP, CV 
of RSP; Table 3). Meadows representing the full range of predicted 
values for the MGS and RSP variables occurred throughout the study 
region, though there were also clear-cut clusters with similar values 
(Figures 6A,C, 7A,C, 8A,C, 9A,C).

The GWR model of the relationship between MGS and elevation 
explained a very high proportion of variation (R2 = 0.904; Table 3), 
with 61.1% of the meadows having significantly negative coefficients 
(Table 4). Meadows with no indication of a relationship between 
MGS and elevation comprised 37.6% of the total (Table 4). Overall, 
meadows with coefficients of varying sign and strength for the 
relationship between MGS and elevation were intermixed 
throughout the study region (Figure 6B). The GWR model of the 
relationship between RSP and elevation explained a moderately high 
proportion of variation (R2 = 0.532; Table 3), but in contrast with 
MGS the coefficients for 60.2% of the meadows indicated no 
significant relationship between RSP and elevation. Meadows with 
significant negative coefficients made up 28.2% of the total (Table 4). 
The meadows without significant coefficients were distributed 
throughout the study region, while those with significant negative 
coefficients were largely absent from the most northerly, southerly, 
and central areas of the region (Figure 6D). Meadows where there 
was a significant positive relationship between RSP and elevation 
made up 11.6% of the total and occurred patchily across the study 
region (Figure 6D).

The observed CV of MGS was highly skewed 
(Supplementary Figure S1). Approximately 90% of the values ranged 
between 0.127 and 0.844 and more than 99% were < 2, but the 
remainder went as high as 34. The relationship between the CV of 
MGS and elevation was weak (R2 = 0.107; Table 3). Most meadows 
had no significant relationship with elevation (57.9%; Table 4) and 
occurred throughout the study region. However, there was notable 
geographic segregation of meadows with significantly positive 
coefficients for elevation (41.5%; Table  4 and Figure  7B). These 
meadows occurred throughout much of the study region but were 
particularly frequent in the central and southern parts (Figure 7B). 
The observed CV of RSP was not skewed, though there was one 
meadow with an extreme value; all other values were < 2 
(Supplementary Figure S2). Coefficients in 55.8% of the meadows did 
not have a significant relationship with elevation, while 40.2% had a 
significant positive relationship (Tables 3, 4). The spatial distribution 
of the RSP-elevation relationship was similar to that of the 
MGS-elevation relationship, though there was a notable lack of 

FIGURE 2

Estimated fit of the relationship between total herbaceous biomass 
(g per 0.36 m2) and the Normalized Difference Vegetation Index 
(NDVI) in the Sierra Nevada mountain range of western North 
America. Biomass samples were collected once in either 2010, 2011, 
2012 or 2014 from 160 plots distributed among 60 meadows along a 
270 km latitudinal gradient through the upper subalpine and alpine 
zones. Fitted values were derived from an ordinary least squares 
regression of log10 transformed biomass values (A); panel (B) shows 
the curvilinear relationship for untransformed biomass values. NDVI 
was the peak growing season value associated with a plot in the year 
the biomass sample was collected.
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positive relationships in the central part of the study region 
(Figure 7D).

More than 75% of the values for D of MGS > 1 
(Supplementary Figure S1). While this was indicative of relatively high 
inter-annual variability, its relationship with elevation was weak 
(R2 = 0.039; Table 3). Nearly 75% of the meadows had coefficients with 
no significant relationship with elevation; those with coefficients 
indicating a significant positive relationship (22.2%) were almost 2× 
more frequent than those with significant negative coefficients 
(Table  4). Meadows with non-significant coefficients occurred 
throughout the study region (Figure 8B). Meadows with significant 
positive or negative coefficients had markedly different distributions; 
those with significant positive coefficients were almost entirely absent 
in the south part of the study region while those with significant 
negative coefficients were absent in the central part (Figure 8B). The 
values of D also pointed toward high inter-annual variability in RSP, 
with more than 70% > 1 (Supplementary Figure S2). Its relationship 
with elevation was weak (R2 = 0.137; Table 3), with almost 73% of the 
meadows having coefficients indicating no significant relationship. 
There were more than 4× as many meadows with positive as negative 
coefficients for D of RSP (Table 4). The ones with positive coefficients 

occurred patchily throughout the study region, while those with 
negative coefficients were largely absent in the north (Figure 8D).

