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Editorial on the Research Topic

Advantages, limitations, and evolutionary constraints of asexual

reproduction: An empirical approach

Asexual proliferation is likely the primary mode of reproduction. It is ubiquitous in

bacteria (Koch, 2002) and prevails in unicellular eukaryotes. It does not preclude genetic

recombination, which in its simple form exists in procaryotes (Graumann and Premstaller,

2006), and in eukaryotes has evolved into the more complex process of meiosis. Asexual

reproduction repeatedly evolved in all animal phyla (Knobil and Neill, 1998), but sex

and recombination generally prevail (Otto, 2021). This fact points to the evolutionary

importance of sex; however, a complete unifying theory of the various mechanisms behind

the advantage of sexual vs. asexual proliferation is still in development (Maynard-Smith,

1978; Otto, 2021). Most interesting is why we don’t see many animal systems combining

the advantages of both modes of reproduction, such as cyclical parthenogenetic arthropods.

While such rarity might seem counterintuitive to a simplistic understanding of natural

selection, it is likely a result of evolutionary constraints (Kearney et al., 2022). Better insight

into such complexity can be gained from studying the episodic development of asexual

reproduction in different animal phyla.

Four papers included in the Research Topic “Advantages, Limitations, and Evolutionary

Constraints of Asexual Reproduction: An Empirical Approach” demonstrate the diversity of

patterns of asexual reproduction and suggest that it may evolve in parallel even within a

single species. The empirical examples ranging from Cnidaria to insects and mollusks show

both the diversity of the pathways driving asexual reproduction as well as the dependence of

these pathways on the genetic architecture of an organism.

The study by Wang et al. explores the factors affecting reproduction in jellyfish.

All Cnidaria can reproduce asexually (Ruppert et al., 2004), and this trait seems

to be plesiomorphic for the entire group. In polyp strains of Aurelia, the authors

identified six types of asexual reproduction. They showed experimentally that the type

of reproduction, reproduction rates, and jellyfish blooming, depend on temperature and

feeding; simultaneously, conspecific polyps from distant regions show different norms of

reaction. The authors demonstrated a high plasticity of reproductive mode in the most

primitive group of the studied metazoans, and its dependence on the environment and

genetic architecture.
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The organisms studied in three other papers belong to phyla

where asexuality develops as a derived reproductive mode. Most

insects reproduce sexually, with some exceptions (Gullan and

Cranston, 2005). In mollusks, asexual reproduction does exist in

some species only (Ponder and Lindberg, 2008).

In hymenopterans, females usually deposit unfertilized eggs

producing haploid males, which then fertilize females and hence

diploid recombinant females are emerging (Heimpel and De Boer,

2008). However, endoparasitic bacteria may trigger a switch of

reproductive mode to true automixis (meiosis without fertilization;

Mogie, 1986). Du et al. studied the diversity of reproductive

modes in a parasitoid wasp. By combining cytological observations

with the analysis of microsatellite genotypes, they showed that

the reproduction of parthenogenetic females is apomictic, i.e.,

different from bacterial-induced parthenogenesis. The authors

discuss whether apomixis may have any selective advantage.

Indeed, although apomixis may accumulate deleterious mutations,

it does not necessarily lead to the loss of heterozygosity and may be

advantageous under certain conditions. This research demonstrates

high diversity of pathways of shifting to parthenogenesis within

a single species and is the first record of non-bacterial-induced

apomixis in hymenopterans.

Kuhn et al. developed a computer simulation of heterozygosity

loss during automixis and analyzed the occasional sexual

production of queens in colonies of ants. The haploid males

from a separate lineage fertilize the queens, which then produce

sterile workers; reproduction of the queen lineage is thought to be

strictly parthenogenetic via automixis. However, automixis causes a

gradual loss of heterozygosity. The authors estimated the expected

rates of heterozygosity loss and, alternatively, assumed that rare

males produced by the queen may fertilize the females. The results

suggest that 1–2% of progeny develop from fertilized eggs. This

study is particularly important since it demonstrates that sexual

reproduction might be easily missed during observations of natural

populations, leading to wrongly concluding its absence. The same

methodology can be applied to other parthenogenetic lineages,

where sexual reproduction has not been recorded so far.

The paper of McElroy et al. is a case study of parthenogenesis,

using transcriptome sequencing of RNA extracted from ovaries.

The paper suggests that differences in gene expression follow

patterns of spatial isolation between populations of aquatic snails,

rather than reflecting differences between the lineages’ reproductive

modes. There are clusters of genes with expression patterns

associated with asexual reproduction, involved in DNA synthesis

and chromosomemovement; genes related to the control of meiosis

did not show expression differences related to reproductive mode.

Only part of this gene cluster was consistently associated with

reproductive mode, and the others separated sexual and asexual

breeders from specific populations. These results are evident for

a complex mechanism of switching between the reproductive

modes, associated with the entire genetic architecture. Although

the spontaneous production of parthenogens is not known for the

studied organism, this study shows that it happened repeatedly in

different geographic populations.

Overall, the studies included in this theme use a range

of methodologies—ecological experiments, population genetic

analysis, cytological observations, computer simulation, and the

analysis of gene expression. And still, all send the reader the

same important message: the mode of reproduction is a plastic

feature, changing occasionally within the same species and even the

same population, as a joint reaction to environmental influences

and genetic architecture. There is hardly a universal mechanism

determining the switch between the reproduction modes; diverting

to asexual reproduction may be realized in different ways. Another

message is that, despite rapidly developing methodologies, we

understand too little about the true reasons for the reproductive

mode variation, and can only state that this is a result of the

joint effect of natural selection and evolutionary constraints. More

studies are essential to search for general features of reproduction

mode variation, persistent throughout the entire tree of life.
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