GWR R2 values for ΔMGS and ΔRSP were 0.507 and 0.637%, 
respectively. The percentage of meadows with coefficients indicating 
no significant relationship with elevation was almost identical between 
ΔMGS and ΔRSP (Table 4). They occurred throughout the study 
region and were 2.4× to 10× more frequent as meadows with a 
significant positive or negative relationship (Figures  9B,D and 
Table 4). Meadows with a significant negative coefficient for ΔMGS 
(27.7%) occurred patchily throughout the region, as did those with 
significant positive coefficients for ΔRSP (28%; Figures  9B,D and 
Table 4). Meadows with significant positive ΔMGS coefficients (6.1%) 
were distributed sparsely throughout the study region, but those with 
significant negative ΔRSP coefficients (6%) were largely absent from 
the north (Figures 9B,D).

There was no indication of a meaningful distance-decay 
relationship for either the MGS or RSP matrices. Intercepts of the 
relationship indicated only moderate similarity among meadows even 
at very short distances, with extremely high variability across the 
entire range of geographic distances (Supplementary Figures S3, S4). 
The 95% CI of MGS slope parameters overlapped zero (Figure 10A) 

FIGURE 3

Four randomly selected examples of dynamics in monthly values of the Normalized Difference Vegetation Index (NDVI) from January 1985–December 
2021 in meadows in the upper subalpine and alpine zones of the Sierra Nevada mountain range of western North America. The solid line is the 
smoothed estimate (±95% CI) from a state-space model. NS = a trend was identified as the best model (out of seven) but the 95% CI of the trend 
coefficient overlapped zero. AR1 = 1-month autoregression.
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and differences between pairwise and permuted slope values were 
essentially zero (Table 5). The 95% CI of RSP slope parameters was 
greater than zero (Figure  10B), but the effect size was negligible; 
differences between pairwise and permuted slope values were 
essentially zero (Table  5). The mean p-value and R2 for the MGS 
permutations were 0.508 and 0.00087, respectively. Mean p-value and 
R2 for RSP permutations were 0.503 and 0.00469, respectively.

Discussion

We focused the analyses in this study on spatio-temporal patterns 
so we would have a foundation for developing and testing hypotheses 
of more mechanistic relationships between environmental heterogeneity 
and dynamics in meadow condition. Based on the patterns we found, 
the analyses we conduct in the future will clearly need to focus on 
temporal variability and spatial heterogeneity more so than general 
trends. Across four decades and a spatial extent of hundreds of 
kilometers, we found indices of herbaceous production and productivity 
in meadows in the subalpine and alpine zones of the SNV pointed 
strongly toward high levels of variability in both temporal and spatial 
dynamics. A large portion of the meadows had either no trend or very 
weak ones, and where trends occurred they often differed in direction. 

Nearly half of the meadows had a rapid change in production in at least 
one of the 37 years of the study, but the changes were not associated with 
trend direction or periods of time with particular conditions (e.g., a 
series of drought or wet years). Indices of annual production and 
productivity had weak spatial associations with each other, and indices 
of net change in production and productivity had almost wholly 
opposing patterns. Two indices of temporal variability differed 
somewhat in their spatial pattern, but they were similar in highlighting 
the intermixing of meadows with different patterns of temporal 
variability and in having weak relationships with elevation.

NDVI is generally considered to be a useful index of vegetation 
production (Pettorelli, 2013) and has been used extensively to analyze 
climate effects on vegetation in high elevation zones of the Tibetan 
Plateau (Ding et al., 2007; Sun et al., 2013, 2016). It is particularly 
useful in studies such as ours where the focus is on large scale patterns. 
We  found a strong relationship between herbaceous biomass and 
NDVI, so have little reason to think our findings could be an artifact 
of mismatch between plot-based and satellite-based measures of 
vegetation production. But we also think there are instances where 
NDVI needs to be used cautiously. In our case we simply wanted to 
ensure NDVI was an appropriate index of plant biomass in the 
meadows, so we specified it as being dependent on plant biomass. In 
other cases though the goal might be to predict herbaceous biomass 

FIGURE 4

Spatial distribution of meadows in five trend classes in the upper subalpine and alpine zones of the Sierra Nevada mountain range of western North 
America. Classification of trend was based on smoothed time series of monthly values of the Normalized Difference Vegetation Index (NDVI) from 
January 1985–December 2021. NS = 95% CI overlapped zero (non-significant).
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FIGURE 5

Percentage of meadows in the upper subalpine and alpine zones of the Sierra Nevada mountain range where abrupt changes (changepoints) in the 
Normalized Difference Vegetation Index (NDVI) were detected.

TABLE 3 Summary statistics for geographically weighted regressions (GWR) of eight indices of annual production (mean growing season value; MGS) 
and productivity (rate of spring greenup; RSP) in 8,095 meadows >2,500 m in the Sierra Nevada mountain range of North America.

MGS
Bandwidth = 0.0021

DF SS Mean Square F P wAICc

OLS Residuals 2 5769957694

GWR Improvement 2374.6 4419502396 1861161

GWR Residuals 5714.4 1350455298 236325 7.8754 0.0000 1

Parameters (quasi-R2 = 0.906)

Minimum Median Maximum Global

Intercept −55878.2 14573 63304.7373 13058.3142

Elevation −18.5 −3.9384 22.1745 −3.4349

CV (MGS)
Bandwid th = 0.0226

DF SS Mean Square F P wAICc

OLS Residuals 2 4487.3

GWR Improvement 292.91 282.4 0.96423

GWR Residuals 7796.09 4204.9 0.53936 1.7877 0.0000 1

Parameters (quasi-R2 = 0.111)

Minimum Median Maximum Global

Intercept −14.8 −1.797 6.8458 −1.4542

Elevation −0.00197 0.0007 0.0051 0.0006

(Continued)
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TABLE 3 (Continued)

D (MGS)
Bandwidth = 0.0558

DF SS Mean Square F P wAICc

OLS Residuals 2 374.07

GWR Improvement 118.1 14.62 0.123778

GWR Residuals 7970.9 359.45 0.045095 2.7448 0.0000 1

Parameters (quasi-R2 = 0.039)

Minimum Median Maximum Global

Intercept 0.323 1 2.3065 1.1266

Elevation −0.00038 0.000011 0.0003 0.00001

ΔMGS
Bandwidth = 0.0043

DF SS Mean Square F P wAICc

OLS Residuals 2 1666748863

GWR Improvement 1325 800621995 604256

GWR Residuals 6764 866126868 128049 4.7189 0.0000 1

Parameters (quasi-R2 = 0.507)

Minimum Median Maximum Global

Intercept −26782.0 2390 16523.0 1458.5

Elevation −5.4 −0.6506 9.8475 −0.3523

RSP
Bandwidth = 0.0039

DF SS Mean Square F P wAICc

OLS Residuals 2 699727891

GWR Improvement 1459.2 352196283 241366

GWR Residuals 6629.8 347531608 52419 4.6045 0.0000 1

Parameters (quasi-R2 = 0.532)

Minimum Median Maximum Global

Intercept −10045 2325 19520 1856.1588

Elevation −5.59 −0.3939 3.8569 −0.2448

CV (RSP)
Bandwidth = 0.0463

DF SS Mean Square F P wAICc

OLS Residuals 2 101.159

GWR Improvement 142.98 9.228 0.064545

GWR Residuals 7946.02 91.931 0.011569 5.5789 0.0000 1

Parameters (quasi-R2 = 0.107)

Minimum Median Maximum Global

Intercept −0.381 0.104 0.9802 0.1319

Elevation −0.00025 0.000061 0.00020 0.00005

D (RSP)
Bandwidth = 0.0163

DF SS Mean Square F P wAICc

OLS Residuals 2 359.77

GWR Improvement 401.05 43.27 0.107882

GWR Residuals 7687.95 316.5 0.041169 2.6205 0.0000 1

(Continued)
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FIGURE 6

Spatial distribution of mean growing season (MGS) and rate of spring greenup (RSP) values in 8,095 meadows in the upper subalpine and alpine 
zones of the Sierra Nevada mountain range of western North America. MGS and RSP are annual indices derived from monthly time series 
(January 1985–December 2021) of the Normalized Difference Vegetation Index (NDVI) for each meadow. Panels (A,C) give predicted values and 
panels (B,D) direction and significance (p  < 0.05) of the relationship with elevation.

Parameters (quasi-R2 = 0.137)

Minimum Median Maximum Global

Intercept −1.831 0.789 3.0302 0.8241

Elevation −0.00058 0.000110 0.00095 0.0001

ΔRSP
Bandwidth = 0.0035

DF SS Mean Square F P wAICc

OLS Residuals 2 530557176

GWR Improvement 1569.4 310061341 197561

GWR Residuals 6519.6 220495834 33821 5.8414 0.0000 1

Parameters (quasi-R2 = 0.637)

Minimum Median Maximum Global

Intercept −12917.0 −1241 15042 −1043.7

Elevation −4.32 0.3926 4.6282 0.3279
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from NDVI, hence biomass would be  dependent on NDVI. In 
situations where there is a linear relationship between NDVI and 
biomass the predictions would be  straightforward. But in 
circumstances such as ours where there was an asymptotic relationship 
between untransformed values, plant biomass would be   
underestimated at higher values of NDVI. A log transformation would 
linearize the relationship and put it on a multiplicative scale, but there 
would need to be an ecological justification, in addition to a statistical 
rationale, for doing so.

The larger proportion of meadows with increasing than decreasing 
trends in NDVI suggests warming is having greater positive than 
negative effects on meadow condition and is consistent with 
expectations of production increasing because of warmer conditions, 
a longer growing season, or both (Ganjurjav et al., 2016). However, 
many meadows had no trend or only a very weak trend. Thus, rather 
than temporal dynamics indicating a general prevalence of one pattern 

over others, the most ecologically appropriate interpretation appears 
to be recognition of a large diversity of patterns, none of which is 
dominant. The significance of this becomes even greater when spatial 
intermixing of the temporal dynamics is taken into account. Whether 
it was for the monthly time series of NDVI or indices of annual 
production and productivity, the close spatial association of meadows 
with different dynamics was the most consistent pattern we found. The 
lack of any meaningful distance-decay pattern was especially effective 
at showing this; meadows within a few 100 m of each other could have 
dynamics as dissimilar, or similar, as if they were hundreds of 
kilometers away. These patterns give a very strong indication of 
interplay between regionwide, basin, and meadow-scale factors, 
including climate patterns, snowpack, basin characteristics, 
topographic complexity, soils, and herbivory.

Intuitively, production and productivity should be greater where 
temperatures are higher and the growing season longer (Korner, 2003; 

FIGURE 7

Spatial distribution of the coefficient of variation (CV) for the mean growing season (MGS) and rate of spring greenup (RSP) values of 8,095 meadows in 
the upper subalpine and alpine zones of the Sierra Nevada mountain range of western North America. MGS and RSP are annual indices derived from 
time series (January 1985–December 2021) of the Normalized Difference Vegetation Index (NDVI) for each meadow. Panels (A,C) give predicted values 
and panels (B,D) direction and significance (p < 0.05) of the relationship with elevation.
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FIGURE 8

Spatial distribution of the consecutive disparity index (D) for the mean growing season (MGS) and rate of spring greenup (RSP) values of 8,095 
meadows in the upper subalpine and alpine zones of the Sierra Nevada mountain range of western North America. MGS and RSP are annual indices 
derived from time series (January 1985–December 2021) of the Normalized Difference Vegetation Index (NDVI) for each meadow. Panels (A,C) give 
predicted values and panels (B,D) direction and significance (p < 0.05) of the relationship with elevation.

Shen et al., 2014). The broad occurrence of the negative relationship 
between elevation and MGS was consistent, at least in part, with the 
expectation that temperature is setting limits on production. But the 
extensive distribution of meadows where this relationship was not 
present shows it is a variable and not completely predictable pattern. 
The relationship between elevation and RSP was much weaker than 
that of elevation and MGS, with the spatial distribution of productivity 
occurring in a patchwork varying greatly in strength and direction 
along latitudinal, longitudinal and elevation gradients. More so than 
just the dominance of temperature-related effects, this indicates joint 
effects of temperature and precipitation likely underlie the variability 
we observed in meadow production and productivity (Sun and Qin, 
2016; Ma et al., 2022). The vast majority of precipitation in the SNV 
comes as snow, and snowpack is well-recognized to vary at multiple 
scales throughout the range (Lundquist and Lott, 2007). At a regional 

scale, differences among winter storm tracks are responsible for the 
uneven distribution of snow in different parts of the range (Kapnick 
and Hall, 2010) and likely contributes greatly to not just levels of MGS 
and RSP, but also the patchy distribution of their variability (CV and 
D). It is also important to recognize that snow occurs as a regime. 
Amount (magnitude) and duration are two components of that regime 
that are particularly relevant to variation in meadow condition in the 
SNV, but they are not independent and could even have opposite 
effects on production and productivity (Wang et al., 2017). Meltoff 
from large snowpacks would generally result in greater moisture 
availability and higher vegetation production, but larger snowpacks 
also persist longer. A more extended period of colder temperatures as 
well as a shortened growing season would be expected to lead to lower 
productivity, and if growing season length was shortened even further 
then production would decrease as well. The net effect over large 
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spatial scales of this interplay between amount and duration of snow 
cover would be an increase in variation along geographic and elevation 
gradients. Thus, we hypothesize meadows with high production and 
high rates of productivity in the SNV are most likely to occur in areas 
where spring meltoff is relatively rapid and snowpacks are intermediate 
in size and duration.

Physiography and exposure to wind modify snow cover at the 
basin scale (Loheide et al., 2009; Stephenson et al., 2020; Rittger 
et  al., 2021), which in turn results in variability in water table 
levels, soil moisture, and thus meadow condition (Lowry et al., 
2011; Sun et  al., 2016; Wang et  al., 2017). Snow cover is more 
likely to persist longer on shadier slopes and in basins that are 
relatively protected from winds, resulting in variability along 
topographic gradients within and across basins. Composition, 
structure and condition of vegetation within meadows is 
influenced greatly by hydrology (Weixelman et al., 2011; Viers 
et  al., 2013), and microtopography and soils can exert strong 

FIGURE 9

Spatial distribution of the net change (Delta) for mean growing season (MGS) and rate of spring greenup (RSP) values of 8,095 meadows in the upper 
subalpine and alpine zones of the Sierra Nevada mountain range of western North America. MGS and RSP are annual indices that are derived from time 
series (January 1985–December 2021) of the Normalized Difference Vegetation Index (NDVI) for each meadow. Panels (A,C) give predicted values and 
panels (B,D) direction and significance (p < 0.05) of the relationship with elevation.

TABLE 4 The percentage of meadows (N = 8,095) > 2,500 m in the Sierra 
Nevada mountain range of North America with significantly negative or 
positive coefficients for eight indices of annual production (mean 
growing season value; MGS) and productivity (rate of spring greenup; 
RSP).

Variable Negative NS Positive

MGS 61.1 37.6 1.3

CV (MGS) 7.0 57.9 41.5

D (MGS) 8.9 74.7 16.4

ΔMGS 27.7 66.2 6.1

RSP 28.2 60.2 11.6

CV (RSP) 4.0 55.8 40.2

D (RSP) 5.1 72.7 22.2

ΔRSP 6.0 66.0 28.0

CV = coefficient of variability in temporal dynamics (1985–2021) and D = the consecutive disparity 
index for the same period of time. ΔMGS and ΔRSP are the net change from 1985 to 2021.
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FIGURE 10

Histograms of slope parameters for the distance-decay relationship 
between the geographic distance between pairwise combinations of 
meadows in the upper subalpine and alpine zones of the Sierra 
Nevada mountain range of western North America and: (A) distance 
matrices derived from four variables related to the mean annual 
growing season value (MGS) of the Normalized Difference 
Vegetation Index (NDVI); and (B) distance matrices derived from four 
variables related to the rate of spring greenup (RSP). Parameter 
estimates were estimated from 1,000 random draws (N = 1,000 per 
draw) from 8,095 meadows. The variables included MGS, the CV of 
MGS, the consecutive disparity index D of MGS, the net change in 
MGS from 1985 through 2021 (ΔMGS), RSP, and CV, D, and ΔRSP. 
Distance matrices were in Euclidean units. See text for further 
explanation of the variables and how they were derived. The solid 
red lines are the mean values and the dashed lines the 95% CIs.

TABLE 5 Summary statistics from distance-decay analyses based on 
matrices derived from variables related to annual herbaceous vegetation 
production (mean growing season value; MGS) and productivity (rate of 
spring greenup; RSP).

Distance 
matrix

ΔSlope p R2

MGS 0 0.508 (0.478, 0.539) 0.00087 (0.00001, 0.004553)

RSP 0 0.503 (0.473, 0.533) 0.00468 (0.00001, 0.01551)

Besides MGS and RSP, the variables included the coefficient of variability in temporal dynamics 
(1985–2021), the consecutive disparity index in temporal dynamics (1985–2021), and the net 
change in MGS and RSP from 1985 to 2021 (N = 4 variables per matrix). Pairwise geographic 
distances were calculated for 1,000 randomly selected meadows in each of 1,000 iterations. 
Differences in slope (ΔSlope) between observed values and 1,000 random permutations of the 
observed values were calculated within each iteration. A total of 8,095 meadows >2,500 m in the 
Sierra Nevada mountain range of North America were used in the analyses.

effects on meadow hydrology (Allen-Diaz, 1991). Variation in 
microtopography is translated primarily to variation in snowpack 
accumulation while variation in soils primarily affects water table 
level, but their joint effects can lead to high within-meadow 
heterogeneity in vegetation condition (McIlroy and Allen-Diaz, 
2012; Wang et  al., 2017). It is important to note that there is 
greater likelihood of variation in microtopography and soils with 
increasing meadow area, therefore we  expect within-meadow 
variation in production to vary greatly along a gradient from 
smaller to larger meadows.

Herbivory by native and domestic mammals is known to shape 
vegetation patterns in alpine meadows (Li et al., 2021) and can modify 
climatic effects on meadow vegetation (Wang et al., 2012; Fu et al., 2015; 
Niu et  al., 2016). A relatively large number of native mammalian 
herbivores occur in the high elevation zones of the SNV, including larger 
migratory species (bighorn sheep Ovis canadensis, mule deer Odocoileus 
hemionus) as well as smaller resident species (marmot Marmota 
flaviventris, pika Ochotona princeps, ground squirrels Callospermophilus 
lateralis, Urocitellus beldingii). Meadows are patches of highly nutritious 
forage for these species and are heavily used by them (Klinger et al., 2015; 
Stephenson et al., 2020). Widespread overgrazing by domestic sheep 
(Ovis aries) occurred in the SNV from the mid-19th century to early 20th 
century, and grazing by cattle was relatively common in some meadows 
from the mid to latter parts of the 20th century (Ratliff, 1985). In the last 
several decades, livestock grazing in the SNV has become more carefully 
managed, though damage to some meadows still occurs (McIlroy and 
Allen-Diaz, 2012; Roche et al., 2014). Virtually all of the meadows in our 
study region were on public lands administered by two federal agencies; 
US National Park Service (NPS) and US Forest Service (FS). Livestock 
are heavily regulated by NPS, with most grazing occurring intermittently 
from Equids (horses, mules) at light to moderate stocking levels in a 
relatively few designated areas (Klinger et al., 2015; Lee et al. 2017). 
Livestock grazing on FS lands is more extensive than on NPS lands, but 
it is still relatively light in the high elevation wilderness areas where our 
meadows occurred. We  think it is likely historic and contemporary 
grazing are influencing at least some of the variability we observed in 
meadow condition, particularly in localized areas where meadows with 
opposite trends occurred in close proximity to one another. We also think 
it is likely that grazing effects are having a greater influence on variability 
in production and productivity (i.e., CV and D) than on levels of MGS 
and RSP or the net change in MGS and RSP. In general though, 
we strongly suspect the heterogeneity in abiotic conditions throughout 
the range plays a much larger role in structuring the spatial distribution 
of production and productivity in the SNV than biotic forces.

Outwardly, CV and D gave different impressions of spatial variability 
in annual production and productivity. The most obvious difference was 
the large clustering of positive relationships between CV and elevation in 
the southern and central parts of the SNV, while D had a much patchier 
distribution of that relationship. It is likely this pattern is an artifact of 
how the indices measure variability. Because the CV is sensitive to 
outliers and not independent of the mean, the clustering of positive 
relationships with elevation is indicative of more extreme values, lower 
overall values, or both. MGS and RSP decreased with elevation, and 
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elevations are higher and there is more topographic variability in the 
southern and central parts of the SNV than the north. Therefore, it is not 
difficult to see why the CV would be greater in these conditions. In 
contrast, D is independent of the mean and far less sensitive to outliers, 
and it emphasizes the sequential differences in a series of values. Thus, 
the spatial distribution of D in the SNV contrasts the areas of high vs. low 
interannual variability in production and productivity. It is also important 
to bear in mind that the CV and D both indicated variability in the 
majority of meadows was not related to elevation. This implies factors 
other than temperature are responsible for the majority of the variability 
in production and productivity. These could be  relatively localized 
processes such as heterogeneity in moisture and nutrients (Ren et al., 
2010; Ma et al., 2022) or more complex, larger scale interactions between 
processes such as nitrogen deposition and phenological shifts (Zhang 
et al., 2015; Fu and Shen, 2017; Wang et al., 2022).

Implications

Temporal dynamics are often characterized by abrupt changes and 
being dependent on past conditions (“memory”; Beaulieu and Killick, 
2018). Consequently, inferences based on dynamics from short-term 
studies are likely to be misleading, especially in regard to purported 
“trends.” Ryo et  al. (2019) proposed a hierarchical framework that 
accounts for complexity at different time scales resulting from varying 
numbers and types of perturbations. Because environmental conditions 
are highly changeable in most high elevation regions, this concept of 
scale-dependent variability should be a fundamentally appropriate one 
to help understand vegetation dynamics in these systems.

Implicitly or explicitly, the interpretation of responses to climate 
shifts have often been framed from “a big umbrella” perspective, 
with an emphasis on mean responses and much less on the 
variability around the mean response. An increasing amount of 
evidence from both experimental and observational studies 
indicates variable and complex responses are more likely than 
broadly consistent ones though, be they at species, community, or 
ecosystem levels (Klanderud, 2008; Randin et al., 2009; Ma et al., 
2022). The diversity and intermixing of spatio-temporal patterns of 
meadow production and productivity we  found is a strong 
indication “general trends” in meadow condition will be far less 
meaningful for understanding vegetation dynamics than local 
patterns resulting from strong heterogeneity in climate and 
physiognomy. In all likelihood, this will also pertain to montane 
systems besides the SNV. In conclusion, what is often considered 
“noise” may often be more informative than a “signal” embedded 
within a large amount of variability.
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Nevada mountain range of North America. CV = coefficient of variability in 
temporal dynamics (1985–2021) and D = the consecutive disparity index for 
the same period of time. ΔMGS is the net change from 1985 to 2021. Values 
were derived from monthly time series of the Normalized Difference 
Vegetation Index (NDVI) in each meadow.

SUPPLEMENTARY FIGURE S2

Distributions related to four indices of annual rate of spring greenup (RSP) 
values for herbaceous vegetation in 8,095 meadows > 2,500 m in the Sierra 
Nevada mountain range of North America. CV = coefficient of variability in 
temporal dynamics (1985–2021) and D = the consecutive disparity index for 
the same period of time. ΔRSP is the net change from 1985 to 2021. Values 
were derived from monthly time series of the Normalized Difference 
Vegetation Index (NDVI) in each meadow.

SUPPLEMENTARY FIGURE S3

Four examples of distance decay relationships for 1,000 randomly selected 
meadows > 2,500 m in the Sierra Nevada mountain range of North America. 

The meadows were selected from a total pool of 8,095. Points represent 
pairwise geographic distances and distances derived from annual 
herbaceous vegetation production (mean growing season value; MGS), 
coefficient of variability in temporal dynamics for MGS (1985–2021), the 
consecutive disparity index in temporal dynamics for MGS (1985–2021), 
and the net change in MGS from 1985 to 2021. The red horizontal line 
represents the fitted estimate.

SUPPLEMENTARY FIGURE S4

Four examples of distance decay relationships for 1,000 randomly selected 
meadows > 2,500 m in the Sierra Nevada mountain range of North America. 
The meadows were selected from a total pool of 8,095. Points represent 
pairwise geographic distances and distances derived from annual 
herbaceous vegetation productivity (rate of spring greenup; RSP), the 
coefficient of variability in temporal dynamics for RSP (1985–2021), 
consecutive disparity index in temporal dynamics for RSP (1985–2021), and 
net change in RSP from 1985 to 2021. The red horizontal line represents the 
fitted estimate.
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